煤基吸附剂的制备及其吸附Cr~(6+)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用龙口褐煤为原料采用液相化学氧化法和机械力化学法制备煤基吸附剂,并进行了煤粉成型研究及成型吸附剂吸附水溶液中Cr6+的吸附性能的研究。
     煤粉与三氯化铁共球磨可以增加煤粉对Cr6+的吸附量。在质量比FeCl3:煤=1:10条件下,球磨20min后经过酸洗、水洗干燥后得到煤粉吸附剂吸附效果最佳。对其表面化学性质研究表明,球磨过程中发生了机械力化学反应,酸性官能团减少。对改性前后孔结构的研究表明,氧化后比表面积减小但总孔容增加。
     经过HN03适度氧化,煤粉对Cr6+的吸附量增加。在浓度为3M、反应温度60℃、HN03:煤=10:1(固液比)的条件下反应12h,混合液抽滤后经过酸洗、水洗抽滤至中性、干燥得到煤基吸附剂吸附效果最佳。对改性前后孔结构的研究表明,氧化后比表面积和总孔容增加,氧化后中孔体积增加,占总孔体积的79.3%,这有利于Cr6+的吸附。对其表面化学性质研究表明,酸性官能团增加。
     利用正交试验研究成型条件,研究表明:当成孔剂:煤:粘结剂=25:100:15,后处理温度为220℃,后处理时间为90min,制得的成型吸附剂吸附效果最佳,与原煤相比,比表面积和总孔容都增加。
     成型吸附剂吸附Cr6+的吸条件实验结果表明:当溶液pH=2,且温度为20℃时有利于吸附。在最佳吸附条件下,经过机械力化学法处理得到的成型吸附剂对Cr6+的去除率可达到99.7%;经过化学氧化法处理得到的成型吸附剂吸附效果不如经过机械力化学法得到的好,去除率为62.3%。成型吸附剂对Cr6+的吸附热力学研究表明成型吸附剂对Cr6+的吸附符合Freundlich或Langmuir吸附等温式。成型吸附剂对Cr6+的动力学研究表明,吸附符合二级吸附动力学模型。
This disquisition prepared the sorbent by coal through chemistry oxidation and machine chemistry with the use of the lignite, to research the molding of the coal powder and the sorption of the molding sorbent which adsorb Cr6+ from solution.
     The coal powder together with FeCl3 can increase the adsorption capability through the grind with ball. When the weight ratio of FeCl3 and coal is one to ten, the sorbent of the coal powder is better after 20min ball grind, washing with acid, washing with water and drying. Through the research for chemistry character of the surface, the reaction of the machine chemistry occurred in the process of the ball grind, and the function group of the acid is adding. The research indicated that the proportion of the surface minish but the capability of the aperture increased after oxidation comparing with the former of the reaction.
     After the oxidation within measure by HNO3, the adsorption capability of the coal powder is increased. The reaction last 12 hours under the condition that the concentration is 3M, the temperature is 60℃and the ratio of the HNO3 and coal is ten to one. The. mix solution is filtrated with pump after washing with acid and washing with water to the pH7.0. The receiving sorbent with the coal group after drying is best for the adsorption capability. The proportion of the surface and the capability of the aperture are increased after oxidation comparing with the former of the reaction. The middling capability of the aperture is increased accounting for the total capability of the aperture 79.3%, which is propitious to adsorbing Cr6+. The function group of the acid is adding through the research for chemistry character of the surface.
     Using the test to the molding condition, the research indicated, when the ratio of the aperture reagent, coal and the felt reagent is 25 to 100 to 15, the latter disposal temperature is 220 and the latter disposal time is 90min, the adsorption capability of the molding sorbent received is best. The proportion of the surface and the capability of the aperture are increased comparing with the original coal.
     The conditions experimental about Cr6+ adsorption on molding absorbent shows that:when pH=2, and the temperature of 20℃for adsorption, adsorption effect is best. In the best adsorption conditions, Cr6+ removal rate about molding adsorbent processing by mechanochemical method can reach 99.7%, better than molding adsorbent processing by chemical oxidation. Cr6+ removal rate about molding adsorbent processing by chemical oxidation is 62.3%. According at the adsorption thermodynamics, the research indicated that the molding sorbent accord with the adsorption isothermal equation of Freundlich or Langmuir for Cr6+. Through the research about the molding sorbent to Cr6+, the adsorption accord with the second degree adsorption dynamics model.
引文
1.史黎薇.铬化合物的健康效应.中国环境卫生.2003,6:125-129.
    2.刘德生.环境监测[D].化学工业出版社,2001.
    3.刘汉初,骆宏卫,邱萍.电镀废水的处理研究[J].环境工程,1997,15(3):11-12.
    4. Bosinco S. Interaction mechanisms between hexavalent chromium and corncob[J]. Environmental Tech-nology,1996,17(1):55.
    5.舒情,王红卫,陈银.离子交换纤维在污水处理中的应用[J].化学工业与工程技术,2006,27(6):41-43.
    6. Yang, X. J. Fane, A. G., MacNaughton, S. Remov2al and recovery of heavy metal from wastewaters by supported liquid membranes [J]. Water Science and Technology, 2001(43):341-348.
    7. Ozaki, H, Sharma, K, Saktaywin, W. Performance of an ultra-low-pressure reverse osmosis membrane (UIPROM) for separatingheavy metal:effects of interference parameters [J]. Desalination,2002,144:287-294.
    8.于萍,任月明.处理重金属废水技术的研究进展[J].环境科学与管理,2006,31(7):103-108.
    9. Gabriela Huaman Pino, LucianaMaria Souza deMesquita,Mauricio Leonardo Torem, et al. Biosorp tion of cadmium by green coconut shell powder. Minerals Engineering,2006, 19(5):380-387.
    10.叶锦韶,尹华,彭辉,等.柱生物曝气法吸附处理含铬废水.环境污染治理技术与设备,2006,7(1):102-105.
    11. Grover M, Narayanaswamy M S. Removal of hexavalent chromium by adsorption on fly ash [J]. Environment.1992(63):36-39.
    12.黄彪,吴新华,黄碧忠.粉煤灰活性炭吸附水中六价铬试验[J].化工环保,1999,17(6):346-349.
    13.陈任翔.粉煤灰吸附法处理含铬废水[J].工业用水与废水,2006,37(5):47-49.
    14. Li Jia Yu, Shyam S.Shukla. Adsorption of chromium from aqueous solutions by maple sawdust [J]. Journal of Hazardous Materials,2003(100):53-63.
    15.邵涛,姜春梅.膨润土对不同价态铬的吸附研究[J].环境科学研究.1999,12(6):47-50.
    16.付勇,万朴,李博文.有机膨润土处理含铬废水的研究[J].西南工学院学报.2001,16(2):65-39.
    17.铁丽云,洪汉烈,周泳.烷基铵改性累托石对溶液中Cr6+的吸附研究[J].武汉理工大学学报,2006(1):22-26.
    18.谢晓凤.改性沸石应用于废水处理的研究[D].北京化工大学,2003.
    19.赵吉寿,颜莉,戴建辉.磷酸铝的有机铵模板固相合成及离子吸附性[J].应用化学,2004,02
    20.黄海清,熊国宣,徐琼.磁性交联壳聚糖对铬吸附性能的研究[J].环境污染与防治.2004(1):15-18.
    21. Graciela Rojas, Jorge Silava, Jaime A.Flores. Adsorption of chromium onto cross-linked chitosan[J]. Separation and Purification Technology,2005(44):31-36.
    22.刘翠霞,邓昌量,徐海宁.龙口褐煤对废水中Cr(Ⅵ)的吸附与还原[J].化工环保.1996,16(6):337-341.
    23. Solmaz Karabulut, Abdulkerim Karabakan, Adil Denizli, Yurum. Bateh removal of copper(Ⅱ) and zinc(Ⅱ) from aqueous solutions with low-rank Turkish coal [J]. Separation and Purification Technology,2000,18:177-184.
    24. Yuri I.Tarasevich. Porous structure and adsorption properties of natural porous coal [J]. Colloids and surfaces A:Physicochemical and Engineering Aspects,2001,176:267-272.
    25. T.Viraraghavan, Flor de Maria Alfaro. Adsorption of phenol from waste water by Peat fly ash and detonate [J]. Journal of Hazardous Materials,1998,57:59-70.
    26.余攘扬,朱之培,陈王亚等.用大同风化煤及其腐植酸处理含镍、隔废水机理的考察[J].华东化工学院学报.1983,1:119-124.
    27.白炳贤,白萍等.MAC型离子交换剂的制备及其处理含Zn2+废水的研究[J].河南师范大学学报.1997,25(2):89-91.
    28. J.Lakatos, S.D.Brown, C.E.SnaPe. Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams.2002, Fuel,81:691-698.
    29.范广裕,骆文仪.TNT废水的研究[J].北京理工大学学报.1997,17(4):523-527.
    30.肖波,姚启康等.高质量水处理活性炭的研制[J].冶金能源.1997,16(3):23-26(40).
    31.梁大明,袁国君等.依兰煤制活性炭[J].煤炭科学技术.1998,26(1):37-40.
    32.张意颖,张文辉等.煤基活性炭对原料煤的适应性[J].煤.2000,2,27-28.
    33.崔永君,颜振明等.不同变质程度无烟煤制活性炭的研究[J].山西矿业学院学报.1997,15(2):194-197.
    34. J.J.pis, T.A.Centeno, M.Mahamud, A.B.Fuertes, J.B.Parra, J.A.Pajares and R.C.Bansal. Preparation of activated carbons from coal Part I oxidation of coal[J]. Fuel. Proe. Technol, 1996,47:119-130.
    35. Jose J.Pis, Manuel Mahamud, Jose B.Parra, Jesus A.Pajares, Roop C.Bansal. Preparation of activated carbons from coal Part II Carbonisation of oxidized coal[J]. Fuel. Proe. Technol, 1997,50:249-260.
    36. J.J.pis, M.Mahamud, J.A.pajares, J.B.parra, R.C.Bansal.Preparation of activated carbons from coal Part III Activation of char[J]. Fuel. Proc.Technol.1998,57:149-161.
    37.张双全,赵峰华等.以煤为原料制备高比表面积活性炭的途径分析[J].炭素.1998,1:32-39.
    38.张双全,乐政等.NP型催化剂在制造活性炭中的作用机理[J].燃料化学学报.1999,27(5):389-393.
    39.张双全,钱中秋等.催化一氧化理论及其在活性炭制备中的应用[J].中国矿业大学学报,2000,29(2):78-81(89).
    40.张双全,王祖呐.氧化性复合催化剂作用下用无烟煤制备活性炭[J].燃料化学学报.1998,26(5):431-435.
    41.张文辉,梁大明等.太西超纯煤制备活性炭试验研究[J].洁净煤技术.1999,5(2):43-36.
    42.王启宝,任瑜霞等.超低灰煤制备优质活性炭的研究[J].黑龙江矿业学院学报.1999,9(1):1-3.
    43. A.Linares-Solano, I.Martin-Gullon, C.Salinas-Martinez de Lecea, B.Serrano-Talavera. Activated carbons from bituminous coal:effete of mineral matter content[J]. Fuel.2000, 79:635-643.
    44.张文辉,李书荣等.金属化合物对太西无烟煤制备活性炭的研究[J].煤炭转化.2000,23(3):82-84.
    45.王飞军,张云红等.添加剂作用下用粘结性烟煤制活性炭[J].煤炭转化,2001,24(1):89-92.
    46. Yamada, Minoru Shiyaishi, Shigeyuki Kojima, Hisashi Tamai and Hajime Yasuda. Dis-Persion Properties of metal oxide nanoparticles supported carbons[J]. Tanso,1998, 181:8-13.
    47.乐政,解强.制备高比表面积煤基颗粒活性炭的新工艺[J].煤炭加工与综合利用,1998,2:5-7.
    48.解强,乐政.含钾化合物在煤基活性炭制备中的应用[J].中国矿业大学学报,1997,26(4):71-73.
    49. M.A.Lillo-Rodenas, D.Lozano-Castello, D.Cazorla-Amoros, A.Linares-Solano. Preparation of activated carbons from Spanish anthracite Ⅱ.Activated by NaOH[J]. Carbon,2001, 39:751-759.
    50. Hsisheng Teng, Tien-Sheng Yeh and Li-Yeh Hsu, Preparation of activated carbon from bituminous coal with Phosphoric acid activation[J]. Carbon.1998,36(9):1387-1395.
    51. Li-Yeh Hsu, Hsisheng Teng. Influence of different chemical reagents on thePreparation of activated carbons from bituminous coal[J]. Fuel Processing Technology,2000,64:155-166.
    52.邓晓虎,乐英红等.K2CO3活化煤研石制备活性炭吸附剂[J].应用化学,1997,14(3):49-52.
    53. F.Haghseresht, G.Q.Lu, A.K.Whittaker. Carbon structure and Porosity of carbonaceous adsorbents in relation to their adsorption Properties[J]. Carbon.1999,37:1491-1497.
    54.岳廷盛,彭乃为.改性泥炭对169Yb吸附性能的研究[J].兰州大学学报,1998,34(2):56-59.
    55. Nikolai V.Bodove, ReneGruber, Vladimir A.Kueherenko, Jean-MiehelGuet, Tat' anyakhabarova, Nathalie Cohaut, Olivier Heintz and Nadejda N.Rokosova. A novel process for Preparation of active carbon from sapropelitic coals[J]. Fuel.1998, 77(6):473-478.
    56.郑平.煤炭腐植酸的生产和应用[D].北京:化学工业出版社,1991,28.
    57.中国化学学会.全国第二次腐植酸化学学术讨论会论文集.太原.1981,67
    58.冯波,其鲁,张敬华等.弱氧化环境下褐煤氧化产物的定性分析[J].冶金分析.2009,29(1):21-24.
    59. W.C.Tsai, C.Y.Chang, M.C.Lin, S.F.Chien, H.F.Sun, M.F.Hsieh. AdsorPtion of acid dye onto aetivated carbons prepared from agricultural waste bagasse by ZnCl2 aetivation. ChemosPhere,2001,45:51-58.
    60.任强,武秀平,朱振峰.机械化学制备陶瓷及复合材料粉体的研究进展[J].中国陶瓷,2003,10:1-4.
    61.张敬阳.福建硬质绢云母的机械力化学表面改性[J].实验矿业快报.2001,3(6):7-8.
    62.赵振国,吸附作用应用原理[M],北京:化学工业出版社,2005
    63. Paul C. Paint et al. Concerning the 1600cm-1 region in the i.r spectrurm of coal [J], Fuel, 1983,62:742-744.
    64.王宗贤,刘雁来,阮竹等.用红外光谱表征干酪根和煤的芳碳量[J],石油大学学报,1992,16(4):66-71.
    65.刘先建.淮南煤的结构与反应性[D],安徽理工大学,2005.
    66.张慧.煤孔隙的成因类型及其研究[J],煤炭学报,2001,26(1):40-43.
    67.朱兴珊.煤层孔隙特征对抽放煤层气的影响[J],中国煤层气,1996,1.
    68.秦勇,徐志伟,张井.高煤级煤孔径结构的自然分类及其应用[J],煤炭学报,1995,20(3):266-270.
    69.张红日,刘常洪.吸附回线与煤的孔结构分析[J],煤炭工程师,1993,(2):22-26.
    70.陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J],煤炭学报,2001,26(5):552-556.
    71.朱银惠.煤化学[M],北京:化学工业出版社,2005.
    72.张济忠.分形[M],北京:清华大学出版社,1995.
    73. De bore J H. In:Everett D H, Stone F S(eds). The Structure and Properities of Porous Materials[D]. London:Butterworths,1985.
    74.颜肖慈,罗明道.界面化学[M],北京:化学工业出版社,2005.
    75. Langmuir, I. The constitution and fundamental properties of solids and liquids, Journal of the American Chemical Society,1916,38(11):2221-2295.
    76. Langmuir, I. The adsorption of gases on Plane surfaces, mica and platinum, Journal of the American Chemical Society,1918,40(9):1361-1403.
    77. Freundlich H. Uber die adsorption in losungen (adsorption in solution), Zeitschrift Physikalische Chemie(Leipzig),1906,57A:384-470.
    78. T. Mathialagan, T.Virarghavan. Adsorption of cadmium from aqueous solution by Perlite. Journal of Hazardous Materials,2002, B94:291-303.
    79. Y.S.Ho, G.Mekay,.Pseudo-second order model for sorption proeess. Process Bioehemistry, 1999,34:451-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700