高硅铝比超细Y分子筛性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化裂化(FCC)过程是炼油产业中的核心工艺,是原油二次加工技术的重要组成部分,FCC技术的革新,关键在于催化剂的发展。近年来随着原油的重质化、劣质化日益严重,迫切需要开发新型的FCC催化剂,以提高其裂化重油大分子的能力。高硅铝比的超细Y分子筛由于具有较大的外表面积,催化活性点相对增多,反应物及产物的晶内扩散速率提高,以及良好的结构稳定性等特点,能够适应于原油催化裂化苛刻的反应条件,因此,有望替代现有的FCC催化剂,具有广阔的应用前景。
     在我们前期工作中,已成功实现了采用廉价的工业原料,在无模板剂和添加剂的条件下,低成本直接制备出高硅铝比超细NaY分子筛(HSY-M2)。本文尝试开发了新的直接法合成工艺(M-Ⅲ),制备了高硅铝比超细NaY分子筛(HSY-M3)。研究表明,HSY-M3-02样品的骨架硅铝比可达7.1,晶粒大小在260nm左右。在此基础上,我们对其进行了水热处理,采用XRD、SEM、N2-adsorption、Raman、TG和Py-IR等手段对水热处理后样品的结构和物化性质进行了研究,并以二异丙苯为模型化合物,在小型固定床反应装置上对改性样品的催化裂化性能进行了评价。结果表明,经过水热超稳化处理后,高硅铝比超细Y分子筛样品(HSY-M3-02)的结晶保留度可达81%,骨架硅铝比达14.8,比表面积为603.3m2/g。在常压,反应温度为350℃,空速为6h-1的条件下5h内催化裂化二异丙苯的平均裂化率为39.9%,比工业USY提高了6.2%,并且在反应过程中表现出较好的稳定性,因此具有很好的工业应用前景。
Fluid catalytic cracking (FCC) process is a core technology of crude oil cracking, which is the important part of components in morden petroleum refineries. The FCC technology innovation, the key lies in the catalyst of development. However, the crude oil quality is becoming more and more serious. It is urgent to develop novel FCC catalysts for catalytic cracking of heavy oil. The superfine zeolite Y with high SiO2/Al2O3ratio can significantly improve the catalytic cracking selectivity for reduced coking, increase diesel yield and the gasoline qulity because to the fact that superfinesized Y have very huge surface areas, and very fastly diffusion characteristics. That is why, How to fastly, directly and efficiently synthesize of superfine zeolite Y with high SiO2/Al2O3ratio, it can be provided powerful support for the development of catalytic cracking technology.
     Superfine zeolite Y with high SiO2/Al2O3ratio had synthesized using cheap industrial raw materials without the presence of chemical additive via non-template method. On the basis of the preliminary work, using the direct synthesis were prepared Superfine zeolite Y with high SiO2/Al2O3ratio (HSY-M3), Studied the influence of different synthesis conditions. The results show that the Superfine zeolite Y products (HSY-M3-02) with the size at about260nm and the skeleton stability SiO2/Al2O3ratio reach7.1can be synthesized by optimization methods of the synthesis conditions. And then, the structure and physicochemical properties of superfine zeolite Y with high SO2/Al2O3ratio (M3-02) treated by hydrothermal treatment were characterized by SEM, XRD, N2-adsorption,Raman,TGA and Py-IR.
     The catalytic performance of HSY-M3-02sample was also investigated in a fixed-bed reactor using DIPB as model compound. The results showed that after hydrothermal treatment, the crystallinity of M3-02reached up to81%. The SiO2/Al2O3ratio was14.8with a specific surface area of603.3m2/g. Under the conditions of T=350℃,P=1atm, and WHSV=6h-1,the average cracking rate of DIPB over M3-02was40%and6.2%higher than that over industrial zeolite USY during5hours, So it has good industry application prospects.
引文
[1]Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylnaphthalene isomerization[J]. Zeolites,1996,17 (4):334-339.
    [2]张欣佳,窦智兴,胡忠等.兰州-银川输气管道工程PMT/PMC项目管理实践.北京:石油工业出版社,2006,21(2):2-4.
    [3]Kloetstra K R, Zandbergen H W, Jansen J C, et al. Overgrowth of mesoporous MCM-41 on faujasite. Mieroporous Materials,1996,6(5-6):287-293.
    [4]Zhang B J, Davis S A, MendelsonN H, et al. Bacterial templating of zeolite fibres with hierarchical structure, Chemical Communications,2000,9:781-782.
    [5]Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, et al. Zeolitic tissue through wood cell templating, Advanced Materials 2002,14(12):926-929.
    [6]Valkenberg M H, Holderich W F. Preparation and use of hybrid organic-norganic catalysts. Catalysis Reviews-cience and Engineering,2002,44(2):321-374.
    [7]Kresge C T, Leonowicz M E, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359:710.
    [8]Zones S I, Davis M E. Zeolite materials:recent discoveries and future prospects, Current Opinion in Solid State and Materials Science,1996,1:107.
    [9]Raman N K, Anderson M T, Brinker C J. Template based approaches to the preparation of amorphous nanoporous silicas. Chemistry of Materials,1996,8:1682.
    [10]Zhao D Y, Feng J L, Huo Q S, Melosh N, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom Pores. Science,1998,279(5350):548-552.
    [11]Ying J Y, Mehbert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie-nternational Edition,1999,38:56.
    [12]陈颖.高硅铝比微细/纳米NaY分子筛的合成.大连:大连理工大学,2010.
    [13]Julius S. Designing FCC catalysts with high-silica Y zeolites. Applied Catalysis,1991,75:1-32.
    [14]孙德坤,鲍书林,徐亲等.高硅Y沸石的研制及吸附热力学性质.物理化学学报,1999,15(11):1041-1044.
    [15]Vaughan, David E. High silica faujasite alum inosilicatc, ECR-4, and a process for making it:US, 4965059.1990,05-20.
    [16]刘欣梅,钱岭,阎子峰.Y型分子筛改性方法述评.石油化工高等学校学报,1997,10(4):26-30.
    [17]David E. W., Vaughan, Flemingon, et al. Crystalline zeolite ECR-35 and a method for producing same. US,5,116,590.1992.
    [18]David E. W. Vaughan, Fleminhton. High silica faujasite aliminosilicate, ECR-4, and a process for making it.US,4,965,059.1990.
    [19]董晋湘,董平,徐红等.高硅沸石及其杂原子同晶取代衍生物的合成.CN,96108159.7.1997.
    [20]David E. W. Vaughan, Flemington, N. J. Michael G, et al. High silica faujasite polymorph-CSZ-3 and method of synthesizing. US,4,333,859.1982.
    [21]David E. W. Vaughan, Flemington N. J. Process for preparing a high silica faujasite aluminosilicate, ECR-4. US,4,714,601.1987.
    [22]谢鹏.Y型沸石脱铝的研究.大连:中国科学院大连化学物理研究所,1991.
    [23]Breek D W, Blass H, Skeels G W. Silieon substituted zeolite compositions and Process for preparing same.US,4503023.1985.
    [24]Maher P K, Baltimore, McDnaiel C V. Zeolite Z-IXUS and Mehtod of Perparation Thereof. US, 3293192.1966.
    [25]McDaniel C V, Laurel, Maher P K. Stabilized Zeoliets. US,3449070.1969.
    [26]刘兴云,裴站芬,佘励勤等.新型高硅Y(NHSY)沸石的研究I. NHSY沸石的制备.催化学报,1994,15(4):296-300.
    [27]陈玉玲,屠式瑛.水热-化学法制备的RSADY沸石分子筛的性能表征.石油炼制与化工,1997,28(8):22-27.
    [28]王永睿.石油化工科学研究院博士论文,北京,2000.
    [29]Schoeman B J, Stcrte J, Ottcrstedt J E. Synthesis and size tailoring colloidal zeolite particles. Chemical Communications,1993:994-995.
    [30]董俊萍,余辉,谢颂海等.全硅MEL纳米分了筛的合成.化学学报,2002,60(5):950-954.
    [31]杨小明,何鸣元,舒兴田.小晶粒NaY分子筛的制备方法,CN1081425A.1994.
    [32]马跃龙,陈诵英,彭少逸.小颗粒NaY分子筛透明液相导向剂的制备及其性能.催化学报,1995,16(5):410-414.
    [33]Madscn CJacobscn C. Confined Space Synthesis A Novel Route to Nanosized. Zeolites, Inorg. Chcm.,2000,39(11):2279-2283.
    [34]王荧光,桂建舟,张晓彤等.纳米ZSM-5分子筛的合成与表征.光谱实验室,2005,22(2):225-229.
    [35]Holmbcrg B A.Wang H T, Norbcck J M, ct al. Contr oiling size and yield of zeolite Y nanocrystals using tetramcthylammonium romidc. Microp. Mes op. Mater.,2003,59:13-28.
    [36]程志林,晃自胜,万惠霖.微波诱导快速合成纳米NaY分r筛.物理化学学报,2003,19(6):487-491.
    [37]Camblor M A, Corma A, Martinez A. Catalytic cracking of gasoil-bcnefits in activity and selectivity of small Y zeolite crystallites stabilized by a higher silicon to aluminum ratio by synthesis. Applied Catalysis,1989,55(1):65-74.
    [38]苏建明,徐兴中等.小晶粒Y型分子筛的催化性能.石油炼制与化工,2000,1(31):54-57.
    [39]Schoeman B J,Stcrte J,Otterstcdt J E,J. Chem. Soc,Chem. Commun,1993:994-995.
    [40]Bo W, Zhu M H. Factors affecting the synthesis of microsized NaY zeolite. Microporous and Mesoporous Materials,1998,25:131-136.
    [41]马跃龙,陈诵英,彭少逸等.分子筛成核与晶体生长动力学研究-非自成核体系中修正的Lcchcrt模型.石油学报(石油加工).1997,13(2):47-54.
    [42]晃自胜,林海强,陈国周等.超型微分子筛的合成-添加稀土的影响(Ⅰ).高等化学学报.2000,21(9)1353-1358.
    [43]Song W G,Li G H.Vicki H,et al. Development of Improved Materials for Environmental Applications: Nanocrystalline NaY Zeolites,Environ. Sci. Technol,2005,39:1214-1220.
    [44]Lindner T, Lechert H. Chelate ligands as mineralizing agents in hydrothermal synthesis of faujasite-type zeolites:A kinetic study. Zeolites,1996,16:196-206.
    [45]Maher P K, Scherzer J. US,3516786,1970.
    [46]晁自胜,林海强,陈国周.超微分子筛的合成-添加铝络合剂的影响(Ⅱ).高等化学学报,2001,22(1):10-25.
    [47]Dutta P K,Puri M,Bowers C,et al. Zeolites synthesis. ACS Sym Ser, ACS,1989,398:98-109.
    [48]Dutta P K,Bowers C. Synthesis of zeolites A and X:Influence of cosolvents. Zeolites,1991,11:507-510.
    [49]赵文江,刘靖,朱金红等.纳米NaY分子筛的合成.工业催化,2004,4(12):49-52.
    [50]晁自胜,林海强,陈国周等.超微NaY分子筛的合成(Ⅰ)添加轻稀土离子的影响.高等学校化学学报,2000,21(9):1353-1358.
    [51]晁自胜,林海强陈国周,等.超微NaY分子筛的合成(Ⅱ)添加铝络合剂的影响.高等学校化学学报,2001,22(1):10-15.
    [52]张维萍,韩秀文,包信和等.超细分子筛的合成,结构特性及在催化中的应用.分子催化,1999,13(5):393-400.
    [53]马跃龙,陈诵英,彭少逸.小颗粒NaY分子筛透明液相导向剂的制备及其性能.催化学报,1995,16(5):411-414.
    [54]杨小明,何鸣元,舒兴田.制备细晶NaY分子筛.CN,1081425A,1994.
    [55]Holmberg Brett A, Wang Huanting, Norbeck Joseph M, et al. Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide. Microporous and Mesoporous Materials,2003,59: 13-28.
    [56]Rajagopalan K, Peters A W, Edwards G C. Influence of zeolite particle size on selectivity during fluid catalytic cracking. Applied Catalysis,1986,23(1):69-80.
    [57]罗一斌,稀土在催化裂化催化剂重的抗钒作用-稀土的抗钒机理.石油学报(石油加工)1999.15(4):39-45.
    [58]谭经品,黄云田.NaY分子筛的改性及其工业应用.工业催化,1995,4:40-46.
    [59]刘欣梅,钱岭,阎子峰.Y型分子筛化学改性方法述评.石油化工高等学校学报,1997,10(4):26-30
    [60]张盈珍.分子筛的骨胶元素改性.石油化工,1993,21:484-494.
    [61]Scherzer J,Bass J.L. Ion exchanged ultrastable Yzeolities:I.Formation and structural characterization of lanthanum-hydrogen exchanged zeolites. J.Caatl.,1977,46(2):100-108.
    [62]J.Scherzer. Octane-enhancing, Zeolitic FCC catalysts:scientific and technical as Pects. Catal.Rev-Sci. Eng,1989,31(3):215-354.
    [63]孙书红,庞新梅.稀土超稳Y型分子筛催化裂化催化剂的研究.石油炼制与化工,2001,32(6):25-28.
    [64]Aguiar E.F.S,Valle M.L.M.,et al. Influence of external surface area of rare-earth containing Y zeolites on the cracking of 1,3,5-triisopropylbenzene. Zeolites.1995,15:620-623.
    [65]Shien-Jcn Yang, Yu-Wen Chen and Chiuping-Li. The interaction of vanadium and nickel in USY zeolite. Zeolites.1995,15:77-82.
    [66]于善青,田辉平.La或Ce增强Y型分子筛结构稳定性的机制.催化学报,2010,10(31):1263-1270.
    [67]Schuette W L, Pine L A. Hydrocarbon cracking catalysts and processing utilizng the same. EP,252761, 1988.
    [68]张剑秋,田辉平.含磷八面沸石烃类裂化催化剂及其制备方法.CN,1072030C,2001.
    [69]Chitnis G K, Herbst J A. Cracking catalysts containing phosphate treated zeolite and method of preparing the same. US,5110776,1992.
    [70]Kumar R. Phosphorus zeolites/molecular sieves. US,5378670,1995.
    [71]Guo Wanping, Huang Limin, Deng Peng,et al. Characterization of Beta/MCM-41 Composite Molecular Sieve Compared with the Mechanical Mixture. Microporous Mesoporous Material, 2001,45:427-434.
    [72]张建秋,田辉平等.磷改性Y型分子筛的氢转移性能考察.石油学报,2002,18(3):70-74.
    [73]潘元青,伏喜胜.催化裂化技术进展[M].石油工业出版社,2010:258.
    [74]龚剑洪,龙军,许友好.催化裂化过程中负氢离子转移反应和氢转移反应的不同特征[J].催化学报.2007,28(1):67-72.
    [75]Bremaed C, Maire M. Le. Low-frequency raman spectra of dehydrated faujasitic zeolites. J. Phys. Chem.,1993,97:9695-9702.
    [76]Sato K., Nishimura Y, Honna K, Matsubayashi N, Shimada H. Role of HY Zeolite Mcsoporc in Hydrocracking of Heavy Oils, J.Catal.200(2001):288-297.
    [77]Cao, Y., Kessas, R., Naccahe, C., BenTaarit, Y., Alkylation of benzene with dodeccne. The activity and selectivity of zeolite type catalysts as a function of the porous [J], Applied Catalysis A: General,184(1999):231-238.
    [78]Bonetto L, Camblor M A, Corma M A., Optimization of zcolitc-pin cracking catalysts. Influence of crystallite size. Appl. Catal[J],1992,82(1):37-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700