超磁致伸缩驱动器电流源的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料是一种新型的功能材料,与传统的磁致伸缩材料相比具有磁致伸缩应变大、能量密度高、响应速度快等显著的优点。基于超磁致伸缩材料的微位移驱动器在超精密加工、快速定位调节、主动减震降噪、流体控制等领域有广泛的应用。超磁致伸缩材料在工作状态下把电磁能转换为机械能,能量的大小由驱动电源决定,驱动器的静态和动态工作特性主要取决于励磁线圈的驱动电源的性能。所以电流源的设计是超磁致伸缩驱动器的研究和应用中的关键技术。
     本文根据超磁致伸缩驱动器的特点,通过分析对比不同类型恒流源电路原理,设计了适合本课题的连续调整型电流源电路,并研究其控制结构。通过分析该电路的系统误差得出影响电流源输出精度的最关键的环节,分别是基准电压、采样电阻和运算放大器,并提出了抑制系统误差的方法和措施。
     其次,对电流源中使用的功率MOSFET,分析了其输入输出特性及驱动电路的特点,设计了满足系统要求的功率MOSFET驱动电路和过流保护电路。对功率MOSFET使用中产生热量的问题,设计了系统的散热装置。
     再次,完成了系统的硬件电路设计,包括恒流源电路、DSP控制系统、D/A转换模块、温度测量模块、键盘模块、液晶显示模块、电源模块、PCB设计,以及上位机软件的编写。
     最后,对本文设计的超磁致伸缩驱动器电流源进行了性能指标的测试。输出电流稳定度优于0.3‰、纹波电流系数优于1%、负载调整率优于0.3‰、电压调整率优于0.6‰,均满足系统要求,为超磁致伸缩驱动器的精密定位提供了保障。
Giant magnetostrictive material is a novel functional material. It has a series of significant advantages, such as strain large, high energy density, fast response compared to traditional magnetostrictive material. Micro-displacement actuator based on giant magnetostrictive material has wide applications in the fields of ultra-precision machining, fast positioning and adjustment, active vibration and noise reduction, fluid control and so on. During it works, magnetostrictive material change electromagnetic energy into mechanical energy, the energy size depends on the out put of the driving power. Static characteristics and dynamic characteristics of Giant magnetostrictive actuator lies on the performance of driving power for inductance coil. Therefore, the design of driving power is a key technology in research and application of giant magnetostrictive actuator.
     In this paper, based on the features of giant magnetostrictive actuator, through analyzing and comparing different types of constant current source circuits, a continuously adjustable current source circuit has been done and its control structure is analyzed. Through analyzing systematic error of the circuit system, it is obtained that voltage reference, sampling resistance, operational amplifier affect the output precision of current source mostly. Accordingly, methods have been proposed to restrain systematic error.
     Secondly, analyzing for input and output characteristics of power MOSFET used in the current source has is given in this paper. Accordingly, driving circuit of gate and over current protection circuit have been designed. In order to solve the heat dissipation problem of power MOSFET, a radiator is designed and assembled. Thirdly, hardware circuit of current source has been made, including constant current source circuit, DSP control system, figure model conversion circuit, temperature measuring module, keyboard module, LCD module, power module, PCB design and upper computer software.
     Finally, the performance index of giant magnetostrictive actuator driving power has been tested. Test results are output current stability is up to0.3‰, current ripple factor is up to 1%, load regulation is up to 0.3‰, voltage regulation is up to 0.6‰. It can meet the system requirements for the giant magnetostrictive actuator to provide a guarantee of precision positioning.
引文
1 H. Wakiwaka, Y. Yamada. Trends in the development of giant magnetostrictive materials and their applications. Journal of the Magnetics Society of Japan, 2001, 25(8): 1425~1433.
    2 F. Claeyssen, N. Lhermet, R. L. Letty, P. Bouchilloux. Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 1997, 258: 61~73.
    3李梅.超磁致伸缩材料及其应用.现代电子技术. 2005, (18): 114~117
    4 C. W. Jin, F. T. Hua, L. H. Long. Vibration Sensitivity of the Scanning Near Field Optical Microscope with a Tapered Optical Fiber Probe. Ultra micros copy. 2005, 102(2): 85~92
    5 E. Quandt, A. Ludwing. Magnetostrictive actuation in Microsystems. Sensors and Actuators, 2000, 81: 275~280.
    6翟鹏,张承瑞,王海涛.基于GMM的活塞异形销孔加工原理研究.压电与声光, 2007, 29(1): 125~128
    7 H. Uchida, Yoshihito Matsumura, H. Uchida. Progress in thin film of giant magnetostrictive alloys. Journal of Magnetism and Magnetic Materials, 2002, 239: 540~545.
    8方紫剑,王传礼.超磁致伸缩材料的应用现状.煤矿机械. 2006, 27(5): 725~727
    9 H. Janocha. Application potential of magnetic field driven new actuators. Sensor and Actuators A, 2001, 91: 126~132.
    10翟鹏,张承瑞,兰红波.基于模态分析的高频响伺服镗刀杆研究.振动与冲击, 2006, 25(6): 170~173
    11卢全国,陈定方,钟毓宁,陈敏.超磁致伸缩致动器热变形影响及温控研究.中国机械工程, 2007, 18(1): 16~19
    12 Takeshi Hatsuzawa, Masanori Hayase, Toshiaki Oguchi. A linear actuator based on cilia vibration. Sensors and Achuators, 2003, 105: 183~189.
    13 Toshiyuki Ueno, Jinhao Qiu, Junji Tani. Magnetic Force Control with Composite of Giant Magnetostrictive and Piezoelectric Materials. IEEE Transactions on Magnetics. 2005, 39(6): 3534~3540
    14 Yuan Huiqun, Li Dong, Sun Huagang. Hysteretic Property of Rare Earth Giant Magnetostrictive Actuator. Rare Earths, 2007, 25: 236~239
    15 R. J. E. Smith, A. G. I. Jenner, A. J. Wilkinson, R. D. Greenough.Magnetostrictive actuation performance under digital variable structure control. Alloys and Compounds, 1997, 258: 101~106
    16 M. Pasquale. Mechanical sensor and actuators. Sensors and Actuators, 2003,106: 142~148
    17杨兴,贾振元,郭东明,郭沛飞.超磁致伸缩执行器驱动磁场理论分析与实验研究.大连理工大学学报, 2001, 41(5): 578~560
    18杨兴,贾振元,武丹,郭东明,郭丽莎.基于功率MOSFET的超磁致伸缩执行器驱动电源.压电与声光. 2001, 23(1): 33~36
    19葛荣杰,邬义杰,徐君,赵章荣.基于通用运放的GMA用大功率恒流驱动源设计.机床与液压. 2008, 36(2): 5~7
    20孙鲲.一种稳恒磁场产生装置的设计.大连理工大学硕士论文. 2008: 47~51
    21马志新,周志平.基于超磁致伸缩材料微位移驱动器的原理及实验研究.现代机械. 2009, (2): 19~21
    22李廷军,林雪原,周文松,徐柯文.开关电源噪声的抑制技术.现代电子技术. 2001, (2): 22~24
    23史全林,辛德胜.连续半导体激光器驱动电源.长春光学精密机械学院学报. 2001, 24(1): 12~15
    24邓军,单江东,张娜,田小建.大功率半导体激光器恒流源的研究与设计.半导体光电. 2003, 24(5): 319~321
    25 S. P. TIAN, Y. ZHAO, W. Y. WEI, Z. W. WANG. Nonlinear Correction of Sensors Based on Neural Network Model. Optics and Precision Engineering. 2006, 14(5): 891~902
    26 S. Mudanai, Y. Y. Fan. Modeling of Direct Tunneling Current Through Gate Dielectric Stacks. IEEE Transations on Electron Dev. 2000, 47(10): 1851~1857
    27 W.C.Lee. Modeling CMOS Tunneling Currents Through Ultrathin Gate Oxide Due to Conduction and Valence-Band Electron and Hole Tunneling. IEEE Transactions on Electron Dev. 2001, 48(7): 1366~1373
    28 K. Maitra, N. Bhat. Polyreoxidation Process Step for Suppressing Edge Direct Tunneling Through Ultrathin Gate Oxide in NMOSFETs. Solid-State Electron. 2003, (47): 15~17
    29 Yali Xiong, Shan Sun, Hongwei Jia. New Physical Insights on Power MOSFET Switching Losses. Power Electronics. 2009, 24(2): 525~531
    30 H. Blanchette, K. A. Haddad. Switching Power MOSFET Performance: A Compromise Between EMI Generration and Thermal Consideration. Industrial Electronics. 2006, 2(7): 1293~1298
    31 Z. John Shen, Yali Xiong, Xu Cheng. Power MOSFET Switching Loss Analysis: A New Insight. Industry Applications Conference. 2006, 3(10): 1438~1442
    32鲁莉蓉,李晓帆,蒋平.功率MOSFET高速驱动电路的研究.电力电子技术. 2001, 35(6): 45~47
    33王赋攀,杨鹏. MOSFET功率开关器件的散热计算.通信电源技术. 2005, (1): 31~33
    34李炳乾,布良基,范广涵.功率型LED热阻测量的新方法.半导体光电. 2003, (1): 22~24
    35 C. Schuster, W. Fichtner. Signal Integrity Analysis of Interconnect Using the FDTD Method and a Layer Peeling Teeling Technique. IEEE Transactions on Electromagnetic Compatibility. 2000, 42(2): 229~234
    36 G. Antonini, A. Orlandi. Lightning-Induced Effects on Lossy MTL Terminated on Arbitrary Loads: A Wavelet Approach. IEEE Transactions on Electromagnetic Compatibility. 2000, 43(2): 181~185
    37 T. Konefal, J. F. Dawson, A. C. Marvin. A Fast Multiple Mode Intermediate Level Circuit Model for the Prediction of Shislding Effectiveness of a Rectangular Box Containing a Rectangular Aperture. IEEE Transactions on Electromagnetic Compatibility. 2005, 11(47): 4~5
    38 T. Konefal, J. F. Dawson. A Fast Circuit Model Description of the Shielding Effectiveness of a Box With Imperfect Gaskets or Apertures Covered by Thin Resistive Sheet Coatings. IEEE Transactions on Electromagnetic Compatibility. 2006, 2(48): 1~2
    39杨智敏,李晔.开关电源EMC设计.移动电源与车辆. 2002, (1): 11~13
    40王会立.开关电源的电磁兼容设计.电源技术应用. 2003, (4): 24~27
    41朱长清,刘尚合,魏明,范丽思.静电放电电流的频谱分析与计算.高压技术. 2003, 29(8): 23~26
    42何光平.开关电源电磁骚扰分析及抑制.电视技术. 2004, (3): 60~62
    43雷新.电源EMI滤波器的设计特性及其选取原则.电磁兼容设计与检测. 2002, (4): 50~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700