Ni-Cu合金纳米粉的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用直流电弧等离子蒸发法制备了纯Ni纳米粉、纯Cu纳米粉及Ni-Cu合金纳米粉,用正交实验法研究了工艺参数对三种纳米粉体产率及粒径的影响,并确定了各自的最优化工艺条件。以Ni-Cu合金纳米粉体为研究对象,研究了其在制备、烧结过程中的生长机制。用放电等离子烧结法(SPS)对Ni-Cu合金纳米粉进行固化成形,并研究了其力学性能及强化机制。以Ni、Cu纳米粉为参照,用差热扫描量热分析法研究了Ni-Cu合金纳米粉体对高氯酸铵(AP)的催化性能及催化机理。
     制备Ni-Cu合金纳米粉的最优化工艺条件为:以产率为指标时,电流300A、氢氩比1/1、气体总压0.06MPa;以粒径为指标时,电流300A、氢氩比1/1、气体总压0.07MPa。制备纯Ni及纯Cu纳米粉的最优化工艺条件均为:电流300A、氢氩比1/1、气体总压0.07MPa。结合实验结果,以经典成核理论为基础,研究了Ni-Cu合金纳米粉的晶体生长驱动力。
     研究了在不同温度(773K,823K,873K,923K,973K)下烧结的Ni-Cu合金块体材料的相组成、织构演变和颗粒形貌特征。XRD结果显示,Ni-Cu合金块体均具有单一的面心立方结构,但XRD图中(111)及(200)面的峰强比值I(111)/I(200)不同,表明烧结过程中材料发生了织构演变。扫描电镜照片显示,随着温度升高,粒子尺寸逐渐增加,粒子形状从球形渐渐向多面体形状演变。依据透射电镜结果判断,不同烧结温度下材料中孪晶、位错及孔洞数量是导致材料性能差异的根本原因。结合晶体动力学生长理论研究了Ni-Cu合金纳米粉在烧结过程中的生长机制,计算了不同温度下烧结的Ni-Cu合金块体的动力学生长指数及晶粒生长激活能。
     用纳米压痕机械试验仪及维氏硬度计分别测试了不同温度下烧结的Ni-Cu合金块体的硬度,并通过拉伸实验测试了其拉伸强度、屈服强度及延展率。
     结合形变断裂过程研究了Ni-Cu合金块体材料的强化机制。用细晶强化理论研究了烧结的Ni-Cu合金块体材料的力学性能,Ni-Cu合金块体强度大于Ni-Cu原料合金锭的强度,但强度与粒径的关系不符合Hall-Petch关系。孪晶强化是Ni-Cu合金块体材料的主要强化机制,Ni-Cu合金块体材料力学性能的提高主要是因为变形孪晶对位错滑移的阻碍作用。
     从AP的高温放热温度、表观分解热及表观激活能等三方面评价了三种纳米粉的催化活性,高低次序为Ni-Cu合金纳米粉>纯Ni纳米粉>纯Cu纳米粉。用价键理论、能带理论研究了纯Ni纳米粉及纯Cu纳米粉催化AP的机理。结合多位理论研究了Ni-Cu合金纳米粉催化AP的机理,研究表明粉体内部结构中晶格畸变,孪晶、孔洞等缺陷,非均匀表面等多种因素的存在促进了粉体表面催化活性中心的形成。
Pure Ni, pure Cu, and Ni-Cu alloy nanopowders were prepared by the directcurrent arc plasma evaporation method. The effects of process parameters on the grainsize and yield of the three nanopowders were studied by an orthogonal experiment,and the optimal process conditions were determined. The growth mechanism of Ni-Cualloy nanopowders into Ni-Cu bulk alloys during the course of preparing and sinteringwas described. The mechanical properties and strengthening mechanism of Ni-Cualloy nanopowders consolidated by spark plasma sintering were studied. Comparedwith pure Ni and pure Cu nanopowders, the catalytic properties and catalyticmechanism of Ni-Cu alloy nanopowders on ammonium perchlorate (AP) were studiedby differential scanning calorimetry.
     The optimal process conditions of Ni-Cu nanopowders were determined atcurrent of300A,1:1ratio of hydrogen to argon, and total gas pressure of0.06MPawhen the effect of the yield was evaluated. A current of300A, ratio,1:1ratio ofhydrogen and argon, and total gas pressure of0.07MPa were used when the effect ofthe grain size was evaluated. The optimal process conditions for both pure Ni and pureCu nanopowders were determined to be a current of300A,1:1ratio of hydrogen toargon, and total gas pressure of0.06MPa. Based on the classical nucleation theory,the growth driving force of Ni-Cu alloy nanopowders was studied according to theexperimental results.
     We studied the phase composition, texture evolution, and grain morphologies ofNi-Cu bulk alloys sintered at different temperatures (773,823,873,923, and973K).The Ni-Cu bulk alloys had a single face-centered cubic phase. However, the peakintensity ratio of face (111) to face (200) I(111)/I(200)differed, indicating that the textureof the bulk materials evolved during sintering. FESEM photos showed that the particleshape gradually varied from spherical to polygonal. Based on TEM photos, thequantities of twins, dislocations, and pores were the primary reasons for the differentmechanical properties of the materials. The growth mechanism during the sintering of Ni-Cu alloy nanoparticles was discussed according to the crystal dynamic growththeory. The dynamic growth index and grain growth activation energy weredetermined.
     The hardness values of Ni-Cu bulk alloys sintered at different temperatures wereseparately measured using a nanoindentation mechanical test machine and the Vickershardness test. The tensile strength, yield strength, and elongation were determined bytensile tests.
     The strength mechanism of the Ni-Cu bulk alloys was discussed according to themechanism of deformation and fracture. The mechanical properties of the Ni-Cu bulkalloys was discussed based on the fine grain strengthening theory, which states that themechanical properties of Ni-Cu bulk alloys are superior to those of Ni-Cu bulk rawingots. However, the relationship between the strength and grain size did not obey theHall-Petch rule. The primary strength mechanism of the Ni-Cu bulk alloys was twinsstrength; their good mechanical properties mainly resulted from deformation twins,which prevented dislocation slip.
     The catalytic properties of the three nanopowders were evaluated based on threeaspects, including exothermic peak at high temperatures, apparent decomposition heat,and apparent activation energy. The following trend was observed: Ni-Cu nanopowders>Ni nanopowders> Cu nanopowders. The catalytic mechanism of Ni and Cunanopowders on AP was investigated according to the valence bond and energy bandtheories. The catalytic mechanism of Ni-Cu alloy nanopowders on AP was studiedaccording to the multiplet theory, which states that various factors such as latticedistortion, defects (e.g., twins and pores), and non-uniform surface promote theformation of surface catalytic activity centers.
引文
[1] Yang S L, Wang F H. Effect of nanocrystallization on sulfur segregation in Fe2Cr2Al alloy duringoxidation at1000℃[J]. Oxidation of Metals,2006,65:195-205.
    [2] Gomez de Salazar J M, Soria A, Barrena M I. Corrosion behaviour of Cu-based shape memoryalloys diffusion bonded[J]. Journal of Alloys and Compounds,2005,387:109-114.
    [3] Orimo S, Fujii H, Ikeda K, et al. Hydriding properties of a nano-/amorphous-structured Mg-Ni-Hsystem[J]. Journal of Alloys and Compounds,1997,253-254:94-97.
    [4] Mayo M J. Synthesis and applications of nanocrystalline ceramics[J]. Materials and Design,1993,14(6):323-329.
    [5] Xiang Q, Guo X M. The scale effect on the yield strength of nanocrystalline materials.International[J]. International journal of solids and structures,2006,43:7793-7799.
    [6]张盛强,汪建义,王大辉,等.纳米金属材料的研究进展[J].材料导报,2011,25:5-9.
    [7] Gleiter H. Nanocrystalline materials[J]. Progress in Materials Science,1989,33:223-315.
    [8]倪星元,姚兰芳,沈军等.纳米材料制备技术[M].北京:化学工业出版社,2008:63-64.
    [9] Szabo S, Brovko I, Kis Varga M, et al. Mossbauer effect and magnetic properties ofnanocrystalline Fe and Fe (Si) alloys[J]. Nanostructured Materials,1995,6(5-8):973-976.
    [10] Han Y, Fan J L, Liu T, et al. The effects of ball-milling treatment on the densification behavior ofultra-fine tungsten powder[J]. International Journal of Refractory Metals and Hard Materials,2011,29:743-750.
    [11] Zhao X Y, Ding Y, Ma L Q, et al. Structure, morphology and electrocatalytic characteristics ofnickel powders treated by mechanical milling[J]. International Journal of Hydrogen Energy,2008,33:6351-6356.
    [12] Asano K, Enoki Hi, Akiba E. Synthesis process of Mg-Ti BCC alloys by means of ball milling[J].Journal of Alloys and Compounds,2009,486:115-123.
    [13] Kou S Z, Liu F, Ding Y T, et al. Synthesis and magnetic properties of Cu-based amorphous alloysmade by mechanical alloying[J]. Intermetallics,2004,12:1115-1118.
    [14] Movahedi B, Enayati M H, Wong C C. Study on nanocrystallization and amorphization inFe–Cr–Mo–B–P–Si–C system during mechanical alloying[J]. Materials Science and EngineeringB, Contents lists available at ScienceDirect.
    [15] Bolarín-Miró A M, Sánchez-De Jesús F, Torres-Villase or G, et al. Amorphization of Co-base alloyby mechanical alloying[J]. Journal of Non-Crystalline Solids,2011,357:1705-1709.
    [16] Yadav T P, Mukhopadhyay N K, Tiwari R S, et al. Studies on the formation and stability ofnano-crystalline Al50Cu28Fe22alloy synthesized through high-energy ball milling[J]. MaterialsScience and Engineering A,2005,393:366-373.
    [17]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:2-109.
    [18]卢年端,宋晓艳,张久兴,等.稀土Nd超细纳米晶块体的制备及其物理性能[J].金属学报,2007,43(7):739-743.
    [19] Lu N D, Song X Y, Zhang J X. Microstructure and fundamental properties of nanostructuredgadolinium (Gd)[J]. Materals Letters,2009,63:1089-1092.
    [20] Lu N D, Song X Y, Liu X M, et al. Structure and properties of nanocrystalline rare earth bulksprepared by spark plasma sintering[J]. Journal of Rare Earths,2009,27(6):961-966.
    [21]路承杰,张振忠,周剑秋,等.直流电弧等离子体蒸发法制备纳米Ni粉[J].材料与表面处理技术,2007,(3):97-100.
    [22]王超,张振忠,段志伟.直流电弧等离子体法制备纳米铁粉[J].铸造技术,2007,28(3):417-420.
    [23]段志伟,张振忠,江成军,等.直流电弧等离子体法制备超细Ag粉研究[J].铸造技术,2007,28(1):23-26.
    [24]颜秀文,丘泰,李良峰,等.纳米Ag-Cu-In-Sn合金粉末的制备及其热分析[J].稀有金属材料与工程,2008,37(2):330-333.
    [25] Wei Z Q, Xia T D, Ma J, et al. Investigation of the lattice expansion for Ni nanoparticles[J].Materials Characterization,2007,58:1019-1024.
    [26] Wei Z Q, Qiao H X, Yang H, et al. Characterization of NiO nanoparticles by anodic arc plasmamethod[J]. Journal of Alloys and Compounds,2009,479:855-858.
    [27] Wei Z Q, Xia T D, Ma J, et al. Processing parameters for Cu nanopowders prepared by anodic arcplasma[J]. Transactions of Nonferrous Metals Society of China,2007,17:128-132.
    [28]魏智强,夏天东,姜金龙,等.约束弧等离子制备铝纳米粉体的研究[J].稀有金属材料与工程,2007,36(9):1677-1680.
    [29] Zhang Z Z, Zhou S, Chen Z C. Preparation and morphology of single crystal α-Al2O3nanoparticles by combustion chemical deposition[J]. Procedia Engineering,2012,27:1284-1291.
    [30] Cha H G, Kim C W, Kim Y H, et al. Preparation and characterization of α-Fe2O3nanorod-thin filmby metal–organic chemical vapor deposition[J]. Thin Solid Films,2009,517:1853-1856.
    [31] Lin H T, HuangJ L, Wang S C, et al. Preparation of nano-scale Cr3C2particles dispersed onalumina particles by MOCVD in fluidized reactor and carbothermal treatment[J]. Journal ofAlloys and Compounds,2006,417:214-219.
    [32] Sun W, Xiong X, Huang B Y, et al. Preparation of ZrC nano-particles reinforced amorphouscarbon composite coating by atmospheric pressure chemical vapor deposition[J]. Applied SurfaceScience,2009,255:7142-7146.
    [33] Yazdani A, Soltanieh M, Aghajani H, et al. A new method for deposition of nano sized titaniumnitride on steels[J]. Vacuum,2011,86:131-139.
    [34] Wu G M, Yen C C, Tsai B H, et al. Preparation and characterization of GaN photonic crystal arraysby focused ion beam technology[J]. Surface&Coatings Technology,2011,206:801-805.
    [35] Sawai O, Oshima Y. Deposition of silver nano-particles on activated carbon using supercriticalwater[J]. The Journal of Supercritical Fluids,2008,47:240-246.
    [36] Liu J C, Ikushima Y, Shervani Z. Environmentally benign preparation of metal nano-particles byusing water-in-CO2microemulsions technology[J]. Current Opinion in Solid State and MaterialsScience,2003,7:255-261.
    [37] Wang B, Yan J, Cui H P, et al. Preparation and characterization of nano TiO2/micron Cr2O3composite particles[J]. Journal of Alloys and Compounds,2011,509:5017-5019.
    [38] Prajapati C S, Sahay P P. Alcohol-sensing characteristics of spray deposited ZnO nano-particle thinfilms[J]. Sensors and Actuators B,2011,160:1043-1049.
    [39] Deng X Y, Chen Z. Preparation of nano-NiO by ammonia precipitation and reaction in solutionand competitive balance[J]. Materials Letters,2004,58:276-280.
    [40] Su J, Zhang Q L, Shao S F, et al. Preparation and Chatactelization of Y3Sc2Ga3O12Nano-Polycqstalline Powden by Co-Precipitation Method[J]. Journal of rare metals,2007,25:302-305.
    [41] Song M R, Chen M, Zhang Z J. Preparation and characterization of Mg nanoparticles[J]. MaterialsCharacterization,2008,59:514-518.
    [42] Ntulia F, Lewis A E. Kinetic modeling of nickel powder precipitation by high-pressure hydrogenreduction[J]. Chemical Engineering Science,2009,64:2202-2215.
    [43]姚惠龙,林涛,罗骥.化学共沉淀法制备钨铜合金[J].稀有金属材料与工程,2009,38(2):348-352.
    [44]吴刚强,郎中敏,赫文秀,等.化学沉淀法制备纳米粉体过程防团聚技术研究进展[J].化学与生物工程,2009,26(7):5-7.
    [45] Seyyed M H, Fatemeh M, Mohammad P T, et al. The effect of heat treatment process on structureand properties of ZnO nano layer produced by sol–gel method[J]. Materials Science inSemiconductor Processing,2010,13:267-271.
    [46] Sobhani M, Rezaie H R, Naghizadeh R. Sol–gel synthesis of aluminum titanate (Al2TiO5)nano-particles[J]. Journal of Materials Processing Technology,2008,206:282-285.
    [47] Hu J H, Zhang C L, Cui B H, et al. In vitro degradation of AZ31magnesium alloy coated withnano TiO2film by sol–gel method[J]. Applied Surface Science,2011,257:8772-8777.
    [48] You Y, Zhang S Y, Wan L, et al. Preparation of continuous TiO2fibers by sol–gel method and itsphotocatalytic degradation on formaldehyde[J]. Applied Surface Science,2012,258:3469-3474.
    [49] Garskaite E, Lindgren M, Einarsrud M A, et al. Luminescent properties of rare earth (Er, Yb)doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–geltechnique[J]. Journal of the European Ceramic Society,2010,30:1707-1715.
    [50] Andrievski R A. Stability of nanostructured materials[J]. Journal of Materials Science,2003,38:1367-1375.
    [51] Murty B S, Datta M K, Pabi S K. Structure and thermal stability of nanocrystalline materials[J].Sadhana,2003,28:23-45.
    [52]李伟,刘平,马凤仓,等.纳米材料晶粒生长理论的研究进展[J].材料导报,2010,24(12):112-115.
    [53] Liu F, Chen Z, Yang W, et al. Thermodynamics of nano-scale grain growth[J]. Materials Scienceand Engineering A,2007,457:13-17.
    [54] Millett Paul C, Selvam R P, Saxena A. Stabilizing nanocrystalline materials with dopants[J]. ActaMaterialia,2007,55:2329-2336.
    [55] Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe–Zralloys[J]. Materials Science and Engineering A,2010,527:3572-3580.
    [56] Brook R J. Pore-grain boundary interactions and grain growth[J]. Journal of the American CeramicSociety,1969,52(1):56–57.
    [57]吴志方,曾美琴.纳米晶材料的晶粒长大[J].金属功能材料,2005,12(3):31-34.
    [58] Knauth P, Chara A, Gas P. Grain growth of pure nickel and of a Ni-Si solid solution studied bydifferential scanning calorimetry on nanometer-sized crystals[J]. Scripta Metallurgica et Materialia,1993,28(3):325-330.
    [59] Xiao C H, Mirshams R A, Whang S H, et al. Tensile behavior and fracture in nickel and carbondoped nanocrystalline nickel[J]. Materials Science and Engineering A,2001,301:35-43.
    [60] Malow T R, Koch C C. Grain growth in nanocrystalline iron prepared by mechanical attrition[J].Acta Materialia,1997,45(5):2177-2186.
    [61] Natter H, Loffler M S, Krill C E, et al. Crystallite growth of nanocrystalline transition metalsstudied in situ by high temperature synchrotron X-ray diffraction[J]. Scripta Materialia,2001,44:2321-2325.
    [62] Gottstein G, Ma Y, Shvindlerman L S. Triple junction motion and grain microstructure evolution[J].Acta Materialia,2005,53:1535-1544.
    [63] Gottstein G, Shvindlerman L S. A novel concept to determine the mobility of grain boundaryquadruple junctions[J]. Scripta Materialia,2005,52:863-866.
    [64] Gottstein G, Shvindlerman L S. Triple junction drag and grain growth in2D polycrystals[J]. ActaMaterialia2002,50:703-713.
    [65] Von Neumann J. In: Metal interfaces. American Society for Testing Materials, Cleveland,1952:108-110.
    [66] Mullins W W. Two-dimensional motion of idealized grain boundaries[J]. Journal of AppliedPhysics,1956,27:900-904.
    [67] Jafari M, Enayati M H, Abbasi M H, et al. Thermal stability and structural changes during heattreatment of nanostructured Al2024alloy[J]. Journal of Alloys and Compounds,2009,478:260-264.
    [68] Vyas A, Rao K P, Prasad Y V. Mechanical alloying characteristics and thermal stability of Ti–Al–Siand Ti–Al–Si–C powders[J]. Journal of Alloys and Compounds,2009,475:252-260.
    [69] Shaw L, Luo H, Villegas J, et al. Thermal stability of nanostructured Al93Fe3Cr2Ti2alloysprepared via mechanical alloying[J]. Acta Materialia,2003,51:2647-2663.
    [70] Zou C D, Gao Y L, Yang B, et al. Melting and solidification properties of the nanoparticles ofSn3.0Ag0.5Cu lead-free solder alloy[J]. Materials Characterization,2010,61:474-480.
    [71] Carvalho E A, Carmo A P, M, Bell J V, et al. Optical and thermal investigation of GeO2–PbO thinfilms doped with Au and Ag nanoparticles[J]. Thin Solid Films,2012,520:2667-2671.
    [72]郝凌云,张宏.磁性纳米粒子的合成及应用研究进展[J].金陵科技学院学报,2011,27(2):11-22.
    [73] Algar W R, Massey M, Krull U J. The application of quantum dots, gold nanoparticles andmolecular switches to optical nucleic-acid diagnostics[J]. Trends in Analytical Chemistry,2009,28(3):292-306.
    [74] Liang J G, He Z K, Zhang S S, et al. Study on DNA damage induced by CdSe quantum dots usingnucleic acid molecular “light switches” as probe[J]. Talanta,2007,71:1675-1678.
    [75] Bhatia D, Sharma S, Krishnan Y. Synthetic, biofunctional nucleic acid-based molecular devices[J].Current Opinion in Biotechnology,2011,22(4):475-484.
    [76] Tsonis P A, Dwivedi B. Molecular mimicry: Structural camouflage of proteins and nucleic acids[J].Biochimica et Biophysica Acta,2008,1783:177-187.
    [77] Neuberger T, Schopf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedicalapplications: Possibilities and limitations of a new drug delivery system [J]. Journal of Magnetismand Magnetic Materials,2005,293:483-496.
    [78] Hiergeist R, AndraK W, Buske N, et al. Application of magnetite ferro#uids for hyperthermia [J].Journal of Magnetism and Magnetic Materials,1999,20:420-422.
    [79] Bedford R B, Betham M, Bruce D W, et al. Iron nanoparticles in the coupling of alkyl halides witharyl Grignard reagents[J]. Chemical Communications,2006,1398-1400.
    [80] Gautam Y K, Chawla A K, Khan S A, et al. Hydrogen absorption and optical properties ofPd/Mg thin films prepared by DC magnetron sputtering[J]. International Journal of HydrogenEnergy,2012,37:3772-3778.
    [81] Liu J, FengY B, Qiu T. Synthesis, characterization and microwave absorption properties of Fe–40wt%Ni alloy prepared by mechanical alloying and annealing[J]. Journal of Magnetism andMagnetic Materials,2011,323:3071-3076.
    [82] Hosseini S H, Mohseni S H, Asadnia A, et al. Synthesis and microwave absorbing properties ofpolyaniline/MnFe2O4nanocomposite[J]. Journal of Alloys and Compounds,2011,509:4682-4687.
    [83]张存瑞,李巧玲,李保东,等.铁氧体/高分子复合纳米吸波材料的研究进展[J].中国粉体工业,2009,(2):16-20.
    [84] Yang W H, Yu S H, Sun R, et al. Effects of BaTiO3and FeAlSi as fillers on the magnetic, dielectricand microwave absorption characteristics of the epoxy-based composites[J]. CeramicsInternational,2012, Available online at www. Sciencedirect. com.
    [85] Yang Y Q, Qi S H, Zhang X X, et al. Preparation and microwave absorbing property ofsilver-coated graphite nanosheet NanoG with Pyrrole[J]. Materials Letters,2012,66:229-232.
    [86]李海燕,张世珍,桂林,等.新型纳米吸波材料研究进展[J].现代涂料与涂装,2010,13(7):25-27.
    [87] Dutta D, Borah B J, Saikia L, et al. Synthesis and catalytic activity of Ni°-acid activatedmontmorillonite nanoparticles[J]. Applied Clay Science,2011,53:650-656.
    [88] Redel E, Kr mer J, Thomann R, et al. Synthesis of Co, Rh and Ir nanoparticles from metalcarbonyls in ionic liquids and their use as biphasic liquid–liquid hydrogenation nanocatalysts forcyclohexene[J]. Journal of Organometallic Chemistry,2009,694:1069-1075.
    [89] Brock S L, Senevirathne K. Recent developments in synthetic approaches to transition metalphosphide nanoparticles for magnetic and catalytic applications[J]. Journal of Solid StateChemistry,2008,181:1552-1559.
    [90] Macanása J, Ouyang L, Bruening M L, et al. Development of polymeric hollow fiber membranescontaining catalytic metal nanoparticles[J]. Catalysis Today,2010,156:181-186.
    [91] Papageorgiou S K, Favvas E P, Sapalidis A A., et al. Facile synthesis of carbon supported coppernanoparticles from alginate precursor with controlled metal content and catalytic NO reductionproperties[J]. Journal of Hazardous Materials,2011,189:384-390.
    [92] Polisski S, Goller B, Wilson K, et al. In situ synthesis and catalytic activity in CO oxidation ofmetal nanoparticles supported on porous nanocrystalline silicon[J]. Journal of Catalysis,2010,271:59-66.
    [93]胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006(2):361.
    [94]李茸,刘祥萱,王煊军.纳米金属催化机理[J].化学推进剂与高分子材料,2007,5(6):9-13.
    [95] Haralambous K J, Loizos Z, Spyrellis N. Catalytic properties of some mixed transition-metaloxides[J]. Materials Letters,1991,11(3-4):133-141.
    [96] Maniak G, Stelmachowski P, Zasada F, et al. Guidelines for optimization of catalytic activity of3dtransition metal oxide. catalysts in N2O decomposition by potassium promotion[J]. CatalysisToday, Available online14December2010.
    [97] Pramanik A, Abbina S, Das G. Molecular, supramolecular structure and catalytic activity oftransition metal complexes of phenoxy acetic acid derivatives[J].Polyhedron,2007,26:5225-5234.
    [98] Liang H, Nishide K, Ito S, et al. Preparation, properties, and catalytic activity of transition-metalcomplexes containing a ligated2-methyl-3,3-diphenyl-1,3-diphosphapropene skeleton[J].Tetrahedron Letters,2003,44:8297-8300.
    [99]于成伟.纯金属纳米材料制备及性能的尺寸研究[D].北京:北京工业大学,2009:1-2.
    [100] Dhayal M, Sharma S D, Kant C, et al. Role of Ni doping in surface carbon removal and photocatalytic activity of nano-structured TiO2film[J]. Surface Science,2008,602:1149-1154.
    [101] Chiu S C, Li Y Y. SiC nanowires in large quantities: Synthesis, band gap characterization, andphotoluminescence properties[J]. Journal of Crystal Growth,2009,311:1036-1041.
    [102] Kim J S, Rabbani M M, Kim D M, et al. Structural and electrochemical properties ofgold-deposited carbon nanotube composites[J]. Current Applied Physics,2010,10: S201-S205.
    [103] He Z Q, Wang C, Wang H Y, et al. Increasing the catalytic activities of iodine doped titaniumdioxide by modifying with tin dioxide for the photodegradation of2-chlorophenol under visiblelight irradiation[J]. Journal of Hazardous Materials,2011,189:595-602.
    [104] Cong Y, Zhang J L, Chen F, et al. Preparation, photocatalytic activity, and mechanism ofnano-TiO2co-Doped with nitrogen and iron (III)[J]. The Journal of Physical Chemistry C,2007,111(28):10618-10623.
    [105] Sahu D, Acharya B S, Panda A K. Role of Ag ions on the structural evolution of nano ZnOclusters synthesized through ultrasonication and their optical properties[J]. UltrasonicsSonochemistry,2011,18:601-607.
    [106]霍静,柳学全,徐萍,等.超细镍粉在加氢催化领域中的研究现状和动态[J].材料导报,2005,19(专辑Ⅴ):141-143.
    [107]孙永安,王晓晖.催化作用原理与应用[M].天津:天津科学技术出版社,2008:92-96.
    [108] Balandin A A. Modern state of the multiplet theor of heterogeneous catalysis[J]. Advances inCatalysis,1969,19:1-210.
    [109] Centi G, Perathoner S. Creating and mastering nano-objects to design advanced catalyticmaterials[J]. Coordination Chemistry Reviews,2011,255:1480-1498.
    [110] Alexandridis P, Tsianou M. Block copolymer-directed metal nanoparticle morphogenesis andorganization[J]. European Polymer Journal,2011,47:569-583.
    [111] Wahab R, Hwang I H, Kim Y S, et al. Non-hydrolytic synthesis and photo-catalytic studies ofZnO nanoparticles[J]. Chemical Engineering Journal,2011,175:450-457.
    [112] Sebastian M, Arun V, Robinson P P, et al. Synthesis, structural characterization and catalyticactivity study of Mn(II), Fe(III), Ni(II), Cu(II) and Zn(II) complexes of quinoxaline-2-carboxalidine-2-amino-5-methylphenol: Crystal structure of the nickel(II) complex[J].Polyhedron,2010,29:3014-3020.
    [113]聂飞龙,魏世成,郑玉峰.三维块体纳米晶材料的制备及应用[J].材料导报,2008,22(11):1-7.
    [114] Eckert J, Dasa J, He G, et al. Ti-base bulk nanostructure-dendrite composites: Microstructure anddeformation[J]. Materials Science and Engineering A,2007,449-451:24-29.
    [115] Pawlik P, Pawlik K, Davies H A., et al. Directly quenched bulk nanocrystalline (Pr, Dy)–(Fe,Co)–B–Zr–Ti hard magnets[J]. Journal of Alloys and Compounds2006,423:99-101.
    [116]郑志军,高岩.块体纳米晶材料的大塑性变形制备技术[J].材料导报,2008,22(1):90-93.
    [117] Segal V M, Reznikov V I, Drobyshevskii, A E, et al. Plastic Working of metals by simple shear[J].Russian Metallurgy,1981,1:99-105.
    [118] Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool forgrain refinement[J]. Progress in Materials Science,2006,51:881-981.
    [119] Xia K, Wu X. Back pressure equal channel angular consolidation of pure Al particles[J]. ScriptaMaterialia,2005,53:1225-1229.
    [120] Fan Z G, Xie C Y. Phase transformation behaviors of Ti-50.9at.%Ni alloy after Equal ChannelAngular Extrusion[J]. Materials Letters,2008,62:800-803.
    [121]董传勇,薛克敏,李琦,等.高压扭转法制备粉末块体超细晶材料[J].浙江科技学院学报,2009,21(3):206-209.
    [122] Zhilyaev A P, Gimazov A A, Raabc G I, et al. Using high-pressure torsion for thecold-consolidation of copper chips produced by machining[J]. Materials Science and EngineeringA,2008,486:123-126.
    [123] Islamgaliev R K, Kazyhanov V U, Shestakova L O, et al. Microstructure and mechanicalproperties of titanium (Grade4) processed by high-pressure torsion[J]. Materials Science andEngineering A,2008,493:190-194.
    [124] Sort J, Zhilyaev A, Zielinska M, et al. Microstructural effects and large microhardness in cobaltprocessed by high pressure torsion consolidation of ball milled powders[J]. Acta Materialia,2003,51:6385-6393.
    [125] Edalati K, Horita Z. Significance of homologous temperature in softening behavior and grain sizeof pure metals processed by high-pressure torsion[J]. Materials Science and Engineering A,2011,528:7514-7523.
    [126] Vafaei R, Toroghinejad M R, Pippan R. Evaluation of mechanical behavior of nano-grained2024Al alloy during high pressure torsion (HPT) process at various temperatures[J]. Materials Scienceand Engineering A,2012,536:73-81.
    [127] Straumal B B, Mazilkin A A, Protasova S G, et al. Fe–C nanograined alloys obtained byhigh-pressure torsion: structure and magnetic properties[J]. Materials Science and Engineering A,2009,503:185-189.
    [128]马垚,周张健,姚伟志,等.放电等离子烧结(SPS)制备金属材料研究进展[J].材料导报,2008,22(7):60-64.
    [129] Zhang Z H, Wang F C, Lee S K, et al. Microstructure characteristic, mechanical properties andsintering mechanism of nanocrystalline copper obtained by SPS process[J]. Materials Science andEngineering A,2009,523:134-138.
    [130] Saravanan P, Rao K S, Sivaprahasam D, et al. Consolidation of FePd nanoparticles by sparkplasma sintering[J]. Intermetallics,2010,18:2262-2265.
    [131] Kim T S, Lee J K, Kim H J, et al. Consolidation of Cu54Ni6Zr22Ti18bulk amorphous alloypowders[J]. Materials Science and Engineering A,2005,402:228-233.
    [132] Ji G, Grosdidier T, Bozzolo N, et al. The mechanisms of microstructure formation in ananostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering[J].Intermetallics,2007,15:108-118.
    [133] Zhao M, Li J C, Jiang Q. Hall–Petch relationship in nanometer size range[J]. Journal of Alloysand Compounds,2003,361:160-164.
    [134] Chen X H, Lu L, Lu K. Grain size dependence of tensile properties in ultrafine-grained Cu withnanoscale twins[J]. Scripta Materialia,2011,64:311-314.
    [135] Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu[J]. ScriptaMaterialia,2006,54:1913-1918.
    [136] Lu L, Schwaiger R, Shan Z W, et al. Nano-sized twins induce high rate sensitivity of flow stressin pure copper[J]. Acta Materialia,2005,53:2169-2179.
    [137] Youssef K M., Scattergood R O, Murty K L, et al. Ultrahigh strength and high ductility of bulknanocrystalline copper[J]. Applied Physics Letters,2005,87:091904.
    [138] Li H Q, Ebrahimi F. Transition of deformation and fracture behaviors in nanostructuredface-centered-cubic metals[J]. Applied Physics Letters,2004,84:4307-4309.
    [139] Wang Y M, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructuredmetal[J]. Acta Materialia,2004,52:1699-1709.
    [140] Krasilnikov Nikolay A, Sharafutdiniv A. High strength and ductility of nanostructured Al-basedalloy, prepared by high-pressure technique[J]. Materials Science and Engineering A,2007,463:74-77.
    [141]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(8):785-789.
    [142] Lu Y L, Liaw P K. The mechanical properties of nanostructured materials[J]. Journal of Metals,2001,53(3):31-35.
    [143]路承杰,张振忠,周剑秋.直流电弧等离子体蒸发法制备纳米Ni粉.新技术新工艺,2007,3:98-99.
    [144]蒋渝.纳米金属粉体材料的氢等离子体制备机理及其润滑减摩特性研究[D].四川:四川大学博士论文,2004:15-16.
    [145]魏智强,夏天东,马军,等.阳极弧等离子体制备镍纳米粉的机理研究[J].稀有金属材料与工程,36(1):211-125.
    [146] Yogamalar R, Srinivasan R, Vinu A, et al. X-ray peak broadening analysis in ZnOnanoparticles[J]. Solid State Communications,2009,149:1919-1923.
    [147] Song A J, Ma M Z, Zhang W G, et al. Preparation and growth of Ni-Cu alloy nanoparticlesprepared by arc plasma evaporation[J]. Materials Letters,2010;64:1229-1231.
    [148]闵乃本.晶体生长的物理基础[M].上海:上海科学技术学出版社,1982:339-341.
    [149]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002:50.
    [150]赵品,谢辅洲,孙振国.材料科学基础教程[M].第三版.哈尔滨:哈尔滨工业大学出版社,2009:146.
    [151] Nichols F A. Theory of grain growth in porous compacts[J]. Journal of Applied Physics,1966,37:4599-4602.
    [152] Sin A, Kopnin E, Dubitsky Y, et al. Performance and life-time behaviour of NiCu–CGO anodesfor the direct electro-oxidation of methane in IT-SOFCs[J]. Journal of Power Sources,2007,164:300-305.
    [153]王智平,肖荣振,朱昌盛,等. Ni-Cu二元合金定向凝固的相场法数值模拟[J].稀有金属材料与工程,2006,35(增刊):369-373.
    [154] Kumar K S, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals andalloys[J]. Acta Materialia,2003,51:5743-5774.
    [155] Duan H Z, Lin X Y, Liu G P, et al. Synthesis of Co nanoparticles and their catalytic effect on thedecomposition of ammonium perchlorate[J]. Chinese Journal of Chemical Engineering,16(2008):325-328.
    [156] Liu L L, Li F S, Tan L H, et al. Catalysis of nano-NiCu composite powder on the pyrolysis of APand AP/HTPB propellant[J]. Journal of Solid Rocket Technology,2007,30:52-56.
    [157] Vicente I, Salagr P, Cesteros Y. Ni nanoparticles supported on microwave-synthesised hectoritefor the hydrogenation of styrene oxide[J]. Applied Catalysis A,2011,408:31-37
    [158] Gurdip S, Kapoora I P S, Dubey S, et al. Effect of mixed ternary transition metal ferritenanocrystallites on thermal decomposition of ammmonium perchlorate[J]. Thermochimica Acta,2008,477:42-47
    [159] Chen L J, Li L P, Li G S. Synthesis of CuO nanorods and their catalytic activity in the thermaldecomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds,2008,464:532–536.
    [160]金谊,朱以华,杨晓玲,等.以胶体晶为模板溶胶凝胶法制备二氧化钛掺铈反蛋白石结构[J].非金属矿,2007,30(3):15-18.
    [161] Liu L L, Li F S, Tan L H, et al. Effects of metal and composite nanopowders on the thermaldecomposition of ammonium perchlorate (AP) and the ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) composite solid propellant[J].Chinese Journal ofChemical Engineering,2004,12(4):595-598.
    [162] Shalini C, Pragnesh N D. A review on the use of nanometals as catalysts for the thermaldecomposition of ammonium perchlorate[J]. Journal of Saudi Chemical Society,30May2011,Available online.
    [163]阮艳莉,唐致远. LiFePO4的合成及其热分析动力学[J].物理化学学报,2008,24(5):873-879.
    [164]甄开吉,王国甲,毕颖丽,等.催化作用基础[M].第三版.北京:科学出版社,2005:69.
    [165] McCarthy P W, Whitehead H M. Decomposition and combustion of ammonium perchlorate.Chemical Reviews,1969,69(4):551–590
    [166] Jacobs P W M, Galwey A K. Thermal decomposition of ammonium perchlorate at lowTemperature. Proceedings the Royal of society A,1960,254:455464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700