窑尾预分解系统热态流场的数值模拟算法与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型干法水泥生产技术是目前国际上最先进的水泥生产技术,已达到日产万吨规模。进几年来,两档支撑短窑技术(L/D:10.5~12.5)相对于长窑技术(L/D:14~17)具有低能耗、高运转率、易操作等优势成为世界各大水泥技术集团的青睐,成快速发展势头。短窑技术的发展对预分解系统的性能指标,尤其是入窑生料的分解率,提出了更高的要求。尽管近些年来我国水泥工业取得了较大的发展,但在热耗、电耗、污染物排放等方面同国际先进水平仍存在较大的差距,如国际先进水平的单位质量熟料热耗约680kcal,我国720kcal。预分解系统是实现节能、降耗、减少污染物排放的关键系统,因此开展预分解系统热态流场的研究不仅能促进我国短窑技术的发展,增强我国水泥技术的国际竞争力,而且对实现我国水泥工业节能、降耗、清洁生产发展目标也具有重要的现实意义。
     本文基于预分解系统流场的国内外研究现状,同时结合赞比亚拉法基CHILANGA 2000t/d生产线的生产调试工作,首次实现了预分解系统热态流场的研究,解决了系统流场研究中必须解决若干关键问题,如旋风筒灰斗出口边界算法等,主要研究内容如下:
     (1)采用组分传输的方法实现了分解炉内煤粉燃烧的研究,并为此建立了基于煤的工业分析、元素分析结果研究煤挥发份化学式的方法。
     (2)在前人的研究成果基础上,完善和发展了分解炉内生料在悬浮态下的生料分解模型,并基于工程试验生产线的化验室条件和生料分解模型,研究得到了以“高温炉-电子天平-秒表”为主要测试仪器的生料分解动力学参数试验方法,克服了水泥生产线化验室不配备热重分析(TGA)天平的客观条件。
     (3)基于CFD(Computation Fluid Dynaimcs)商用软件Fluent6.3的多相流动程序结构和生料分解数值解析模型,采用多相组分传输的方法,二次开发研究得到了生料分解反应的数值求解算法及程序,实现了分解炉内煤粉燃烧-生料分解耦合流场的研究,并得到了工程试验数据的检验,取得了较好的吻合性。
     (4)通过深入分析旋风筒灰斗出口气固两相的实际流动过程,研究得到了旋风筒灰斗出口边界算法,并借助于Fluent多相流动的程序结构,二次开发研究得到了基于灰斗出口气固流动实际过程的旋风筒收尘效率求解算法。采用“欧拉-欧拉”方法研究了旋风筒内气固两相流动过程,首次实现了基于旋风筒灰斗出口气固流动实际过程的旋风筒收尘效率研究,并得到了试验数据的有力验证。
     (5)在旋风筒气固两相流动和收尘效率研究的基础上,首次研究得到了基于旋风筒内完全气固流动过程和严密热平衡理论的旋风筒换热效率研究方法,对建立预热器换热效率的研究方法奠定了重要的理论基础。
     (6)根据预热器系统的工艺过程,在旋风筒内气固两相流动研究的基础上,研究得到了预热器系统气固两相流场求解算法,国内外首次实现了预热器系统气固两相流场的研究,并在此基础上,研究得到了基于预热器内完全气固流动过程的预热器换热效率研究方法,该方法彻底摆脱了工程上以C1出口温度定性评估预热器换热效率的不足,也克服了预热器对环境散热的不确定性对换热效率计算的制约,不仅能定量评估同一个预热器在不同工况条件下的换热效率,而且可以定量评估不同系列、不同规格、不同型号的预热器之间的换热效率的高低。因此,该方法不仅可以指导预热器的工业生产实践,优化操作工艺参数,而且可以直接用于指导预热器的开发设计工作。
     (7)结合中材建设有限公司(CBMI)的拉法基永川5000t/d总包项目,采用本文的分解炉流场研究方法首先对该生产线分解炉的初始设计方案进行了数值模拟研究,并针对模拟结果中的不合理之处提供了优化改进方案;其次,基于改进方案再次进行耦合流场的数值模拟研究,取得了较为合理的流场分布,为该分解炉的设计工作提供了重要的理论指导。
and research results in this dissertation are decribed as the following:
     (1) Species transport method is adopted to simulate the combustion process inside calciner by developing the method of deducing the molecular formula of coal volatile matters based on the proximate analysis of coal and ultimate analysis of coal.
     (2) Based on the previous research works all over the world, the decomposition model of raw meal particle suspained in calciner is studied and developed. The chemical kinetic parameters test method of raw meal decomposition is developed by using high temperature furnace, electronic balance and stopwatch as main test instruments according to the practical condition on the spot, overcoming the difficulty that thermal gravity analysis (TGA) blance is not equipped at production line labouratory.
     (3) Based on multiphase flow program hierarchy of CFD commercial software(Fluent6.3) and the numerical analytical model of raw meal decomposition, multiphase species transport method is adopted to further develop the numerical solution programe of raw meal decomposition, which realizes the coupled flow field study of coal combustion - raw meal decomposition inside calciner. A good consistency is achieved by comparing simulation data with engineering test data from production line.
     (4) The boundary condition algorithm of cyclone ash outlet is achieved by deep analysising the practical gas-solid flow processes happen in cyclone ash outlet and ash discharge pipe, and then the dust collection efficiency numerical solution programe is developed with the help of multiphase flow program hierarchy of Fluent. "Euler-Euler" method is adopted to simulate the gas-solid multiphase flow inside cyclone, and the study of cyclone dust collection efficiency that is based on the practical gas-solid flow processes in ash outlet is simultaneously realized for the first time, which is convincingly proved by test data.
     (5) On the basis of finishing the studies of cyclone gas-solid two phase flow and dust collection efficiency, the study of cyclone heat exchanging efficiency is realized that is based on the thorough multiphase flow inside cyclone and rigorous heat balance principle, which lays the important theoretical foundation for establishing the research method of preheater heat exchanging efficiency.
     (6) According to the technics process of preheater system, the solution algorithm of gas-solid two phase flow field inside preheater is developed, and then the study of gas-solid two phase flow field inside preheater is realized for the first time all over the world. On the basis of the study of preheater gas-solid two phase flow field, the research method of preheater heat exchanging efficiency is developed that is based on the thorough gas-solid flow process inside preheater. This kind of preheater heat exchanging efficiency research method thoroughly breaks away from the disadvantages that use C1 outlet temperature to approximately evaluate the heat exchanging efficiency of preheater in engineering, and also overcomes the restriction that is difficult to calculate the heat exchanging efficiency due to the indetermination of prheater heat loss to the outside, therefore it can not only calculate the heat exchanging efficiency of the same preheater at different woking conditions, but also can do those of preheaters with different series, size, and type. As a result, this research method of preheater heat exchanging efficiency can not only guide the industry production practice of preheater, optimizing some operation parameters, but also can be directly used to aid the preheater's development and design work.
     (7) Aiming at CBMI general contract project of Larfage Yong Chuan 5000t/d production line, firstly, by using the research method of calciner flow field in this dissertation, the numerical simulation is carried out for the calciner initially designed for this production line, and then some corresponding optimization schemes are put forward for the unreasonable flow characters from the simulation results; secondly, based on the optimized shceme, the coupled flow field is simulated again for the optimized calciner and achieves more reasonable flow field distribution, which provides important theoretical guide for the design work of the calciner in this production line.
引文
[1]范金和,李辉,崔元声.中国水泥工业发展状况.水泥技术,2008(5):19-22
    [2]黄之初,谢丹.利用利用“生态水泥技术”推进城市垃圾资源化处理.国外建材科技,2003.24(3):6-8
    [3]陈全德,崔源声.传统水泥工业不可持续发展的因素与中国水泥工业的可持续发展对策.新世纪水泥导报,2002(1):1-3
    [4]胡晶琼,江可中,蔡玉良.循环经济视角下的水泥工业和垃圾处理产业的“双赢”选择.产业观察,2007:181-187
    [5]陈思维.窑尾预分解系统冷模试验及其流场的数值模拟研究:[博士学位论文].武汉:武汉理工大学,2005
    [6]陈 钰,陈延信,徐德龙.涡壳式旋风预热器单体三维气相场的数值模拟.西安建筑科技大学学报(自然科学版),2007.39(1):105-109
    [7]陈作炳,李德峰,豆海建,卢海波.减阻板对五级旋风预热器冷模系统流场的影响.煤矿机械,2006.27(2):249-251
    [8]彭学平,陶从喜.旋风预热器阻力特性机理的研究.水泥,2008(6):13-15
    [9]陈作炳,李硕,李丽君.用DPM模型模拟预热器内两相流场研究.机械工程与自动化,2007(2):51-55
    [10]陈钰.旋风预热器单体数值模拟.[硕士学位论文].西安:西安建筑科技大学,2006
    [11]朱鹰.预热器旋风筒气固两相流场的研究.[硕士学位论文].武汉:武汉理工大学,2007
    [12]陈作炳,李波,豆海建等.基于Fluent的旋风预热器模型热态性能的数值分析.水泥工程,2008(2):15-18
    [13]魏平,王晓峰.旋风预热器结构形式的改进.水泥技术,2006(3):51-53
    [14]B.Wang,D.L.XU,K.W.CHU,A.B.YU.Numerical study of gas-solid flow in a cyclone separator.Applied Mathematical Modeling,2006.30:1326-1342
    [15]李昌勇,金春强.新型低阻高效顶级旋风预热器的开发研究.新世纪水泥导报,2000(2):29-31
    [16]余超,徐讯.旋风预热器窑预热过程仿真模型的研究.新世纪水泥导报,2002(3):20-23
    [17]夏国涛,李志,徐德龙.旋风预热器预热过程的模拟研究.海南大学学报自然科学版,2005.23(3):242-246
    [18]余超,徐讯,谭克峰.旋风预热器预热过程数值模拟试验研究.西南工学院学报, 2002.16(2):9-13
    [19]张礼华.旋风预热器阻力损火的构成及其影响冈素.新世纪水泥导报,2004(4):5-7
    [20]#12
    [21]陈建议,罗晓兰,时铭显.PV2E型旋风分离器性能试验研究.流体机械,2004.32(3):1-4
    [22]林玮,王乃宁.旋风分离器内三维两相流场的数值模拟.动力工程,1999.19(1):72-76
    [23]管伟,时铭显.旋风分离器性能计算方法的优选.石油规划设计,2006.17(1):30-34
    [24]管伟,时铭显.旋风分离器排灰与进排气系统对分离性能的影响.石油化工设备技术,2005.26(4):26-29
    [25]易 林,王灿星.螺旋型旋风分离器两相流场的数值模拟.应用数学和力学,2006.27(2):223-228
    [26]L.Ma,H D.B.Inghamst and X.Wens.NUMERICAL MODELLING OF THE FLUIDAND PARTICLE PENETRATION THROUGH SMALL SAMPLING CYCLONES.J.Aerosol Sci.2000.31(9):1097-1119
    [27]H.F.Meier,M.Mori.Gas-solid Flow in cyclones:Eulerian-Eulerian approach.Comupters Chem.Engng,1998.22 Suppl.:s641-s644
    [28]W.D.Griffiths,F.Boysan.COMPUTATIONAL FLUID DYNAMICS(CFD) AND IMPIRICAL MODELING OF THE PERFORMANCES OF A NUMBER OF CYCLONE SAMPLERS.J.Aerosol Sci.1996.27(2):281-304
    [29]A.J.Hoekstra,J.J.Derksen,H.E.A.Van Den Akker.An experimental and numerical study of turbulent swirling flow in gas cyclones.Chemical Engineering Science,1999.54:2055-2065
    [30]C.H.Kim,Jin W.Lee.A new collection efficiency model for small cyclones considering the boundary-layer effect.Aerosol Science,2001.32:251-269
    [31]A.Avci,I.Karagoz.A Mathematical Model for the Determination of a Cyclone Performance.Int.Comm.Heat Mass Transfer,2000.27(2):263-272
    [32]L.MA,D.B.INGHAM,X.WEN.Numerical Predictions of the Performance of Small Sampling Cyclones.J.Aerosol Sci.2000.29(Suppl.1):s329-s330
    [33]Atakan Avci,lrfan Karagoz.Effects of flow and geometrical parameters on the collection efficiency in cyclone separators.Aerosol Science,2003.34:937-955
    [34]W.Penga,A.C.Hoffmannb,P.J.A.J.Bootc,A.Uddingc,H.W.A.Driesd,A.Ekkerd,J.Katerd.Flow pattern in reverse-flow centrifugal separators.Powder Technology,2002.127:212- 222
    [35]Li Xiaodong,Yah Jianhua,Cao Yuchun,Ni Mingjiang,Cen Kefa.Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator.Chemical Engineering Journal,2003.95:235-240
    [36]A.Avci,I.Karagoz.Theoretical Investigation of Pressure Losses in Cyclone Separators.Int.Comm.Heat Mass Transfer,2001.28(1):107-117
    [37]陈涛.CDC预热预分解系统.水泥工程,2006.(3):55
    [38]崔少俊.CDC预热分解系统在5000t/d生产线的应用.中国水泥,2006.(4):56-60
    [39]黄来,陆继东,李卫杰,胡芝娟,王世杰,肖贤云.分解炉中NO生成模拟与优化.化工学报,2006.57(11):2624-2630
    [40]孙芹先.高效低能耗环保型5500t/d水泥熟料生产线技术与装备研究综述.中国建材,2006.(12):74-77
    [41]夏福明,谢峻林,刘长江,梅书霞.不同品质煤的着火动力学参数研究.武汉理工大学学报,2006.28(1):38-40
    [42]陆雷,吴国芳,简淼夫,李吕勇,考宏涛,周勇敏.带Pyrotop的Pyroclon分解炉内物料停留时间的在线热态测试.水泥,2006.28(1):38-40
    [43]梅书霞,谢峻林,夏福明,刘长江.分解炉内不同煤质煤粉燃烧的数值模拟.武汉理工大学学报,2005.27(8):20-22
    [441]王家楣,肖国权.分解炉内煤粉燃烧和CaCO3分解流场的数值模拟.海军工程大学学报,2005.17(2):8-11
    [45]王家楣,肖国权.分解炉内气固两相流场不同模型模拟结果分析.海军工程大学学报,2005.17(3).5-8
    [46]郑建祥,刘文铁,赵云华,赵修建,陆慧林.分解炉内气固两相流动特性的数值模拟.硅酸盐学报,2005.33(7):853-858
    [47]谢峻林,梅书霞,衣明辉.煤粉在分解炉内燃烧机理的数值模拟研究.煤炭科学技术,2005.33(5):48-51
    [48]胡芝娟,刘志江,王世杰,狄东仁.煤焦燃烧生成NO的特性研究.化学工程,2006.34(2):16-19
    [49]李相国,马保国,王信刚,蹇守卫.喷腾分解炉内流场优化的数值仿真研究.水泥技术,2006.(1):51-54
    [50]叶旭初,李祥东,胡道和.喷旋管道式分解炉内燃烧、分解过程的CFD模拟.南京工业大学学报,2006.28(1):62-66
    [51]王家楣,肖国权,谢峻林.水泥分解炉物料口何置对炉内两相流场的影响.武汉理工大学学报,2005.27(5):53-55
    [52]酒少武,肖国先,陈延信.水泥分解炉中石灰石分解特性的数值研究.西安建筑科技大学学报(自然科学版),2006.38(1):47-53
    [53]冯 云,陈延信.碳酸钙的分解动力学研究进展.硅酸盐通报,2006.25(3):140-145
    [54]郑瑛,陈小华,周英彪等.CaCO3分解动力学的热重研究.华中科技大学学报(自然科学版),2002.30(8):71-72
    [55]王世杰,陆继东,周 琥等.石灰石颗粒分解的动力学模型研究.工程热物理学报,2003.24(4):699-702
    [56]王世杰,陆继东,胡芝娟等.水泥生料分解动力学的研究.硅酸盐学报,2003.31(8):811-814
    [57]郑瑛,陈小华,周英彪等.CaCO3分解机理和动力学参数的研究.华中科技大学学报(自然科学版),2002.32(12):86-88
    [58]谢建云,傅维标.碳酸钙颗粒煅烧过程的统一数学模型.燃烧科学与技术,2002.8(3):270-274
    [59]黄来,陆继东,任合斌,刘志江,狄东仁,胡芝娟.旋喷结合分解炉的数值模拟.化工学报,2005.56(5):829-834
    [60]张大康.选择性非催化还原法降低NOx在水泥工业中的应用.环境保护科学,2006.32(5):23-26
    [61]蔡玉良,丁苏东,叶旭初,胡道和.预分解系统单体模拟与实践应用.中国水泥2005.(7):43-48
    [62]胡芝娟.分解炉氮氧化物转化机理及控制技术研究.[博士学位论文].武汉:华中科技大学,2004
    [63]李相国.预分解系统内流动、燃烧与分解的研究与数值模拟.[博士学位论文].武汉:武汉理工大学,2006
    [64]胡芝娟,刘志江,陆继东,狄东仁,刘瑞芝,王世杰.不同煤质煤焦燃烧模型的研究.硅酸盐学报,2004.32(3):306-310
    [65]徐璋.超细粉再燃降低NOx排放的热态试验与数值模拟.[博士学位论文].杭州:浙江大学,2003
    [66]齐灵水.仿真技术在新型干法水泥窑系统中的应用.[硕士学位论文].南京:南京工业大学,2003
    [67]李昌军.分解炉内可视化及优化设计研究.[硕士学位论文].武汉:华中科技大学,2004
    [68]肖国全.分解炉内伴有燃烧、化学反应的两相湍流流动的数值模拟.[硕士学位论文].武汉:武汉理工大学,2005
    [69]李祥东.分解炉内燃烧与分解的CFD技术应用研究.[硕士学位论文].南京:南京工业大学,2005
    [70]黄来,陆继东.分解炉中气体成分分布的数值模拟.化工学报,2004.55(7):1161-1167
    [71]何峰,谢俊琳.分解炉中水泥生料对媒燃烧过程的作用.新世纪水泥导报,2003(3):18-20
    [72]赵伶玲,周强泰.旋流燃烧器的稳燃烧及其结构优化分析.动力工程,2006.26(1): 74-80
    [73]王凯.降低燃气电厂NOx排放方法的数值模拟与比较.[硕士学位论文].呼和浩特:内蒙古工业大学,2005
    [74]牛志刚.煤、水煤浆燃料氮析出特性和燃料型NOx生成特性研究.[博士学位论文].杭州:浙江大学,2004
    [75]胡芝娟,刘志江,王世杰.模拟分解炉中煤焦燃烧生成NO的特性.化工学报,2005.56(3):545-550
    [76]黄来,陆继东,胡芝娟,吴君棋.旋喷结合分解炉内流场的数值模拟.燃烧科学与技术,2003.9(3):274-279
    [77]Lai Huang,Jidong Lu,Fan Xia,Weijie Li,Hebin Ren.3-D mathematical modeling of an in-line swirl-spray precalciner.Chemical Engineering and Processing,2006.vol.45:204-213
    [78]John S.Salmento,Robert E.Shenk.Accurately Predicting Cement Plant Emissions.IEEE,2004:333-343
    [79]Brian P.Keefe,Robert E.Shenk.An Innovative Solution for Waste Utilization.IEEE,2003:197-206
    [80]Robert E.Shenk,FLSmidth Inc..Balancing the Desire to Reduce Operating Costs with Increasing Stringent Emission Rates.IEEE,2006:306-315
    [81]A.Bashir,M.M.Awais and S.Shamail.CFD Based Combustion Modeling for Industrial Scale Combustors.IEEE,2004:547-552
    [82]Che-Ming WU,Chun-I LIN.Decomposition of Calcium Carbonate in the Temperature Range 1180-1153K.IEEE,2004:547-552
    [83]Zheng Jianxiang,Lu Huilin,Sun Xiaoquan,He Yurong,Ding Jianmin,and Wang Shuyan.Hydrodynamic Modeling of Gas-Particle Flows in D-D Calciners.Ind.Eng.Chem.Res.2005.44:3033-3041
    [84]Geoffrey H.Conroy.Hydrodynamic Industrial Application and Results of Low NOx Precalciner Systems.IEEE,1997:297-318
    [85]I.Iliutaa,K.Dam-Johansena,L.S.Jensenb.Mathematical modeling of an in-line low-NOx calciner.Chemical Engineering Science,2002.57:805-820
    [86]Marcio A.Martins,Leandro S.Oliveira,Adriana S.Franca.Modeling and Simulation of Petroleum Coke Calcination in Rotary Kilns.Fuel,2001.80:1611-1622
    [87]I.Iliutaa,K.Dam-Johansena,A.Jensena,L.S.Jensenb.Modeling of in-line low-NOx calciners-a parametric study.Chemical Engineering Science,2002.57:789-803
    [88]Kaustubh S.Mujumdar,Amit Arora,and Vivek V.Ranade.Modeling of Rotary Cement Kilns:Applications to Reduction in Energy Consumption.Ind.Eng.Chem.Res.2006.45:2315-2330
    [89]OVE LARS JEPSEN,STEVEN W.MILLER.NEW GENERATION OF LOW NOx CALCINERS.IEEE,2006:281-295
    [90]Lai Huang,Jidong Lu,Zhijuan Hu,and Shijie Wang.Numerical Simulation and Optimization of NO Emissions in a Precalciner.Energy & Fuels,2006.20:164-171
    [91]Zhijuan Hu,Jidong Lu,Lai Huang,Shijie Wang.Numerical simulation study on gas-solid two-phase flow in pre-calciner.Communications in Nonlinear Science andNumerical Simulation,2006.11:440-451
    [92]Satterfield C N,Feakes F.Kinetics of thermal decomposition of calcium carbonate,A IChE.J.1959.5:115-122
    [93]Cotant.Investigation of reactivity of limestone and dolomite for capturing SO_2 from flue gas (final report).EPA ReportAPTD0802,U S EPA.Industrial Environmental Research Lab,1971:NTIS 204-385
    [94]MckevanW M,Kinetics of iron ore reduction.TransMet Soc A IME,1958.212:791-793
    [95]Satterfield C N,Feakes F.Kinetics of thermal decomposition of calcium carbonate,A IChE.J.1959(5):115-122
    [96]Ingraham T R,Mariver P.Kinetic studies on the thermal decomposition of calcium carbonate Can..J Chem Eng,1963.41:170-173
    [97]Koloberdin V I,Blinichev V N,Strel'tsov V V.The kinetics of limestone calcinations Int.Chem Eng.,1975.15:101-104
    [98]Narsimhan G.Thermal decomposition of calcium carbonate.Chem Sci,1961.16:7-20
    [99]Shen J,Smith J M.The mechanism of the thermal decomposition of calcium carbonate,Ind...Eng.Chem.Fundam.1965(4):293-301
    [100]ScrivnerN C,Manning F S.Reduction kinetics of swelling wustite particles,A IChE.J,1970.16:326-329
    [101]Khinast J,Krammer G F,Brunner C,et al.Decomposition of limestone;the influence of CO2 and particle size on the reaction rate.Chem Eng Sci,1996.51:623-634
    [102]余兆南.碳酸钙分解的试验研究.热能动力工程,1997.12(4):278-280
    [103]范浩杰,章明川,吴国新等。碳酸钙热分解的机理研究.动力工程,1998.18(5):40-43
    [104]郑瑛,史学锋,容伟等.石灰石快速煅烧及表面积形成的实验研究.华中理工大学学报,1999.27(3):43-45
    [105]郑瑛,陈小华,周英彪等.CaCO3分解动力学的热重研究.华中科技大学学报(自然科学版),2002.30(8):71-72
    [106]李相国.预分解系统内流动、燃烧与分解的研究及数值模拟:[博士学位论文].武汉:武汉理工大学,2006
    [107]仲兆平,Marnie Telfer,章名耀.Caroline石灰石热分解试验研究.燃烧科学与技术,2001.7(2):110-114
    [108]齐庆杰,马玉东,刘建忠等.碳酸钙热分解机理的热重试验研究.辽宁工程技术大学学报.2002.21(6):689-692
    [109]王世杰,陆继东,胡芝娟等.水泥生料分解动力学的研究.硅酸盐学报,2003.31(8):811-814
    [110]徐德龙.水泥悬浮预热预分解技术理论与实践.北京:科学技术文献出版社,2002.82-110
    [111]徐德龙,李辉,冯绍航等.高固气比水泥悬浮分解炉系统的理论研究.高固气比水泥悬浮预热预分解理论和技术鉴定报告(内部资料):21-29
    [112]徐德龙,程福安,王 堤等.高固气比分解炉的工业试验及应用.高固气比水泥悬浮预热预分解理论和技术鉴定报告(内部资料):45-48
    [113]Johnson,James Lee.Kinetics of coal gasification.NewYork:Wiley,1979.114-127
    [114]Gibb L,David T Pratt.Pulverized-coal combustion and gasification.New York:Plenum Press,1979.163-168
    [115]黄米,陆继东,任合斌,胡芝娟,王世杰.双喷腾分解炉中燃烧和分解耦合数值的模拟.硅酸盐学报,2004.32(10):1271-1275
    [116]Maston C W and McConnaughey H V.Computational Problems on composite grids.AIAA,1984.84:1611
    [117]张涵信,沈孟育.计算流体力学--差分方法的原理和应用.北京:国防工业出版社,2003.388-391
    [118]M.Manninen,V.Taivassalo,and S.Kallio.On the mixture model for multiphase flow.VTT Publications 288.Technical Research Centre of Finland,1996.
    [119]L.Schiller and Z.Naumann.Z Ver.Deutsch.Ing.,1935.77:318
    [120]H.J.Merk.The Macroscopic Equations for Simultaneous Heat and Mass Transfer in Isotropic,Continuous and Closed Systems.Appl.Sci.Res.,1958.8:73-99
    [121]赵孝保.工程流体力学.南京:东南大学出版社,2004.55-58
    [122]S.A.Morsi and A.J.Alexander.An Investigation of Particle Trajectories in Two-Phase Flow Systems.J.Fluid Mech.,1972.55(2):193-208
    [123]D.K.Fidaros,C.A.Baxevanou,C.D.Dritselis,N.S.Vlachos.Numerical modelling of flow and transport processes in a calciner for cement production.Powder Technology,2007.171:81-95
    [124]Filip Acke,Itai Panas.Activation Energy of calcinations by means of a temperature programmed reaction technique.Thermochimica Acta,1997.306:73-76
    [125]毛娅,陈作炳,陈定方,卢海波.强化悬浮式分解炉内热态、冷态流场比较研究.武 汉理工大学学报(交通科学与工程版),2007.31(4):696-698
    [126]毛娅,陈作炳,卢海波.强化悬浮式分解炉内煤粉燃烧过程模拟的研究.计算机与应用化学,2007.24(7):903-906
    [127]MAO Ya,CHEN Zuobing,CHEN Dingfang,LU Haibo.Experimental and numerical research on petroleum coke combustion characteristics in reinforced suspension calciner,Computer and Appied Chemistry,2008.25(6):671-674
    [128]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(2) 15:3-4
    [129]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)23:3
    [130]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)23:21
    [131]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)23:29
    [132]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)14:3-6
    [133]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)23:37-39
    [134]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)24:74-75
    [135]Fluent Inc.Fluent6.2 User's Guide Manual.Lebanon NH America:Fluent Inc.,2005.Volume(3)23:5-6
    [136]Fluent Inc.Fluent6.2 UDF Manual.Lebanon NH America:Fluent Inc.,2005.1:15-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700