可循环磁性天然沸石的制备及其吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济社会的快速发展,大量工业废水和生活污水排入天然水体,尤其是废水中的重金属离子严重影响人类的健康。结合实际情况,研究人员采用不同的吸附剂和处理方法解决日益严重的重金属离子污染问题。
     本文以浙江缙云斜发沸石为研究对象,采用不同方法对其改性,得到吸附性能较强的改性沸石。以磁性载体技术为基础,分别采用化学共沉淀法和物理黏结法使具有吸附特性的改性沸石与Fe_3O_4相结合,制备出不同的磁性天然沸石吸附剂。利用XRD、SEM、FT-IR、TG-DSC、氮吸附等温线和磁性能测试等方法对最佳磁性沸石进行表征。同时,研究磁性沸石对重金属离子的吸附性能,以探索其最佳吸附条件、吸附量和吸附机理。
     对天然沸石的改性及改性沸石对pb~(2+)的吸附实验表明,氯化钠改性后的钠型沸石对pb~(2+)的吸附性能较好,其对pb~(2+)的吸附性能依赖于pH值的变化,在实验范围内其对pb~(2+)的最大吸附量为66.99 mg/g。
     对于化学法制备的磁性沸石,氮吸附分析表明,磁性沸石(浓氨水、)、磁性沸石(NaOH)和钠型沸石的比表面积分别为100.90 m~2/g、64.02 m~2/g和25.13 m~2/g。FT-IR分析指出,磁性沸石(浓氨水)的制备使Si-O(Si或Al)键反对称伸缩振动吸收峰的位置从1054.5 cm~(-1)变化到1039.3 cm~(-1),这表明Fe~(3+)类似于Al~(3+)已进入钠型沸石的结构中。在不同的初始浓度下,磁性沸石和钠型沸石对pb~(2+)、Cu~(2+)和Cd~(2+)的吸附实验表明,该吸附性能依赖于pH值的变化,其平衡吸附量随初始浓度的增加而增大。根据常见的液相吸附模型,对吸附等温线数据进行线性拟合,拟合后直线与线性Langmuir方程基本重合,这证实该吸附过程属单层Langmuir型吸附。计算结果表明,磁性沸石(浓氨水)、磁性沸石(NaOH)和钠型沸石对pb~(2+)的单位质量吸附剂的单层饱和吸附量分别为130.72 mg/g、88.18 mg/g和65.92 mg/g。
     对于物理法制备的磁性沸石,沸石表面黏结的Fe_3O_4没有改变基体的结构,且使其比表面积增大。样品的磁性能测试证实,磁性沸石(氨基甲酸乙酯)和Fe_3O_4的磁化率分别为11.7 emu/g和39.8 emu/g。在不同的初始浓度下,磁性沸石(氨基甲酸乙酯)、磁性沸石(羧甲基纤维素钠)和钠型沸石对pb~(2+)的吸附实验表明,随着初始浓度的增大平衡吸附量也不断增大,其最大吸附量分别为54.53 mg/g、84.00 mg/g和66.99 mg/g。
     在分离科学与技术领域,本文制备磁性天然沸石的方法具有独特的优势。从复杂多相体系中将重金属离子分离和再生不需要对废水进行预处理,随后通过外加磁场使饱和磁性沸石与作用体系分离。
In recent years, with the rapid development of social economy, plenty of industrial wastes and sanitary sewages were poured into natural water, of which subsistent heavy metal ions can affect human health seriously. Given this problem, researchers resolve the worsening pollution caused by the heavy metal ions using different adsorbents and processing methods.
     In this paper, the clinoptilolite produced in Jinyun county of Zhejiang province as an object, which was modified by traditional methods in order to obtain the modified natural zeolite with high adsorption capacity. Then, on the basis of magnetic carrier technology, different magnetically modified zeolites (MMZ) were prepared by combining the modified zeolite with Fe_3O_4 via chemical co-precipitation method and physical adhesion process. The optimal MMZ was characterized by XRD, SEM, FT-IR, TG-DSC, N_2 adsorption isotherms and magnetization measurements. The adsorption of the MMZ for heavy metal ions was studied, and the optimal adsorption conditions, adsorption capacity and adsorption mechanism were also explored.
     Through the experiments of modification for the natural zeolite and of adsorption for Pb~(2+) on the modified zeolite, the conclusion can be drawn that the modified zeolite by NaCl (Na-zeolite) has the optimal adsorption for Pb~(2+). The adsorption of Pb~(2+) on the Na-zeolite is dependent on pH, and the maximum adsorption capacity of Pb in the initial concentration range studied reaches 66.99 mg/g.
     For the magnetically modified natural zeolites by chemical method: N_2 adsorption analysis shows that the specific surface areas of the MMZ (Ammonia), MMZ (NaOH) and the Na-zeolite are 100.90 m~2/g, 64.02 m~2/g and 25.13 m~2/g, respectively. According to the FT-IR spectra, the prepared MMZ (Ammonia) cause shift of the Si-0 (Si or Al) at 1054.5 cm~(-1) to 1039.3 cm~(-1), and the shift indicates that the Fe~(3+) cations similar with Al~(3+) cations embed into the framework of the Na-zeolite during preparation process. In different initial concentration, the adsorption tests of the MMZ and Na-zeolite for Pb~(2+), Cu~(2+) and Cd~(2+) shows that the adsorption is dependent on pH, and the equilibrium adsorbance increases with the increase of initial concentration. According to the general models of liquid phase adsorption, the data of adsorption isotherms is linear fitted, and the fitted curves and the lineared Langmuir curves are basically in coincidence. The fact shows that the adsorption process belonged with the monolayer Langmuir adsorption, and the maximum amount of adsorbed Pb~(2+) per mg of the MMZ (Ammonia), MMZ (NaOH) and the Na-zeolite are 130.72 mg/g, 88.18 mg/g and 65.92 mg/g, respectively.
     For the magnetically modified natural zeolites by physical process: the structure of MMZ is not manifestly changed along with Fe_3O_4 coated the surface of Na-zeolite, but the specific area increases. The magnetization measurements confirm that the bulk magnetization of the MMZ (Urethane) and Fe_3O_4are 11.7 emu/g and 39.8 emu/g. In different initial concentration, the adsorption tests of the MMZ (Urethane), MMZ (CMC) and Na-zeolite for Pb show that the equilibrium adsorbance increases with the increase of initial concentration, and the maximum amount of adsorbed are 54.53 mg/g, 84.00 mg/g and 66.99 mg/g, respectively.
     The use of the MMZ developed here offers a unique advantage in separation science and technology. The separation and recovery of heavy metal ions from a complex multiphase system can be accomplished without pretreatment, as the saturated MMZ can be isolated with an external magnetic field.
引文
[1] Vengris T, Binkiene R, Sveikauskaite A. Nickel, copper and zinc removal from waste water by a modified clay sorbent[J]. Applied Clay Science, 2001, 18:183-190.
    [2] Nachtegaal M, Sparks D L. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface [J]. Journal of Colloid and Interface Science, 2004, 276:13-23.
    [3] Peng X J, Luan Z K, Di Z C, et al. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(Ⅱ) and Cu(Ⅱ) from water[J]. Letters to the Editor/Carbon, 2005,43: 855-894.
    [4] Jeon C, Nah I W, Hwang K Y. Adsorption of heavy metals using magnetically modified alginic acid[J]. Hydrometallurgy, 2007, 86: 140-146.
    [5] White D A, Athanasiou G Removal of heavy metals using magnetic flocs[J].Institution of Chemical Engineers, 2000, 78: 149-152.
    [6] Liu Z S. Control of heavy metals during incineration using activated carbon fibers[J]. Journal of Hazardous Materials, 2007,142: 506-511.
    [7] Wu P G, Xu Z H. Silanation of Nanostructured Mesoporous Magnetic Particles for Heavy Metal Recovery [J]. Industrial and Engineering Chemistry Research, 2005,44: 816-824.
    [8] Korkuna O, Leboda R, Vrublevs'ka T, et al. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite[J]. Microporous and Mesoporous Materials, 2006, 87: 243-254.
    [9] Ackley M W, Rege S U., Saxena H. Application of natural zeolites in the purification and separation of gases [J]. Microporous and Mesoporous Materials,2003,61:25-42.
    [10] Cejka J, Bekkum H V. Zeolites and Ordered Mesoporous Materials: Progress and Prospects [M]. Prague: Elsevier, 2005.13-64.
    [11] 佘振宝,宋乃忠.沸石加工与应用[M].北京:化学工业出版社,2005.
    [12] Concepcion-Rosabal B, Bogdanchikova N, Bosch P, et al. Comparative study of natural and synthetic clinoptilolites containing silver in different states [J].Microporous and Mesoporous Materials, 2005, 86: 249-255.
    [13] Galindo-Gonzalez C, Iglesias G R, Duran J D G Stability of concentrated aqueous clay-magnetite suspensions[J]. Colloids and Surfaces A, 2007, 306:150-157.
    [14] Anunziata O A, Costa M G, Beltramone A R. Fe-ZSM-11 magnetic properties: Its relation with the catalytic activity for NO_XSCR with iso-butane and O_2[J].Applied Catalysis A: General, 2006, 307:263-269.
    [15] Oliveira L C A, Rios R V R A, Fabris J D, et al. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water[J]. Carbon,2002,40:2177-2183.
    [16] 林建华,荆西平.无机材料化学[M].北京:北京大学出版社,2006.
    [17] Colella C, Gualtieri A F. Cronstedt's zeolite[J]. Microporous and Mesoporous Materials, 2007,105: 213-221.
    [18] 陈尔余.天然沸石的改性及处理含镍废水的研究:[硕士学位论文].杭州:浙江大学,2006.
    [19] 申少华,张术根,王大伟.天然沸石及其开发利用研究进展[J].矿产保护与利用,2000,(4):34-38.
    [20] Ribeiro F R, Alvarez F, Henriques C, et al. Structure-activity relationship in zeolites[J]. Journal of Molecular Catalysis A: Chemical, 1995,96: 245-270.
    [21] Li J, Qiu J, Long Y C. Studies on natural STI zeolite: modification, structure,adsorption and catalysis[J]. Microporous and Mesoporous Materials, 2000, 37:365-378.
    [22] Logar N Z, Siljeg M, Arcon I, et al. Sorption of Cr~(3+) on clinoptilolite tuff: A structural investigation [J]. Microporous and Mesoporous Materials, 2006, 93:275-284.
    [23] 郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005.508-513.
    [24] Siriwardane R V, Shen M S, Fisher E P. Adsorption of CO_2, N_2, and O_2 on Natural Zeolites[J]. Energy & Fuels, 2003,17: 571-576.
    [25] Shirvani M, Kalbasi M, Shariatmadari H, et al. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: Isotherm hysteresis [J].Chemosphere, 2006,65: 2178-2184.
    [26] Gevorkyan R G, Sargsyan H H, Karamyan G G, et al. Study of absorption properties of modified zeolites[J]. Chemie der Erde Geochemistry, 2002, 62:237-242.
    [27] 柳萍,王建龙.天然沸石在水污染控制中的应用[J].离子交换与吸附,1996, 12(4):378-382.
    [28] 袁俊生,王静康.钠型斜发沸石Na~+-K~+离子交换特性研究(Ⅰ)-离子交换过程热力学特性[J].离子交换与吸附,2004,20(6):541-547.
    [29] Long Y C, Ma M H, Sun Y J, et al. Synthesis, ion-exchange, structural characterization and adsorption of K, Na-FER type zeolite [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000,37:103-120.
    [30] Mier M V, Callejas R L, Gehr R, et al. Heavy metal removal with Mexican clinoptilolite multi-component ionic exchange[J]. Water Research, 2001, 35(2):373-378.
    [31] 路佳,徐芳,蔡伟民.天然沸石在环境治理中应用的研究进展[J].中国非金属矿工业导刊,2004,5:41-44.
    [32] Bogdanchikova N, Simakov A, Smolentseva E, et al. Stabilization of catalytically active gold species in Fe-modified zeolites[J]. Applied Surface Science, 2008,254:4075-4083.
    [33] 傅东.天然沸石及其在环保领域中的应用前景[J].中国非金属矿工业导刊,2002,4:30-32.
    [34] 张冬梅,王承智,黄相国.天然沸石及其应用进展研究[J].环境保护科学,2008,34(1):12-14.
    [35] Castro G A, Echegarrua M G, Perez M A, et al. Adsorption properties of natural and Cu(Ⅱ), Zn(Ⅱ), Ag(Ⅰ) exchanged Cuban mordenites[J]. Microporous and Mesoporous Materials, 2008,108: 325-332.
    [36] Chojnacki K, Chojnacka J, Hoffmann H G The application of natural zeolites for mercury removal: from laboratory tests to industrial scale[J]. Minerals Engineering, 2004,17: 933-937.
    [37] Jiao J, Altwasser S, Wang W, et al. State of aluminum in dealuminated,nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry B, 2004,108: 14305-14310.
    [38] 程晓维,汪靖,钟鹰,等.CXN天然沸石的研究Ⅶ.骨架高硅超稳化改性[J].化学学报,2006,64(1):1-8.
    [39] Huang L, Xiao H N, Ni Y H. Cationic-modified microporous zeolites/anionic polymer system for simultaneous removal of dissolved and colloidal substances from wastewater[J]. Separation and Purification Technology, 2006,49: 264-270.
    [40] Dyer A, Zubair M. Ion-exchange in chabazite[J]. Microporous and Mesoporous Materials, 1998,22: 135-150.
    [41]Trgo M, Peric J, Medvidovic N V. A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems[J]. Journal of Hazardous Materials, 2006, B136: 938-945.
    [42]王绪绪,陈旬,徐海兵.沸石分子筛的表面改性技术进展[J].无机化学学报,2002,18(6):541-549.
    [43]Bowman R S, Haggerty G M, Hudlesion R G. Sorption of a nonpolar organic compounds, inorganic cations and inorganic oxyanions by surfactant-modified zeolites. Americal Chemical Society, Washington, D. C. 1995. 54-64.
    [44]李虎杰,田煦,易发成.活化沸石对Pb~(2+)的吸附性能研究[J].非金属矿,2001,24(2):49-51.
    [45]Cheng X W, Zhong Y, Long Y C, et al. Studies on modification and structural ultra-stabilization of natural STI zeolite[J]. Microporous and Mesoporous Materials, 2005, 83: 233-243.
    [46]王萍,严子春,邱熔处.氯化钠改性沸石吸附水中苯酚的研究[J].中国给水排水,2000,16(4):11-13.
    [47]詹予忠,杨向东,章培培,等.改性斜发沸石吸附除水中铬(Ⅵ)的研究[J].中国矿业,2006,15(8):57-62.
    [48]蔡玉曼,姬辰.天然沸石改性应用研究进展[J].地质学刊,2008,32(3):244-248.
    [49]Tomasevic-Canovic M, Dakovic A, Rottinghaus G, et al. Surfactant modified zeolites-new efficient adsorbents for mycotoxins[J]. Microporous and Mesoporous Materials, 2003,61: 173-180.
    [50]Chen J X, Chen Z X, Yu T, et al. Synthesis, structure, and adsorption properties of a three-dimensional porous yttrium-organic coordination network[J].Microporous and Mesoporous Materials, 2007,98:16-20.
    [51]Dakovic A, Matijasevic S, Rottinghaus G E, et al. Adsorption of zearalenone by organomodified natural zeolitic tuff[J]. Journal of Colloid and Interface Science,2007,311:8-13.
    [52]Wang Y, Kmiya Y, Okuhara T. Removal of low-concentration ammonia in water by ion-exchange using Na-mordenite[J]. Water Research, 2007,41: 269-276.
    [53]陈方明,陆琦,曹李靖,等.天然沸石的加工技术及其在水处理中的应用[J].安全与环境工程,2004,11(1):19-22.
    [54]李晔,肖文浚,彭长琪.沸石改性及其对氨氮废水处理效果的研究[J].非金属矿,2003,26(2):53-55.
    [55] 潘嘉芬,卢杰.天然斜发沸石吸附高浓度氨氮废水试验研究[J].中国矿业,2008,17(2):87-89.
    [56] 王德华,费维扬.钠改型天然斜发沸石的铵离子交换平衡[J].离子交换与吸附,2002,18(4):343-348.
    [57] Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review[J]. Journal of Hazardous Materials, 2003, B97:219-243.
    [58] Yong S O, Yang J E, Zhang Y S, et al. Heavy metal adsorption by a formulated zeolite-Portland cement mixture [J]. Journal of Hazardous Materials, 2007, 147:91-96.
    [59] Erdem E, Karapinar N, Donat R. The removal of heavy metal cations by natural zeolites[J]. Journal of Colloid and Interface Science, 2004,280: 309-314.
    [60] Langella A, Pansini M, Cappelletti P, et al. NH_4~+, Cu~(2+), Zn~(2+), Cd~(2+) and Pb~(2+) exchange for Na~+ in a sedimentary clinoptilolite, North Sardinia, Italy [J].Microporous and Mesoporous Materials, 2000,37: 337-343.
    [61] Tiwari D, Kim H U, Lee S M. Removal behavior of sericite for Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions: Batch and column studies[J]. Separation and Purification Technology, 2007, 57: 11-16.
    [62] Akg(?)l M, Karabakan A, Acar O, et al. Removal of silver (Ⅰ) from aqueous solutions with clinoptilolite[J]. Microporous and Mesoporous Materials, 2006,94: 99-104.
    [63] Bosco S M D, Jimenez R S, Carvalho W A. Removal of toxic metals from wastewater by Brazilian natural scolecite[J]. Journal of Colloid and Interface Science, 2005,281: 424-431.
    [64] Misaelides P, Zamboulis D, Sarridis P, et al. Chromium (Ⅵ) uptake by polyhexamethylene-guanidine-modified natural zeolitic materials[J].Microporous and Mesoporous Materials, 2008 108: 162-167.
    [65] 李爱阳,褚宏伟.改性斜发沸石处理电镀废水中的重金属离子[J].材料保护,2004,37(6):73-75.
    [66] 罗道成,易平贵,陈安国.多孔质沸石颗粒对矿井水中Pb~(2+)、CU~(2+)、Zn~(2+)吸附性能的研究[J].水处理技术,2003,29(6):932-934.
    [67] 辛云岭,李政一,郑志斌.沸石在水污染治理中的应用[J].科技情报开发与经济,2005,15(10):125-127.
    [68] Boujelben N, Bouzid J, Elouear Z, et al. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J]. Journal of Hazardous Materials, 2008,151: 103-110.
    [69]Inglezakis V J, Loizidou M M, Grigoropoulou H P. Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility [J].Journal of Colloid and Interface Science, 2004,275: 570-576.
    [70]黄桂华,殷霞,章伟光,等.功能化介孔磁性载体的制备及对铜离子的吸附[J].华南师范大学学报(自然科学版),2006,(4):82-87.
    [71]丁丽俐,翁屹,张阳荣,等.氨基末端磁性载体固定化中性蛋白酶的研究[J].生物化学与生物物理进展,2001,28(5):691-694.
    [72]姜炜,李凤生,杨毅,等.纳微米磁性复合粒子在放射治疗中的应用研究进展[J].现代化工,2004,24(6):81-84.
    [73]Takafuji M, Ide S, Xu Z H, et al. Preparation of poly (1-vinylimidazole) - grafted magnetic nanoparticles and their application for removal of metal ions[J].Chemistry of Materials, 2004,16: 1977-1983.
    [74]Nah I W, Hwang K Y, Shul Y G. A simple synthesis of magnetically modified zeolite[J]. Powder Technology, 2007,177:99-101.
    [75]Urbain O M, Stemen W R. Novel glass crystal catalysts for the processes of methane oxidation[J]. Catalysis Today, 2001,64: 59-61.
    [76]常兰,李玲.核壳型磁性高分子微球的制备及应用进展(综述)[J].暨南大学学报(自然科学版),2004,25(3):672-676.
    [77]曹吉林,陈学青,刘秀伍,等.磁性膨润土净水剂制备及其应用[J].天津大学学报,2007,40(4):457-462.
    [78]Oliveira L C A, Rios R V R A, Fabris J D, et al. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Applied Clay Science,2003,22:169-177.
    [79]Han R P, Zou W H, Li H K, et al. Copper(Ⅱ) and lead(Ⅱ) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite[J]. Journal of Hazardous Materials, 2006, B137: 934-942.
    [80]Doula M K. Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity[J]. Chemosphere, 2007,67: 731-740.
    [81]贺晓静.功能化磁性载体的合成、表征及应用:[硕士学位论文].广州:华南师范大学,2007.
    [82]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,2004.145-157.
    [83]张国栋,张佳科,张定金,等.材料研究与测试方法[M].北京:冶金工业出版社,2002.
    [84]李方文,魏先勋,李彩亭,等.络合滴定法测定废水中铅离子的浓度[J].工业水处理,2002,22(10):38-39.
    [85]严德明,吕明,杨闯,等.铅-二甲酚橙-甲基紫三元络合物光度法测定痕量铅[J].吉林师范大学学报(自然科学版),2004,(4):53-54.
    [86]Vasylechko V O, Gryshchouk G V, Kuz'ma Y B, et al. Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite[J]. Microporous and Mesoporous Materials, 2003,60:183-196.
    [87]Wingenfelder U, Nowack B, Furrer G, et al. Adsorption of Pb and Cd by amine-modified zeolite[J]. Water Research, 2005, 39: 3287-3297.
    [88]Wang Y F, Lin F, Pang W Q. Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite[J]. Journal of Hazardous Materials, 2007,142: 160-164.
    [89]Caputo D, Pepe F. Experiments and data processing of ion exchange equilibria involving Italian natural zeolites: a review[J]. Microporous and Mesoporous Materials, 2007,105: 222-231.
    [90]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.173-313.
    [91]马登月.碳纳米管负载二氧化锰材料的制备及吸附铅离子的机制研究:[硕士学位论文].济南:山东大学,2007.
    [92]Feng D, Aldrich C, Tan H. Removal of Heavy Metal Ions by Carrier Magnetic Separation of Adsorptive Particulates[J]. Hydrometallurgy, 2000, 56: 359-368.
    [93]Oren A H, Kaya A. Factors affecting adsorption characteristics of Zn~(2+) on two natural zeolites[J]. Journal of Hazardous Materials, 2006, B131: 59-65.
    [94]赵朝晖.Fe_3O_4纳米颗粒与薄膜的制备及磁性能研究:[博士学位论文].天津:天津大学,2006.
    [95]秦润华,姜炜,刘宏英,等.纳米磁性四氧化三铁的制备及表征[J].材料导报,2003,17(专辑):66-68.
    [96]商丹.纳米磁性四氧化三铁的制备方法比较及应用研究:[硕士学位论文].贵阳:贵州大学,2006.
    [97]Arcoya A, Gonzalez J A, Travieso N, et al. Physicochemical and Catalytic Properties of a Modified Natural Clinoptilolite [J]. Clay Minerals, 1994, 29:123-131.
    [98]Bourlinos A B, Zboril R, Petridis D. A simple route towards magnetically modified zeolites[J]. Microporous and Mesoporous Materials, 2003, 58:155-162.
    [99] 刘贵阳.非金属多孔矿为模板所制备炭的表征及在EDLC中的应用研究:[硕士学位论文].北京:清华大学,2005.
    [100] 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.145-155.
    [101] 近藤精一,石传达雄,安部郁夫著,李国希译.吸附科学[M].北京:化学工业出版社,2007.32-70,115-136.
    [102] Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms[J]. Journal of the American Chemical Society, 1951, 73(1), 373-380.
    [103] Kowalczyk P, Sprynskyy M, Terzyk A P., et al. Porous structure of natural and modified clinoptilolites[J]. Journal of Colloid and Interface Science, 2006, 297:77-85.
    [104] Yang H M, Du C F, Hu Y H, et al. Preparation of porous material from talc by mechanochemical treatment and subsequent leaching[J]. Applied Clay Science,2006,31:290-297.
    [105] Doula M K, Dimirkou A. Use of an iron-overexchanged clinoptilolite for the removal of Cu~(2+) ions from heavily contaminated drinking water samples[J].Journal of Hazardous Materials, 2008,151: 738-745.
    [106] Castaldi P, Santona L, Cozza C, et al. Thermal and Spectroscopic Studies of Zeolites Exchanged with Metal Cations [J]. Journal of Molecular Structure,2005, 734: 99-105.
    [107] Varela M T B, Ramirez S M, Ere(?)a I, et al. Characterization and pozzolanicity of zeolitic rocks from two Cuban deposits[J]. Applied Clay Science, 2006, 33:149-159.
    [108] Xu Y, Axe L. Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption[J]. Journal of Colloid and Interface Science, 2005,282: 11-19.
    [109] Oliveira L C A, Petkowicz D I, Smaniotto A, et al. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water [J]. Water Research,2004, 38: 3699-3704.
    [110] 罗道成,易平贵,陈安国.改性沸石对电镀废水中Pb~(2+)、Zn~(2+)、Ni~(2+)的吸附[J].材料保护,2002,35(7):41-43.
    [111]Al-Sewailem M S, Khaled E M, Mashhady A S. Retention of copper by desert sands coated with ferric hydroxides[J]. Geoderma, 1999, 89: 249-258.
    [112]相波,李义久.吸附等温式在重金属吸附性能研究中的应用[J].有色金属,2007,59(1):77-80.
    [113]王宜辰.Freundlich吸附等温式的理论推导[J].烟台师范学院学报(自然科学版),1993,9(4):76-78.
    [114]Liao M H, Chen D H. Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent[J]. Biotechnology Letters, 2002, 24:1913-1917.
    [115]杨通在,罗顺忠,徐云书.氮吸附法表征多孔材料的孔结构[J].碳素,2006,(1):17-22.
    [116]李恒峰.铝基柱撑蒙脱石的制备与表征:[硕士学位论文].长沙:中南大学,2006.
    [117]Nah I W, Hwang K Y, Jeon C, et al. Removal of Pb ion from water by magnetically modified zeolite[J]. Minerals Engineering, 2006,19:1452-1455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700