超级电容储能电梯节能关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电梯在发电过程中会产生大量的能量,传统的制动能耗和逆变方案具有能源浪费和谐波污染的问题,回馈能量得不到合理利用。本文研究一种基于超级电容的电梯节能系统:该系统将超级电容组通过双向DC/DC并联在直流母线,通过合理的匹配方案和控制策略来满足电梯功率需求,达到节能目的;制动单元和制动电阻用以在超级电容充满电时消耗过剩能量。
     为分析基于超级电容储能的电梯节能系统各部分特性,建立了包含超级电容、双向DC-DC、变频器、曳引电机、电梯负载在内的Matlab/Simulink电梯节能仿真模型。仿真模型更加直观的反映了超级电容充放电电流、端电压和功率,为后续参数匹配和控制策略研究奠定了基础。
     在分析电梯运行特性的基础上,针对整个节能系统提出了超级电容、双向DC/DC、制动电阻的匹配方案,使得匹配参数既能满足电梯曳引机的功率、能量需求又节约了系统成本。制定了系统的控制策略,它根据直流母线和超级电容电压判断曳引机的工作状态,决定超级电容的充放电动作,并且从DC/DC效率、系统成本、电网冲击角度提出了超级电容充放电电流控制策略。
     双向DC/DC是节能电梯系统实现节能控制的核心,其拓扑采用了Buck/boost结构,具有结构简单、方便应用谐振技术、适合大功率场合应用的特点,实现了能量的双向流动。本文针对节能电梯用Buck/boost型双向DC/DC进行了硬软件设计。
     为了对超级电容的充放电进行控制,本文对系统中能量管理单元进行了硬/软件设计。能量管理单元以ARM处理器LPC2119作为控制核心芯片,通过485通信采集变频器的功率信号,利用CAN通信实现对DC/DC的控制,实现了能量的双向流动。
     为构建超级电容储能电梯节能系统平台,采用了两电机对拖的方式模拟电梯工况,在研制的系统平台上进行了实验研究。选用ARM LPC2119为控制电路核心芯片实现了电梯工况的给定,利用能量管理单元在实验平台上运行制定的控制策略,实验结果表明了参数匹配和控制策略的可行性。
The elevator will produce large amounts of energy in generating process, but the traditional schemes, such as energy-consumption and energy-inverter, have energy wasting and harmonic pollution problems, so feedback energy can not be used reasonably. This paper proposes a method based on supercapacitor elevator energy-saving system.In this system, supercapacitor was parallelled in DC bus through bidirectional DC/DC so it costs fewer number of supercapacitors, needing lower cost, which can also supply peak power that generated in starting and braking period.Braking unit and resistance parallelled in DC bus are used to consume excess energy when supercapacitor is charged fully.
     In order to analyze every part of the energy-saving system ,we have established a simulation model by Matlab/Simulink, containing supercapacitor , bidirectional DC-DC, frequency converters ,traction motor and elevator load.The simulation model intuitively reflects charge and discharge current ,terminal voltage, power and so on ,which lays a foundation for the subsequent parameters matching and control strategy researching.
     On the base of having analyzing the operation performance of elevator, we proposes a matching scheme including supercapacitor , bidirectional DC/DC, braking resistor,which can meet power energy demanding and save the cost. The control strategy of established system has able to judge the traction machine’s working condition according to DC bus and supercapacitor voltage, and for the need of controling supercapacitor to charge/discharge action, we also put forward an supercapacitor current control strategy considering DC/DC efficiency ,power system cost and grid impact.
     Bidirectional DC-DC is the core of energy-saving elevator system, and its topology is Buck/boost structure,which is simple and convenient to apply resonance technology and is suitable for high-power situation , it can easily realize the two-way flowing of energy. On this paper we have hard/software designed for bidirectional DC/DC.
     In order to control the charging and discharging state of supercapacitors, this paper designs the hard/software of energy management unit. ARM LPC2119 acts as a control core chip of energy management unit .Signal power of frequency converter is collected through the 485 communication, and by using of CAN, system realizes the DC/DC communication control and the two-way flowing of energy .
     In order to construct the platform of the supercapacitor energy-storage elevator energy-saving system, we use two motors to drag each other for simulating elevator conditions .Finally, we take experiments in the system platform. It realizes that conditions of elevator by using of ARM LPC2119 and runs the control strategy of the experiment through elevator energy management unit in experimental platform. The experimental results show that the correctness of parameters matching and the control strategy.
引文
[1]宋波.中国建筑能耗现状及节能策略.建设科技, 2008(20):18-19
    [2]刘博宇.基于超级电容的电梯节能控制系统研究与设计.南京理工大学硕士论文. 2010:1-1
    [3]马信.谈电梯节能对缓解全国用电紧张的贡献.智能建筑, 2006(05):45-47
    [4]黄娟丽,万杰,李少纲.电梯节能技术综述.能源与环境, 2010(01):30-31+42
    [5]冷增祥.有源逆变器用于电梯节能.电源技术应用, 2007(07):9-11
    [6] L. Zhijian, J. Lach, M. Stan, et al. Design and Implementation of an Energy Efficient Multimedia Playback System. Signals, Systems and Computers, 2006 ACSSC '06 Fortieth Asilomar Conference on. 2006:1491-1497
    [7]申瑞,张自强,董燕.电梯节能能量回馈控制系统设计.河南科技大学学报(自然科学版), 2010(01):27-30+115-116
    [8] H. Inaba, K. Hirasawa, T. Ando, et al. Development of a high-speed elevator controlled by current source inverter system with sinusoidal input and output. Industry Applications, IEEE Transactions on, 1992,28(4):893-899
    [9] C. Dae-Woong, R. Hyung-Min, L. Young-Min, et al. Drive systems for high-speed gearless elevators. Industry Applications Magazine, IEEE, 2001,7(5):52-56
    [10]涂从欢.电力拖动系统中能量回馈控制的设计.电气传动, 1996(03):43-46
    [11]电梯装置, CN1555335.[2004-12-15]. http://epub.edu.cnki.net/grid2008/ brief/detailj. aspx?filename=CN1555335&dbname=SCPD0009.
    [12] S. Tominaga, I. Suga, H. Araki, et al. Development of energy-saving elevator using regenerated power storage system. Power Conversion Conference, 2002 PCC Osaka 2002 Proceedings of the. 2002:890-895 vol.892
    [13] R. G. A. Schneuwly. Properties and applications of supercapacitors, from the state-of-the-art to future trends [M]. PCIM'2000. Nuremberg (Germany). 2000.
    [14] A. Rufer, P. Barrade. A supercapacitor-based energy storage system for elevators with soft commutated interface. Industry Applications Conference, 2001 Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE. 2001:1413-1418 vol.1412
    [15] S. M. R. K?tz, M. B?rtschi, B. Schnyder, P. Dietrich, F. N. Büchi, A. Tsukada, G. G. Scherer. P. Rodatz, O. Garcia, P. Barrade, V. Hermann, R. Gallay. Supercapacitors for peak-power demand in fuelcell-driven cars [M]. Electro-Chemical Society annual meeting. San Francisco. September 2001.
    [16]翟楠松,张东来,徐殿国.超级电容国内外研究及应用现状.中国安徽黄山, 2007,
    [17]超级电容储能式电梯驱动器,CN101817471A.[2010-09-01].http://epub.edu.cnki. net/grid2008//brief/detailj.aspx?filename=CN101817471A&dbname=SCPD2010.
    [18]应用超级电容的电梯节电装置,CN201504220U.[2010-06-09].http://epub.edu. cnki.net/grid2008/brief/detail.aspx?filename=CN201504220U&dbname=SCPD0009.
    [19]常晓清.应用超级电容的轮胎式集装箱起重机节能特性研究.建筑机械, 2008(15):94-98
    [20]王楠,吴庆彪,顾明.双向双重DC/DC变换器及其在超级电容储能系统中的应用.电气自动化, 2007(06):30-31+38
    [21] L. Zheng, R. Yi. A novel energy saving control system for elevator based on supercapacitor bank using fuzzy logic. Electrical Machines and Systems, 2008 ICEMS 2008 International Conference on. 2008:2717-2722
    [22]王善磊.电梯系统中超级电容储能的研究.浙江大学硕士论文. 2008:67-71
    [23]马奎安.超级电容器储能系统中双向DC/DC变流器设计.浙江大学硕士论文. 2010:60-66
    [24] C. Attaianese, V. Nardi, G. Tomasso. A High Efficiency Conversion System for Elevators. Clean Electrical Power, 2007 ICCEP '07 International Conference on. 2007:236-242
    [25] C. Attaianese, V. Nardi, G. Tomasso. High performances supercapacitor recovery system for industrial drive applications. Applied Power Electronics Conference and Exposition, 2004 APEC '04 Nineteenth Annual IEEE. 2004:1635-1641 Vol.1633
    [26]一种基于超级电容的电机节能驱动的电路及控制方法,101931 366A.[2010-12-29].http://epub.edu.cnki.net/grid2008/brief/detailj.aspx?filename=101931366A&dbname=SCPD2010
    [27]王锡仲.张汉杰,朱学莉.现代电梯控制技术.哈尔滨工业大学出版社. 2001
    [28] T. B. V. Sarangapani S, Chen C P. Materials for electrochemical capacitors. Electrochemical Society, 1996,143(11):3791-3795
    [29] L. R. D. On porous electrodes in electrolytes solution. Electochimica Acta, 1963,3(8):751-780
    [30] V. J. LajnefW. Study of ultracapacitors dynamic behaviour using impedance frequency analysis on a specific test bench. Industrial Electronics, IEEE Transactions on, 2004,2839-844
    [31] G. M arie-Fran coise J-N, Berthon A. Supercapacitor thermal and electrical behavior modeling using ANN [M]. IEE ProcElectr Power. 2006: 255-262.
    [32]盖晓东,杨世彦,雷磊, et al.改进的超级电容建模方法及应用.北京航空航天大学学报, 2010(02):172-175
    [33] K. Inoue, K. Ogata, T. Kato. A Control Method of a Regenerative Power Storage System for Electric Machinery. Power Electronics Specialists Conference, 2006 PESC '06 37th IEEE. 2006:1-5
    [34] B. J. Arnet, L. P. Haines. High power DC-to-DC converter for supercapacitors. Electric Machines and Drives Conference, 2001 IEMDC 2001 IEEE International. 2001:985-990
    [35] T. Kohama, M. Yamashima, T. Ninomiya. Operation-mode control of active-clamped bi-directional flyback converter as EDLC charger and discharger. Power Conversion Conference, 2002 PCC Osaka 2002 Proceedings of the. 2002:1155-1159 vol.1153
    [36] S. Hase, T. Konishi, A. Okui, et al. Fundamental study on energy storage system for DC electric railway system. Power Conversion Conference, 2002 PCC Osaka 2002 Proceedings of the. 2002:1456-1459 vol.1453
    [37] M. Nomura, Y. Tadano, T. Yamada, et al. Performance of inverter with electrical double layer capacitor for vector controlled induction motor drives. Industry Applications Conference, 2005 Fourtieth IAS Annual Meeting Conference Record of the 2005. 2005:1073-1080 Vol. 1072
    [38] Z. Junhong, L. Jih-Sheng, K. Rae-Young, et al. High-Power Density Design of a Soft-Switching High-Power Bidirectional dc–dc Converter. Power Electronics, IEEE Transactions on, 2007,22(4):1145-1153
    [39]黄军,杨世彦,杨威.零电流Buck/Boost双向DC/DC变换器的研究.电力电子技术, 2010(07):1-3
    [40] D. M. Sable, F. C. Lee, B. H. Cho. A zero-voltage-switching bidirectional battery charger/discharger for the NASA EOS satellite. Applied Power Electronics Conference and Exposition, 1992 APEC '92 Conference Proceedings 1992, Seventh Annual. 1992:614-621

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700