稀酒精制乙烯分子筛催化剂的失活行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对稀酒精脱水反应体系进行了系统的研究和分析,筛选出适合本反应体系的催化剂,并利用XRD、Al MAS NMR和低温N_2吸附表征技术,考察了催化剂的结构和表面组成及其与催化性能之间的联系;对催化剂的活性和稳定性进行了全面研究,揭示了催化剂的活性和稳定性随时间变化的关系;研究了催化剂失活和再生的性能,为进一步开发抗积炭催化剂及寻找更好的催化剂再生方法奠定基础。全文内容分为以下几部分:
     1.筛选出了在低温下能有较高活性的催化剂,采用XRD、Al MAS NMR和低温N_2吸附表征技术对该催化剂进行了表征。结果表明,分子筛催化剂的改性并未改变催化剂的整体结构,六配位铝的存在有利于提高催化剂的稳定性。
     2.在固定床反应器中进行了分子筛催化剂催化稀酒精脱水生成乙烯反应的活性测试实验,催化剂经高温水蒸气处理,反应时间为1000小时。结果表明,改性后的催化剂对于稀酒精脱水反应具有良好的活性和稳定性,在反应1000小时后,乙醇转化率和乙烯选择性仍没有明显下降。
     3.采用XRD,低温N_2吸附,TG,IR和MAS NMR等方法对失活催化剂进行了表征,结果表明,在乙醇脱水反应中,催化剂表面积炭导致分子筛微孔堵塞是造成催化剂失活的主要原因,积炭的物种主要是带有双键的聚合态化合物(或芳香族化合物)。选择合适的温度对催化剂进行再生,实验结果表明,再生后催化剂对于稀酒精脱水制乙烯的反应具有良好的活性和稳定性。
In this work, catalytic dehydration of ethanol has been studied in details. The optimum catalysts were chosen. The effects of bulk structure and surface component of catalysts on the catalytic performance were investigated. Activity and stability have been present. The performance of catalytic deactivation and regeneration has also been researched.
     The main contents of this paper are as follows:
     First, by means of XRD, Al MAS NMR, N_2-adsorption techniques, the results showed that the stability of catalyst was improved with increasing content of the octahedral aluminum.
     Second, activity experiments of catalyst during aqueous ethanol dehydration to ethylene were carried out in a fixed-bed reactor, the time of reaction was 1000 hours. The results showed that the catalyst had high activity and stability for aqueous ethanol dehydration.
     Third, by means of XRD, N_2 adsorption techniques, TG, IR and MAS NMR,the results showed that deactivation of catalyst due to the coke formed on the catalyst surface which blocked the pore mouth of zeolite channels for ethanol dehydration. Regeneration of catalyst was putted on appropriate temperature, the results indicated that the regenerated catalyst had high activity and stability for aqueous ethanol dehydration.
引文
[1] 俞文馨. 世界乙烯需求趋紧. 国际化工信息, 2005, 10: 8~11
    [2] 孙东方. 燃料乙醇展望. 酿酒, 2005, 32(3): 89~90
    [3] 周忠清. 生物乙烯与石油乙烯的技术经济分析. 化工技术经济, 1995, 3: 53~55
    [4] Raymond L V, et al. The Bioethanol-to-Ethylene(B.E.T.E) Process. Applied Catalysis, 1989, 48: 265~277
    [5] Ana G. Gayubo, Martin Olazar, et al. Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite. Ind. Eng. Chem. Res, 2001, 40: 3467~3474
    [6] Ana G. Gayubo. Transformation of Oxygenate Components of Biomass Pyrolysis Oilon a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids. Ind. Eng. Chem.Res, 2004, 43: 2619~2626
    [7] 张斌. 乙醇脱水制备乙烯实验方法的改进. 宁波高等专科学报, 2002, 14(2): 48~50
    [8] 袁加程, 卢卫平. 乙醇脱水制乙烯新法. 化学教育, 2003, 24(12): 48~48
    [9] 袁加程. P2O5 做脱水剂制备乙烯实验的研究. 实验与创新思维, 2004, 6: 3~5
    [10] 秦丙昌, 荣亚丽, 赵建英. 乙烯制备实验的研究和改进. 化学教育, 2001, 22(1): 34~35
    [11] 陈章福. 制乙烯气体时加生石灰的研究. 化学教学, 2003: 12
    [12] Donald E. Pearson, et al. Phosphoric Acid Systems.2.Catalytic Conversion of Fermentation Ethanol to Ethylene. Ind. Eng. Chem. Prod. Res. Dev, 1981, 20(4): 734~740
    [13] 李长智. 焦磷酸催化制乙烯的研究,四川师范学院学报(自然科学版). 1998, 19(4): 429~430
    [14] 王凤阁, 宫宝安. 实验室制备乙烯的一种新方法. 化学教育, 2003, 24(7): 68~38, 81
    [15] 李方正. 四川师院学报(自然科学版), 1981, (1): 107
    [16] 于云霞, 刘必武. NC1301型乙醇脱水催化剂的研制. 化学工业与工程技术, 1995, 16(2): 8~10
    [17] 陈彧, 钟发春, 宋宇明等. ZSM-5 的结构、形状选择性与改性. 石油化工, 1994, 23(3): 197~200
    [18] Baerlocher Ch, McCusker L B, Olson D H. In Atlas of Zeolite Framework Types. Elsevier science, 6th ed. New York, Elsevier, 2007, 212
    [19] Junko N. Kondo, Keiichi Ito, Eisuke Yoda, Fumitaka Wakabayashi, Kazunari Domen. J. Phys. Chem. B 2005, 109: 10969~10972
    [20] Tatsumi Ishihara, Junji Matsuo, Masami Ito, Hiroyasu Nishiguchi, Yusaku Takita. Ind. Eng. Chem. Res, 1997, 36: 4427~4429
    [21] 杨水金. TiSiWl2 O40/TiO2 催化剂研究新进展. 稀有金属, 2003, 27(1): 183~185
    [22] 高锦章, 魏云霞, 王雪梅等. 杨武.活性炭负载磷钨杂多酸催化合成丁酮乙二醇缩酮. 西北师范大学学报(自然科学版), 2006, 42(2): 77~79
    [23] 梁娟, 王善鋆主编. 催化科学与技术—催化剂材料. 北京, 化学工业出版社, 1990: 74~100
    [24] 赵本良, 王静波, 王春梅等. 杂多酸催化剂催化乙醇脱水制乙烯. 东北师大学报自然科学版, 1997, 3: 41~43
    [25] 赵本良, 赵宝中. 以杂多酸催化法乙醇脱水制乙烯. 东北师大学报自然科学版, 1995, 1: 70~72
    [26] 潘履让, 李赫 . NKC-034 乙醇脱水制乙烯催化剂. 石油化工, 1987, 11: 764
    [27] 刘雁等. 用序贯法研究乙醇脱水制乙烯的速率模型. 化学反应工程于工艺, 1995, 11(3): 302~309
    [28] 陈玉成. 乙醇脱水动力学. 福建师范大学福清分校学报, 2000, 47(2): 72~75
    [29] Butt J B. AIChE Journal, 1962, 1: 42~47
    [30] ROCA F F, Mourgve L De, Trambouge Y, J Catalysis, 1969,14: 107
    [31] Blaszkowski, S.R., Van Santen, R.A. Density Functional Theory Calculations of the Activation of Methanol by a Bronsted Zeolitic Proton. J.Phys.Chem, 1995, 99: 11728~11738
    [32] Blaszkowski, S.R., Van Santen, R.A. The Mechanism of Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons. J. AM. Chem. Soc, 1996, 118: 5152~5153
    [33] Cory B. Phillips, Ravindra Datte. Production of Ethylene from Hydrous Ethanol on H-ZSM-5 under Mild Conditions. Ind. Eng. Chem. Res, 1997, 36: 4456~4475
    [34] Junko. Kondo, Eisuke Yoda, et al. An Ethoxy Intermediate in Ethanol Dehydrationon Bronsted Acid Sites in Zeolite. J. Phys. Chem. B, 2005, 109: 10969~10972
    [35] M.T. Aronson, R.J. Gorte, W.E. Farneth. J. Catal, 1986, 98: 434
    [36] Chang. C. D. Hydrocarbons from Methanol. Marcel Dekker, Inc, New York, 1983
    [37] R. Le Van Mao, Thanh MY Nguyen and Gerald P. Mclaughlin, The Bioethanol-to-Ethylene(B.E.T.E) Process, Applied Catalysis, 1989, 48: 265~277
    [38] T.M. Nguyen, R. Le Van Mao. Conversion of Ethanol in Aqueous Solution over ZSM-5 Zeolites. Applied Catalysis, 1990, 58: 119~129
    [39] Hu Y C. Unconventional olefin process Part2: Ethanol dehydration. Hydrocarbon Processing, 1983, 57(4): 113~115
    [40] US Patent: US4134926
    [41] Bhatia S, Be[tramini J, Do D D. Deactivation of zeolite catatysts. Catal Rev Sci Eng, l989-90, 31(4): 431~480
    [42] Schulz J, Bandermann F. Conversion of ethanol over zeolite H-ZSM-5. Chem Eng Technol, 1994, 17(3): 179~186
    [43] Aguayo A T, Gayubo A G, Tarrio A M, et al. Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite. J Chem Technlo Biotechnol, 2002, 77: 211~216
    [44] 王富民, 辛峰, 廖晖等. 异丙苯裂化催化剂 ASTRA-MB1 积炭失活机理. 石油学报(石油加工), 2002, 18(5): 28~33
    [45] Langner B E. Coke formation and deactivation of the catalyst in the reaction of propylene on calcined NaNH4-Y. Ind Eng Chem Proc Des Dev, 1981, 20: 326~331
    [46] Bibby D M, Milestone N B, Patterson J E, et a1. Coke formation in zeolite ZSM-5. J Cata1, 1986, 97: 493~502
    [47] McLellan G D, Howe R F, et a1. Effect of coke formation on the acidity of ZSM-5. J Cata1, 1986, 99: 486~491
    [48] 陈彧. ZSM 一 5 型沸石催化剂的结焦与失活. 精细石油化工, 1994, 2: 31~35
    [49] 时钧, 汪家鼎, 余过宗等. 化学工程手册(上), 北京, 化学工业出版社, 1996
    [50] 钟鹰, 程晓维等. CXN 天然沸石的研究Ⅴ.结构超稳化. 化学学报, 2005, 63(8): 720~724
    [51] 程晓维, 汪靖等. CXN 天然沸石的研究Ⅶ.骨架高硅超稳化改性. 化学学报, 2006, 64(1): 1~8
    [52] T.M. Nguyen, R. Le Van Mao. Conversion of Ethanol in Aqueous Solution overZSM-5 Zeolites. Applied Catalysis, 1990, 58: 119~129
    [53] 陈雷, 邓风, 叶朝辉. HZSM-5 分子筛焙烧脱铝的 Al MQMAS NMR 研究. 物理化学学报, 2002, 18(9): 786~790
    [54] 高放, 程晓维等. 催化量 OP 乳化剂促进 THF-FER 沸石晶化作用研究. 化学学报, 2006, 64(14): 1423~1428
    [55] Cory B, Phillips and Ravindra Datta. Ind. Eng. Chem. Res, 1997, 36: 4466~4475
    [56] 陆铭, 孙洪敏等. ZSM-5 沸石催化剂的失活历程和活性稳定性. 石油学报(石油加工), 2001, 17(4): 59~62
    [57] 齐国祯, 谢在库, 刘红星等. 甲醇制烯烃反应过程中 SAPO - 34 分子筛催化剂的积碳行为研究. 石油化工, 2006, 35(1): 29~32
    [58] 郭晓亚, 颜涌捷, 李庭琛等. 生物质油催化裂解精制中催化剂上焦炭前身物的分析. 华东理工大学学报, 2003, 29(5): 534~536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700