原位晶化合成NaY/高岭土复合催化材料的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化催化剂裂化(FCC)一直是现代炼油工业的核心技术。FCC装置的目的就是使重油和渣油转化为轻质产品。随着炼油成本的提高和原油重质化,掺炼渣油已经成为一种趋势。因此,较高的活性、良好的选择性及优异的重油转化能力是对渣油FCC催化剂的基本要求,直接影响着炼厂效益。为此,催化剂的设计理念已发生了很大变化,主要包括两个方面:一是催化剂中的分子筛含量逐渐提高,一是更加注重基质与活性组分的协同作用,以不断满足原料劣质化和效益最大化的要求。
     一般地,提高FCC催化剂中的Y分子筛含量将改善催化剂的活性和选择性。但是,随着分子筛含量的提高,往往需要更多量的粘结剂以保证催化剂的强度,可是粘结剂用量的加大,将对催化剂的孔结构产生不利影响,为避免上述不利影响,一个有效的解决途径是采用原位晶化。其产品的主要特点是活性高、重油转化能力增强、催化剂寿命延长。因此,利用原位晶化工艺的优点,合成出分子筛含量大于40%的高分子筛含量的晶化产物,将进一步提升催化裂化催化剂的反应性能。本研究的主要内容之一就是充分利用原位晶化的反应特点,通过对晶化反应过程的深入研究,大幅度提高原位晶化合成分子筛的含量,开发出性能优良的FCC催化剂。
     研究过程中,将喷雾干燥成型的高岭土分为两部分,在不同焙烧温度下分别制备成偏高岭土微球(偏土)和充分焙烧高岭土(高土),将高土和偏土按照一定比例混合,在优化的水热晶化条件下合成出了NaY分子筛含量大于40%的晶化产物,晶化产物经离子改性和超稳化处理后,制备出新型原位晶化FCC催化剂。与对比剂相比,该催化剂具有活性高、比表面高、孔分布理想的特点。
     将催化剂人工污染5000ppm的钒和3000ppm的镍后,在中型提升管对催化剂的反应性能进行了评价。新开发的原位晶化催化剂表现出良好的催化反应性能和优异的抗重金属污染能力。与对比剂相比,在相当的焦炭选择性下,原
It is known that the activity and selectivity of the FCC catalyst tend to be
    improved greatly with the increase of the Y-faujasite content. However, the increased
    zeolite contents usually require sufficient binder to achieve good attrition resistance.
    The high content of binder usually leads to coating of the zeolite crystal surfaces and
    occlusion of potentially beneficial external acvtive sites. To avoid this disadvantage,
    in this paper, we used the in-situ synthesis method by pre-prepared kaolin
    microspheres and succeesfully prepared a Y/Kaolin microsphere composite with Y's
    relative crystallinty above 40% and SiO_2/Al_2O_3 ratio of 4.83. XRD, N_2
    adsorption-desorption, SEM, FT-IR were employed to chacterize this composite.
    Physicochemical data indicated, compared to the nomal NaY, this microsphere
    composite has more hydrothermal stable macro-pore structures, and the external
    surfaces of these Y zeolite crystallites are exposed and accessible to the feed
    molecules. After modification and steaming treatment, a novel FCC catalyst was
    prepared. The reaction data indicated that, compared to a commercial catalyst at
    same operation conditions and similar coke selectivity, the.high zeolite Y content
    in-situ catalyst have evident advantages on slurry yield (8.68% lower), conversion
    rate (10.33% higher) and liquid yield (7.6% higher). From PONA analyses, we can
    also clearly see that the olefins content reduced greatly and RON improved markedly
    with in-situ catalyst because of its higher zeolite content. Therefore, this novel
    in-situ catalyst with higher zoelite content has more adaptability for resid cracking.
    Then a novel FCC catalysts mixture was prepared by adding a semi-synthetic
    additive catalyst with 35wt% of HZSM-5 to the above catalysts prepared by in-situ synthesis method. It was evaluated on Advanced Catalyst Evaluation (ACE) reactor. Catalytic cracking test showed, compared with a commercial propylene-improved FCC catalyst, the propylene yield ot our novel FCC catalyst is increased by 1.265% and propylene selectivity by 2.93%. At the same time, coke yield is decreased by 1.994% and total liquid yield is increased by 0.965%.
引文
[1] Marcilly, C. Evolution of refining and petrochemicals. What is ths place of zeolites Stud. Surf. Sci. Catal.,135(2001)37-60
    [2] Harding R H, Peters A W, Nee J R D. New developments in FCC catalyst technology. Appl. Catal. A: Gen., 2001, 221(1-2): 389-396
    [3] R.H. Harding, A.W. Peters, J.R.D.Nee, New developments in FCC catalysts technology, Applied catalysis A: General 221 (2001)389-396.
    [4] World refining capacity cleeps ahead in 2004. Oil & Gas Journal/Dec. 20,2004
    [5] 张久顺.浅谈催化裂化工艺技术的近期发展.催化裂化协作组第九界年会报告论文选集,2003
    [6] 张德义.提高催化裂化技术水平增强炼油企业竞争能力.炼油技术与工程,2003,33(3):1-8
    [7] 陈祖庇.我国催化裂化催化剂发展的回顾与展望.炼油设计,1999,29(3):1-7
    [8] Mclean J B, Bovo E B. FCC Catalyst Trends: Responding to The Challenges of The 1990's. NPRA 1995 Annual Meeting Paper. Am-95-64
    [9] O'Connor P, Verlaan J P J, Yanik S J Challenges, catalyst technology, and catalytic solutions in resid FCC. Catal. Today, 1998, 43(3-4): 305-313
    [10] US 3,647,718
    [11] NPRA AM-86-62
    [12] NPRAAM-03-126
    [13] Anderson M W, Occelli M L. J Catal,1990, 122. 374
    [14] 刘长久,张广林.石油和石油产品中非烃化台物.北京:中国石化出版社(1991)
    [15] NPRAAM-01-59
    [16] NPRAAM-96-46
    [17] Nace D M. Catalytic Cracking over Crystalline Aluminosilicates. Ind. Eng. Chem. Prod. Res. Dev., 1970, 9(2): 203-209
    [18] O'Connor P, Imhof P, Yanik S J. Catalyst assembly technology in FCC. Part I: A review of the concept, history and developments. Stud. Surf. Sci. Catal., 2001, 134: 299-310
    [19] Kuehler C W, Jonker R, Imhof P, Yanik S J, O'Connor P. Catalyst assembly technology in FCC. Part II: The influence of fresh and contaminant-affected catalyst structure on FCCperformance. Stud. Surf. Sci. Catal., 2001, 134: 311-332
    [20] Donk S V, Janssen A H, Bitter J H, de Jong K P. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catal. Rev., 2003,45(2): 297-319
    [21] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev., 1997, 97(6): 2373-241
    [22] NPRAAM-02-53
    
    [23] http://www.grace.com/bigframes-welcom.html/catalysts/refining catalysts/fluid cracking catalysts
    
    [24] Sato K, Nishimura Y, Shimada H. Preparation and activity evaluation of Y zeolites with or without mesoporosity. Catal. Lett., 1999, 60(1-2): 83-87
    [25] Mann R. Fluid catalytic cracking: some recent developments in catalyst particle design and unit hardware. Catal. Today, 1993, 18(4):509-528
    [26] Mitchell M M, JR, Hoffman J F, Moore H F. Residual feed cracking catalysis. Stud. Surf. Sci. Catal., 1993, 76: 293-338
    [27] Cheng W C, Kim G, Peters A W, Zhao X, Rajagopalan K. Environmental Fluid Catalytic Cracking Technology. Catal. Rev.-Sci. Eng., 1998,40(1-2): 39-79
    [28] Barthomeuf D, Beaumont R. X, Y, aluminum-deficient, and ultrastable faujasite-type zeolites : III. Catalytic activity. J.Catal., 1973,30(2): 288-297
    [29] Corma A, Monton J B. Orchilles A V. Influence of acid strength distribution on the cracking selectivity of zeolite Y catalysts. Ind. Eng. Chem. Prod. Res. Dev., 1984,23(3): 404-409
    
    [30] World Refinery, 2001, 5
    
    [31] http://www.albemarlecatalysts.com/navigation/fcc/A_home.htm
    [32] NPRA AM-04-59
    
    [33] Catalyst Accessibility: A New Factor on the Performance of FCC Units. Preprints 17th World Petroleum Congress, Rio de Janeiro, Brazil, 2002.9
    [34] K.Y.Yung, S.J.Yanik, K.Bruno. Catalytic Challenges. Hydrocarbon Engineering, 2004,(1):43-48
    [35] NPRAAM -05-61
    [36] NPRAAM-94-59
    [37] NPRAAM-03-38
    [38] Brindley etal.,Journal of The American Ceranic Society,1959:42(7), 319~323
    [39] Xinmei Liu, Zifeng Yan, Huaiping Wang, Yantuo Luo, In-situ synthesis of NaY zeolite with coal-base Kaolin, J.Nat. Gas Chem., 12(2003)63-70
    [40] USP 4,493,902
    [41] NPRA AM-91-53
    [42] P.B. Venuto and E.T.Hubib, Fluild Catalytic Cracking with Zeolite Catalysts,Mercel Dekker, Inc.,New York(1979)
    [43] 武汉石化厂与Engelhard公司第二次FCC技术交流会资料,武汉(1992)
    [44] Elena I. Bassadalla et al., Ind.Eng.Chem.Res. 1993, 32, 751.
    [45] V.P. Shiralker, P.N. Joshi, M.J. Eapen and B.S. Rao, Zeolites, 1991,11, 511
    [46] A J H P. van der Pol, A J, Verduyn and J.H.C. van Hooff, in R. Von Ballmoos, J.B. Higgins and M.M.J. Treacy(Eds.), Proc.9th Int.Zeolite Conf., Montreal, July 5-10, 1992, Butterworth-Heinemann, Boston, 1993,607;
    [47] M.F.L.Johnson,W.E.Kreger and H.Erickson,Ind. Eng. Chem.,1957:49,283
    [48] R.A.Pachovsky and B.W.Wojciechowski,AIChE J.,1973:19,1121
    [49] D.A.Best, R.A.Pachovsky and B.W.Wojeiechowski,Can.J.Chem.Eng.,1971.49,809
    [50] CN 1037667A
    [51] CN 1081425A
    [52] CN 1120977A
    [53] USP 4587115
    [54] EP 041459
    [55] CN 1205981
    [56] CN 1176848
    [57] K.Rajagopal,A.W. Peters and G.C. Edwards et al,Appl. Catal.,1986,23:68
    [58] D.M.Nace,S.E.Voltz and V.W.Weekman,Ind.Eng.Chem.Proc.Des.Dev., 1971(10),5301
    [59] 原所良,全白土型FCC催化剂的现在,1991(兰炼石化院内部资料)
    [60] Corma A, Grande M, Fomés V, Cartlidge S, Shatlock M P. Interaction of zeolite alumina with matrix silica in catalytic cracking catalysts. Appl. Catal., 1990, 66(1): 45-57
    [61] Rajagopalan K, Habib E T, Jr. Understand FCC matrix technology. Hydrocarbon Processing, 1992, 71(9): 43-46
    [62] Maglio A, Keweshan C F, Madon R J, Mclean J B. Advanced FCC Catalyst Matrix Technology for Reduced Coke and Slurry Yields. In: 1994 NPRA Annual Meeting paper. AM-94-59
    [63] 朱华元,何鸣元,袁勇,张信,宋家庆,张觉吾.FCC催化剂基体的酸性与氢转移反应性能.工业催化,2001,9(2):60-64
    [64] EP0122572 (1984)
    [65] USP 4749672 (1989)
    [66] USP 4836914 (1989)
    [67] 刘从华、高雄厚、张忠东等,石油炼制与化工,1999:30(4):32-37
    [68] Knozinger H., Ratnasamy P., Catal. Rev. Sci.Eng.,1978,17:31
    [69] Sanz J.,J.Am.Ceram.Soc.,1989,71:418
    [70] 刘从华、马燕青、张忠东等,石油炼制与化工,1999:30(5):30-33
    [71] Ward J W . J Catal, 1968, 10(1): 34
    [72] Ward J W. J Catal, 1969, 13(3): 321
    [73] Smith J V, Bennett J M, Flanigen E M. Nature, 1967, 215(5098): 241
    [74] 杜立春,傅军,陈海鹰等.催化学报,,1997,18(2):125
    [75] 周灵萍,李伟,苏明等.催化学报,1998,19(3):277
    [76] 朱华元,何鸣元,宋家庆等.催化学报,2001,22(5):43
    [1] 侯祥麟.中国炼油技术(第二版) [M].北京:中国石化出版社,2001,104-146
    [2] 刘从华,孙书红,马燕青,等.高岭土基质与重金属的相互作用[J].催化学报,1999,20(2):174-176
    [3] 王斌,田辉平,唐立文.系列新型重油催化裂化催化剂的工业开发与应用[J].石油炼制与化工,2002,33(8):30-33.
    [4] Alerasool Saeed, Doolin Patricia K., Hoffman James F..Matrix Acidity Determination: A Bench Scale Method for Predicting Resid Cracking of FCC Catalysts [J]. Ind Eng Chem Res, 1995, 34 (2): 434-439.
    [5] Wojciechowski B W. The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay [J]. Catal Rev Sci Eng, 1998, 40(3): 209-328
    [6] Mingyuan He. The development of catalytic cracking catalysts: acidic property related catalytic performance[J].Catal Today, 2002, 73:49-55
    [1] Zhao X S, Lu G Q, Zhu H Y. J Porous Mater,1997,4:245
    [2] R.J. Lussier, G. J. Surland, US Patent 4,836,913(1989), to Grace Davison Corportaion
    [3] M.L. Occelli, D Psars,S. L. Suib, J. Catal. 96(1985)363
    [4] Carvajal R, Chu P J, Lunsford J H. The role of polyvalent cations in developing strong acidity: A study of lanthanum-exchanged zeolites. J. Catal., 1990, 125(1): 123-131
    [5] Venuto P B, et al. Organic reactions catalyzed by crystalline aluminosilicates Ⅱ, J. Catal, 1966, 5: 484-493
    [6] Ward J W . A spectroscopic study of the surface of zeolite Y II ,J Phys Chem, 1968, 72:4211-4223.
    [7] Scherzer J. Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catal. Rev.-Sci. Eng., 1989,31(3): 215-354
    [8] Wojciechowski B W. The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay [J]. Catal Rev Sci Eng, 1998,40(3): 209-328
    [9] Mingyuan He. The development of catalytic cracking catalysts: acidic property related catalytic performance[J].Catal Today, 2002, 73:49-55
    
    [10] L. Patrylak, R Likhnyovskyi, V. Vypyraylenko,etal., Adsorption properties of zeolite-containg microspheres and FCC catalysts based on Ukrainian kaolin, Adsorp. Sci. Technol. 19(2001)525-540.
    [11] J. S. Beck, J. C. Vartuli, W. J. Roth, etal. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 1992,114, 10834-10843
    [12] Yong Lu, Mingyuan He, Jiaqing Song, Xingtian Shu, Active site accessibility of Reside Cracking Catalysts, Stud. Surf. Sci. Catal. 134(2001)209-217
    [13] Gabriela de la Puente, Eduardo Falabella Sousa-Aguiar, Alexandre Figueiredo Costa, Ulises Swdran, Appl. Catal. A242 (2003) 381
    
    [14] L. A. Pine, F. K. Maher, W. A. Wachter, J. Catal. 85(1984) 466
    [15] J. Arribas, A. Corma, V. Fornes, F. Meio, J. Catal. 108(1987) 135
    [16] T. Ino, S. Al-Khattaf, Appl. Catal. 142(1996) 5
    [17] S. Al-Khattaf, Appl. Catal. 231(2002)293
    [18] R. J. Lussier, G. J. Surland, US Pat. 4 836 913(1989)
    [19] Conghua Liu, Youquan Deng, Yuanqing Pan, Shuqin Zheng, Xionghou Gao, Appl. Catal. A 257(2004) 145
    
    [20] F. Lonyi, J. Valyon, Thermochimica Acta 373(2001) 53
    [21 F. Lonyi, J. H. Lunsford, J. Catal. 136(1992) 566
    [1] Marcilly, C. Stud. Surf. Sci. Catal. 135(2001)37.
    [2] R.H. Harding, A.W. Peters and J.R.D.Nee, Appl.Catal. A 221(2001)389.
    [3] Xinmei Liu, Zifeng Yan, Huaiping Wang and Yantuo Luo, J. Nat. Gas Chem. 12(2003)63.
    [4] R.J. Lussier, G. J. Surland, US Pat. 4 836 913(1989).
    [5] Conghua Liu, Youquan Deng, Yuanqing Pan, Shyqin Zheng and Xionghou Gao, Appl. Catal. A 257(2004)145.
    [6] S. M.Brown, W. A. Durante, W. J. Reagan and B. K. Speronello, US Pat. 4 493 902(1985).
    [7] Liu honghai, Zhang Yongming, Zheng shuqing and Zhou Hongbao, Petro. Process. Petrochem. (Chinese) 32(2001)37.
    [8] Liu honghai, Zhang Yongming, Duan Changyan and Zheng~shuqing,Petrochem. Technoi. (Chinese) 29(2000)490.
    
    [9] Wojciechowski B W. Catal. Rev. Sci. Eng. 40(1998)209.
    [10] Mingyuan He, Catal. Today 73(2002)49.
    [11] L. Patrylak, R. Likhnyovskyi, V. Vypyraylenko, R. Skubiszewska-Zieba and K. Patrylak, Adsorp. Sci. Technol. 19(2001)525.
    [12] J. S. Beck: J. C. Vartuli. W. J. Roth. M. E. Leonowicz. C. T. Kresge. K. D. Schmitt. C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc. 114(1992)10834.
    
    [13] R. J. Lussier and G. J. Surland, US Pat., 4 836 913(1989).
    [14] M. L. Occelli, D Psars and S. L. Suib, J. Catal. 96(1985)363.
    
    [15] Yong Lu, Mingyuan He, Jiaqing Song and Xingtian Shu, Stud. Surf. Sci. Catal. 134(2001)209.
    [16] R. M. Barrer, Zeolite and Clay Minerals as Sorbents and Molecular Sieves(Academic Press, London 1978)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700