具有主动控制功能的油膜轴承研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油膜轴承是转子-轴承系统的关键支承部件,对转子系统的稳定运行起着非常重要的作用。随着转子系统向着高速、高精度和高负荷的方向发展,对油膜轴承性能的要求越来越高,而尝试对传统油膜轴承进行改进以提高其性能一直是从事该领域研究人员的追求目标之一。本文提出了一种新型的具有主动控制功能的油膜轴承,该轴承利用超磁致伸缩微位移驱动器(GMA)对油膜轴承位置进行静态调节,并能动态主动抑制转子-轴承系统的振动,达到提高油膜轴承定位精度和稳定性的目的。论文以带有GMA的新型主动控制油膜轴承为研究对象,完成的主要工作有:
     参考已有的应用在位置定位和声纳激励等方面的GMA设计,考虑油膜轴承的应用特点,设计了结构上更为简单的专用GMA。建立了该GMA的静态位移力模型和动态机-磁耦合模型,搭建了杠杆试验装置,验证了GMA在常态磁场强度下可以产生与油膜轴承油膜厚度在同一数量级的伸长量。在材料试验机上做了GMA在各种频率下的动态性能试验,验证了GMA在输入电流频率达到800Hz时有好的频响特性,能满足遏止转子-轴承系统振动所需的频率。
     研究了GMA在止推轴承中的应用,验证了GMA在油膜轴承实际工况下调整油膜间隙的能力,同时解决了一些结构的止推轴承中因瓦块间的不均载导致的局部瓦温过高的情况。编制了相关程序,分析了止推轴承的油膜间隙与瓦块的最大温升和承载量的敏感性关系,表明通过控制瓦块支承处的油膜间隙可以有效地改变单瓦块的承载量并调节单瓦块温升。搭建了以GMA来主动调节瓦块油膜间隙的止推轴承实验台,该轴承以瓦块的温度作为反馈信号,控制支承瓦块的GMA的伸长量,改变止推瓦块的油膜间隙,使各个瓦块承受的载荷均匀,防止局部瓦块的过高的温升。在止推油膜轴承实验台上,进行了均载调节试验,验证了GMA调节瓦温的能力。
     建立了可控径向油膜轴承支承的Jeffcott转子系统模型,进行了动力学分析。纳入GMA的机-磁耦合模型,采用龙格-库塔法编制了考虑基础参振的径向油膜轴承-转子系统的计算程序。该程序根据非线性油膜力数据库技术计算油膜力,以轴颈的振动信号作为反馈信号来同步控制轴承座的运动,计算得到了轴心运动轨迹,并详细考察了控制增益和相位差对系统不平衡振动和稳定性的影响。计算结果表明,控制增益和相位差对系统不平衡振动影响很大,选择合适的控制增益和相位差可以大大减小系统的不平衡工频振动,减小系统的半频涡动,大大提高系统的稳定性。计算结果还说明,对于某一固定的控制增益,存在一个最佳相位差,能使系统的不平衡响应最小。
     搭建了可控径向油膜轴承-转子系统实验台和测控系统。作为初步验证可控油膜轴承性能的实验台,转子支承一端采用可控滑动轴承,另一端采用向心滚动轴承的简单结构;为了满足轴承在不同转速下的试验需要,以变频器和电主轴系统作为驱动装置。根据GMA的驱动特点,采用碟形弹簧结构给GMA施加预应力,能保证滑动轴承套和GMA始终不脱离,同时满足滑动轴承套具有两个自由度的要求。
     进行不同载荷和转速下的可控滑动轴承的调心试验,通过改变GMA的磁场,可以把不同工况下的可控滑动轴承支承的转子的轴心的静平衡位置调整到同一位置,验证可控滑动轴承具有良好的定心精度。
     针对工频振动,进行了动态轴心轨迹控制试验。初步试验结果表明可控滑动轴承所支承的转子的工频振动幅值大大减少,轴心动态振动轨迹明显减小,验证了本文提出的具有主动控制功能的油膜轴承具有较好的振动抑制能力,使传统油膜轴承的的稳定性得到提高。
As the key supporting components for rotor-bearing system, hydrodynamic oil film bearing have much important effect on the stability of rotor-bearing system. With development of rotor-bearing system capacity, high speed, high precision and heavy loading, better performance oil film bearing are needed to meet present rotational equipment requirement. It is a hot research area to improve fluid film bearing performance. In this thesis, a new active controllable oil film bearing is put forward in order to improve the bearing performance. By making use of the giant magnetostrictive actuators (GMA), the location of oil film bearing can be actively controlled and vibration of the rotor-bearing system can also be restrained dynamically. This doctoral project is mainly on the investigation of this newly developed bearing with GMA and the main works have been done are as follows:
     Based on the design of present GMA used in the position allocation and sonar excitation, etc., the special GMA for oil film bearing is designed. Its structure is simpler. Working condition, needed excitation and amplitude adjustment range for oil film bearing are also considered in the design of this GMA. Besides, static displacement-force model and dynamic mechanical-magnetic coupling model for GMA are established. A simple lever rig is built up to measure static extension of GMA. The static tests have been done under different magnetic field and pre-loading force. The test results are consistent with the GMA static displacement-force model. It is also measured in the test that the GMA can extend several tens of micrometers, which is at the same order of the clearance of oil film bearing. Dynamic tests of GMA have also been done under different excitation frequency of current using the material test rig. The special GMA has good dynamic response when exciting current frequency attains 800Hz, which can almost meet the requirement of restraining vibration of rotor-bearing system with oil film bearing. These primary researches show that the designed GMA is fit to control oil film clearance and also have potential to restrain vibration of rotational machine supported with oil film bearing.
     Application of GMA in thrust bearing is investigated in order to verify the capacity of GMA to adjust oil film clearance and solve the problem that some pads in thrust bearing have excessive temperature due to inhomogeneous loads on pads. A numerical calculation program is developed to analyze the sensitive relationship among oil film clearance, the maximum temperature and the load on a pad. The results indicate that the load on a pad can be changed and temperature rise can be adjusted by controlling oil film clearance at the supporting place of the pad. Based on this, an active controllable hydrodynamic thrust bearing is put forward by using GMA to adjust oil film clearance. A thrust bearing test rig has been built up and experiments were done to verify the performance of the thrust bearing.
     The dynamics of Jeffcott rotor system model supported by active controllable journal bearing is analyzed. A numerical calculation program for journal bearing-rotor system is developed considering the mechanical-magnetic coupling model of GMA and excitation from the bearing. The nonlinear oil film force database is used to calculate oil-film forces of hydrodynamic journal bearing in this program. The shaft vibration signal is taken as the feedback signal to control the excitation current on GMA. Runge-kutta integral method is adopted to calculate the journal center loci. Calculated results show that phase difference and control gain have important effect on unbalance vibration and stability of the system. It also shows that appropriate phase difference and control gain can greatly reduce unbalance vibration and whirl vibration. It can improve the stability of the system. Results also imply that there is an optimal phase difference value which can minimize the unbalance vibration for a certain control gain.
     The developed controllable journal bearing rig with GMA is built up. Its test control system is given. As a preliminary rig to verify the controllable journal bearing performance, one end of the rotor is supported by a controllable hydrodynamic bearing and the other end by a radial ball bearing. Besides, electricity spindle and converter are used to drive the rotor-bearing test rig to meet the test requirement at different speed. Washer spring is used to add GMA with preloading according to the driven requirement of GMA. It also can assure that hydrodynamic bearing sleeve is always contacted with GMA and has two moving degree of freedom.
     The auto-centering tests of the controllable bearing are done and results are firstly presented. The shaft center can be adjusted to the same position under different loads and speeds by changing GMA's magnetic field. The results show that controllable hydrodynamic bearing has good auto-centering function.
     Tests on the vibration compression function of the bearing also have been done and introduced. The test results indicate that the unbalance vibration can be restrained obviously. These tests imply that controllable journal hydrodynamic bearing with GMA has very good potential to improve the stability and rotational accuracy of rotor-bearing system.
引文
[1]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002;15(1):1-9
    [2]温诗铸.我国摩擦学研究的现状与发展[J].机械工程学报,2004;40(11):1-6
    [3]张娟,吴超,王文.超磁致伸缩驱动器在止推油膜轴承中的应用[J].润滑与密封,2007;(4):130-132
    [4]岑少起,张少林,郭红等.径向-推力联合浮环动静压轴承动态特性试验研究[J].润滑与密封,2006;(5):53-56
    [5]Clarke D M,Fall C,Hayden G N,et al.Steady-state model of a floating ring bearing including thermal effects[J].J.of Tribology,Transactions of the ASME,1992;114(1):141-149
    [6]Nie S L,Huang G H,Li Y P.Tribological study on hydrostatic slipper bearing with annular orifice damper for water hydraulic axial piston motor[J].Tribology International,2006;39(11):1342-1354
    [7]黄文虎,武新华,焦映厚等.非线性转子动力学研究综述[J].振动工程学报,2000;13(4):497-509
    [8]Hamler A,Gorican V,Stumberger B,et al.Passive magnetic bearing[J].Journal of Magnetism and Magnetic Materials,2004;272-276(Ⅲ):2379-2380
    [9]Qian Kun-Xi,Zeng Pei,Ru Wei-Min,et al.Novel magnetic spring and magnetic bearing[J].IEEE Transactions on Magnetics,2003;39(Ⅱ):559-561
    [10]Lum K Y,Coppola V T,Bernetein D S.Adaptive autocentering control for an active magnetic bearing supporting a rotor with unknown mass imbalance[J].IEEE Transactions on Control Systems Technology,1996;4(5):587-597
    [11]Xiao Y,Zhu K Y,Zhang C,et al.Stabilizing synchronization control of rotor-magnetic bearing systems[C].In Proceedings of the Institution of Mechanical Engineers.Part Ⅰ:Journal of Systems and Control Engineering,2005;219(7):499-510
    [12]Smith R D,Weldon W F.Nonlinear control of a rigid rotor magnetic bearing system:modeling and simulation with full state feedback[J].IEEE Transaction on Magnetics,1995;31(2):973-980
    [13]赵艾萍,张钢.电磁轴承研究的最新发展[J].机械科学与技术,1999;18(6):942-944
    [14]Sun L,Krodkiewski J M,Cen Y.Self-tuning adaptive control of forced vibration in rotor systems using an active journal bearing[J].Journal of Sound and Vibration,1998;213(1):1-14
    [15]岑豫皖,Krodkiewski,Sun L.应用新型可控轴承改善转子系统稳定性的研究[J].机械科学与技术,1998;17(2):255-257
    [16]Santos L F.Design and evaluation of two types of active tilting pad journal bearings[C].IUTAM Symposium on the Active Control of Vibration,England,1994
    [17]Deckler D C,Veillette R J,M.J.Braun.Modeling and control design for a controllable bearing system[C].In Proceedings of the 39th IEEE Conference on Decision and Control.Sydney,Australia.December,2000:4066-4077
    [18]Rodrigo Nicoletti,Ilmar Ferreira.Vibration control of rotating machinery using active tilting-pad bearings[C].In 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings,Como,Australia.2001:589-594
    [19]Cai Z,de Queiron M S,Khonsari M M,et al.Adapative control of active tilting-pad bearings[C].In Proceedings of the American Control Conference.Denver,Colorado.2003:2907-2912
    [20]Rabinowitz M D,Hahn E J.Steady state performance of squeeze film damper supported flexible rotor[J].Trans.ASME,J.of Engr.Power,1977:552-558
    [21]Mu C,Gu J L.Vibration control and stability analysis of an active squeeze film damper beating and rotor system[C].In Proc.of the Intl.Conf.on HBRSo,xi'an,1990
    [22]Gu J L,Ren X M.Active control of vibration of rotor support systems by the controlled squeeze film damper bearings[C].In Proc.3rd Intl.Conf.on Rotor Dynamics,IF TOMM,Lyon,France,1990:327-332
    [23]Wang J,Hahn E J.Transient analysis of squeeze-film dampers with oil hole feed[J].Tribology Transactions,1995;38(4):837-844
    [24]高小冲,李运华.基于电液可控挤压油膜阻尼器的转子系统振动的主动控制研究[J].机床与液压,2002;(5):11-13
    [25]骆志明,冯庚斌,任兴民等.可控挤压油膜阻尼器-转子系统主动控制试验[J].振动、测试与诊断,1999;19(4):343-347
    [26]Nikolakopoulos P G,Papadopoulos C A.Controllable high speed journal bearings, lubricated with electro-rheological fluids[J].An analytical and experimental approach.Tribology International.1998;31(5):225-234
    [27]Yao G Z,Meng G.The vibration control of a rotor system by disk type electro-rheological damper[J].J.of Sound and Vibration,1999;219(1):175-188
    [28]陆蓓,赵玫,徐敏.电流变流体的性能及其在振动控制中的应用[J].噪声与振动控制,1998;(5):17-21
    [29]姚国治,孟光.电流变减振器的参数估计与减振性能研究[J].振动工程学报,1997;10(3):387-393
    [30]Nikolajsen J L.An electroviscous damper for rotor applications[J],J.Vibration and Acoustics(ASME),1990;112(4):440-443
    [31]Ehrgott R C,Masri S F.Modeling the osoillatory dynamic behavior of ER materials in shear[J].J.Smart Materials and Structures,1992;1(4):275-285
    [32]Miwa M,Harita H,Kaneko R,et al.Frequency characteristics of stiffness and damping effect offerro fluid bearing[J].Wear,2003;254:1056-1060
    [33]Palazzolo A B.Piezoelectric pushers for active vibration control of rotating machinery [J].Trans.ASME:J.of Vibration,Acoustics,Stress,Reliability inDesign,1989;1(11):298-305
    [34]Palazzolo A B,Jagannathan S,Kascak A F,et al.Hybrid active vibration control of rotor bearing systems using piezoelectric actuators[J].Journal of Vibration and Acoustics,1993;115:111-119
    [35]Li W,MaiBer P,Enge H.Self-learning control applied to vibration control of a rotating spindle by piezopusher bearings[C].In Proc.Instn Mech.Engrs Part Ⅰ:J.Systems and Control Engineering,218:181-194
    [36]Mizuno Takeshi,Aizawa Mitsunori.Repulsive magnetic bearing using a piezoelectric actuator for stabilization[J].JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2003;46(2):378-384
    [37]潘策,陈晓南,杨培林.压电陶瓷驱动器动态特性的实验研究[J].压电与声光,2005;27(2):203-205
    [38]Clark A E,Belson H S,Strakna R E.Elastic properties of rare-earth-iron compounds[J].Journal of Applied Physics,1973;44(6):2913-2914
    [39]Clark A E,Savage H T.Giant magnetically induced changes in the elastic moduli in Tb_(0.3)Dy_(0.7)Fe_2[J].IEEE Transactions on Sonics and Ultrasonics,1975;22(1):50-52
    [40]Clark A E,Teter J P,McMasters O D.Magnetostriction jumps in twined Tb_(0.3)Dy_(0.7)Fe_(1.9)[J].Apply Phys.,1988;63(8):3910-3912
    [41]Restorff J B,Savage H T,Clark A E,et al.Preisach modeling of hysteresis in Terfenol[J].J.Aappl.Phys.,1990;67(9):5015-5018
    [42]王博文.超磁致伸缩材料制备与器件设计[M].北京,冶金工业出版社,2003
    [43]Claeyssen F,Bossut R,Boucher D.Modeling and characterization of magnetostrictive coupling[J].Power Transducers for Sonics and Ultrasonics,Springer-Verlag,1991:132-151
    [44]Hirotami Nakano.Angstrom positioning system using a giant magnetostriction actuator for high power applications[C].In Proceedings of Power Conversion Conference-Osaka PCC 2002,Osaka,Japan,2002;(3):1102-1107
    [45]Dapino M J,Smith R C,Flatau A B.Structural magnetic strain model for magnetostrictive transducers[J].IEEE Trans.on Magn.,2000;36(3):545-556
    [46]Calkins F T,Smith R C,Flatau A B.Energy-based hysteresis model for magnetostrictive transducers[J].IEEE Trans.on Magn.,2000;36(2):429-439
    [47]Restorff J B,Savage H T,Clark A E,et al.Preisach modeling of hysteresis in Terfenol[J].J.Aappl.Phys.,1990;67(9):5015-5018
    [48]Gros L,Reyne G,Body C,et al.Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators[J].IEEE Trans.on Magn.,1998;34(5):3150-3153
    [49]Cao S Y,Zheng J J,Huang W M,et al.Parameter identification of strain hysteresis model for giant magnetostrictive actuators using a hybrid genetic algorithm[C].In Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005:2009-2012
    [50]杨庆新,闰荣格,徐桂芝.超磁致伸缩器件的数值计算模型[J].电工技术学报,1999;14(4):17-20
    [51]闰荣格,王博文,曹淑瑛等.超磁致伸缩致动器的磁刊几械强耦合模型[J].中国电机工程学报,2003;23(7):107-111
    [52]Wan Y P,Zhong Z,Fang D N.Permeability dependence of the effective magnetostriction of magnetostrictive composites[J].Journal of Applied Physics,2004;95(6):3099-3110
    [53]Wan Y P,Fang D N,Soh A K.A small-scale magnetic-fielding model for an infinite magnetostrictive plane with a crack-like flaw[J].International Journal of Solids and Structures,2004;41(22-23):6129-6146
    [54]万永平,方岱宁,黄克智.磁致伸缩材料的非线性本构关系[J].力学学报,2001;33(6):749-757
    [55]贾振元,杨兴,郭东明等.超磁致伸缩微位移执行器控制方法的研究[J].仪器仪表学报,2002:23(3):288-291
    [56]Zhang Yongshun,Wang Huiying,Zhang Ruixia,et al.Bidirectional moving principle of a wireless micro robot based on giant magnetostriction actuator[C].In Proceedings-2004IEEE International Conference on Robotics and Biomimetics,2004:113-118
    [57]徐杰,陈张健,邬义杰等.超磁致伸缩驱动器热变形补偿及温控方法研究[J].组合机床与自动化加工技术,2005;(6):8-19
    [58]唐志峰,项占琴,吕福在.稀土超磁致伸缩执行器优化设计及控制建模[J].中国机械工程,2005;16(9):753-757
    [59]顾仲权,朱金才,彭福军等.磁致伸缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998;11(4):381-388
    [60]贺西平.稀土超磁致伸缩换能器[M].北京,科学出版社,2006
    [61]Ohmata K,Zaike M,Koh T.Three-link arm type vibration control device using magnetostrictive actuators[J].Journal of Alloys and Compounds,1997;258(1-2):74-78
    [62]Teter J P,Sendaula M H,Vranish J,etc.Magnetostrictive linear motor development[J].IEEE Transactions on Magnetics,1998;34(4):2081-2083
    [63]Vranish J M,Naik D P.Magnetostrictive direct drive rotary motor development[J].IEEE Trans Magn,1996:(27):5355-5357
    [64]Eda H,Ohmura E,Sahashi M,et al.Machine tool equipped with a giant magnetostriction actuator-development of new materials Tb_(0.27)Dy_(0.73)(FeMn)_(1.93) and their application.Annals of the CIRP,1992;(41):421-424
    [65]Tenghamn,Rune.Flextensional transducers applied to long range hydroacoustic communication[C].In Proceedings of the 6th International Symposium on Unmanned,1989:55-63
    [66]丁凡,戴旭涵,夏春林.GMM蠕动微位移机械的研究[J].仪器仪表学报,1999;20(4):419-420
    [67]夏春林.超磁致伸缩电—机械转换器及其在流体伺服元件中的应用基础研究[D].浙江大学,1998
    [68]http://www.Etrema.com/
    [69]Engdahl G.Handbook of gaint magnetostrictive materials[M].San Diego:Academic Press,2000
    [70]Ouchi,Hiromu.Piezoelectric ceramic materials[M].National technical report(Matsushita electric industry company),1976;22(6):720-740
    [71]王保林.压电材料及其结构的断裂力学[M].国防工业出版社,2003
    [72]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000
    [73]Taylor R I.Inclusion of lubricant shear thinning in the short bearing approximation [J].Journal of Engineering Tribology,1999;213(1):35-46
    [74]Hattori H.Dynamic analysis of a rotor-journal bearing system with large dynamic loads (stiffness and damping coefficient variations in beating oil film)[J].JSME International,1993;36(2):251-257
    [75]王文,张直明.油叶型轴承非线性油膜力数据库[J].上海工业大学学报,1993;(4):299-305
    [76]Adiletta G,Guido A R,Rossi C.Chaotic motions of a rigid rotor in short Journal bearings[J].Nonlinear Dynamics,1996;10:251-269
    [77]袁小阳,朱均.多圆盘转子咐动轴承系统自激振动的计算与分析.西安交通大学学报.1997;31(8)80-86
    [78]袁小阳,朱均.不平衡转子-滑动轴承系统稳定性的非线性研究[J].振动与冲击,1996;15(1):71-76
    [79]Sundararajan P,Noah S T.Dynamics of forced nonlinear systems using shooting/arc-length continuation method-application to rotor systems[J].ASME Journal of Vibration and Acoustics,1997;119:9-20
    [80]李立,许庆余,郑铁生.非线性转子-轴承系统瞬态响应求解的分块直接积分法[J].振动工程学报,1996;9(1):64-68
    [81]Wang W,Zhang Z M,Chen X Y.Application of the non-stationary oil film force database[J].Journal of Shanghai university,2001;(5):230-233
    [82]李志刚,张直明.多跨转子-滑动轴承系统非线性动力学仿真[J].自然杂志,1997;19(s): 76-82
    [83]王文.非线性油膜力数据库[D].上海工业大学,1992
    [84]孟爱华,项占琴,吕福在.微型超磁致伸缩高速阀致动器的优化设计[J].浙江大学学报(工学版),2006;40(2):216-220
    [85]邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立[J].工程设计学报,2004;11(4):187-191
    [86]赵凯华.电磁学[M].北京,高等教育出版社,1985
    [87]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社,1991
    [88]杨斌堂,陶华,Bonis M等.Terfnol-D磁致伸缩微小驱动器磁路设计[J].机械科学与技术,2005;24(3):293-295
    [89]唐兴伦.Ansys工程应用教程——热与电磁学篇[M].北京:中国铁道出版社,2003
    [90]Ren Z,Jonescu B,Besbes M,et al.Calculation of mechanical deformation of magnetic materials in electromagnetic devices[J].IEEE Trans.Magn.,1995;31(3):1873-1876
    [91]林青,张国贤,何青玮等.超磁致伸缩材料驱动器的数学模型[J].机电一体化,2001;(6):26-29
    [92]朱玉川,马大为,乐贵高.基于超磁致伸缩材料新型转换器的仿真研究[J].流体力学实验与测量,2004;18(4):20-23
    [93]Chung Ki-Sze.Actuator-Application of Giant Magnetostrictive material[A final-year project].City University of Hong Kong,2007
    [94]朱均.水轮发电机组推力轴承失效综述与分析[J].电气技术,1990;(3):13-17
    [95]张广新,冯亮.汽轮机推力轴承温度高原因分析与处理.冶金动力.2004,2:36-38
    [96]赵永韬.金斯伯里平衡式推力轴承结构特点和推力间隙的测量方法[J].热力发电,2002;(1):67
    [97]吴超,王文,陈晓阳等.推力轴承支承方式及间隙影响研究[J].润滑与密封,2006;(5):130-131
    [98]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998
    [99]张娟.可控推力油膜轴承研究[D].上海大学,2007
    [100]李敏.可控止推油膜轴承控制系统的研究和开发[D].上海大学,2007
    [101]Hori Y,Kato T.Earthquake-induced instability of a rotor supported by oil film bearings[J].J.of vibration and acoustics,Tran.of ASME,1990;112:160-165
    [102]Hori Y.Anti-Earthquake considerations in rotor dynamics.In Processings of the IMechE 4~(th)Intl.Conf.on vibration in rotating machinery Edinburgh,England.1988;C318/88:1-8
    [103]Rho Byoung-Hoo,Kim Kyung-Woong.A study of the dynamic characteristics of synchronously controlled hydrodynamic journal bearing[J].Tribology International,2002;35:339-345
    [104]成大先主编.轴承[机械设计手册单性本][M].北京:化学工业出版社,2004
    [105]张直明.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986
    [106]成大先主编.弹簧·起重运输件·五金件[机械设计手册单性本][M].北京:化学工业出版社,2004
    [107]Guo F,Wong P L.Experimental observation of a dimple-wedge elastohydrodynamic lubricating film[J].Tribology International,2004;37(2):119-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700