煤粉再燃中着火与脱硝相互作用的实验研究及其模化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在开发煤粉着火理论预报方法的基础上,应用实验研究与数值模拟相结合的方法,对煤粉再燃过程中极其复杂、具有高度非线性的两种临界现象-挥发分及煤焦还原脱硝临界现象与煤粉着火临界现象的相互作用进行了研究。首次发现了煤粉再燃脱硝效率随过量空气系数变化而显现的突变性质与煤粉燃烧典型的临界现象-“着火”有关,并从理论上阐明了煤粉再燃脱硝与煤粉着火过程相互作用的物理本质,对再燃脱硝效率随过量空气系数发生突跃变化的临界现象作出了合理解释。本文研究成果对煤粉着火及燃烧特性的预报、以及工程应用中确定再燃运行参数有重要现实意义,并为煤粉再燃技术的工业应用提供了坚实的科学指导。
     本文采用居里点裂解发生器与气相色谱仪研究了神木烟煤、二号烟煤及晋城无烟煤煤粉的快速热解特性。实验发现:煤粉的快速热解失重主要发生在升温阶段,烟煤与无烟煤挥发分中焦油的质量分数均最大,其中烟煤焦油释放量占挥发分的质量分数达到50%以上,高于无烟煤。根据热解产物的释放数据,采用单方程反应模型计算出了热解反应动力学参数。依据这些参数,本文开发了考虑包括焦油在内的具体热解成分的单颗粒煤粉着火过程、传热、传质、化学反应全耦合瞬态精确模型,并对上述三种煤的着火及燃烧过程进行了严格的数值模拟。发现三种煤粉的着火模式均为联合着火,计算结果验证了炭粒着火初期颗粒表面CO火焰所引起的高温,而且给出了挥发分火焰引燃颗粒表面一次反应产物CO的证据。此外,本文还采用该模型计算了煤粉发生联合着火时的能量分配系数。
     针对全耦合燃烧瞬态模型计算过程复杂、计算时间太长等缺点,本文开发了基于可燃气体着火极限理论的单颗粒煤粉非稳态均相着火简化模型,并采用全耦合瞬态模型对简化模型的计算精度进行了验证。针对三种煤的计算结果表明,简化模型理论假设合理、计算精度较高、计算过程简单、计算时间很短,可以满足工业应用。基于上述简化的均相着火理论,本文开发了适合工程应用的煤粉气流均相着火模型。上述关于模型的工作解决了煤粉燃烧领域中以前一直未能很好解决的一个基础理论问题,研究成果具有学术理论和实际应用的双重意义。最终,本文结合关于炭粒的热力着火模型,开发了再燃条件下煤粉气流发生着火时的临界条件的预报方法。
     本文设计建立了煤粉再燃实验系统,对煤粉脱硝效率、烟气中主要气体含量和部分残焦随再燃区过量空气系数及停留时间的变化规律进行了实验研究,对再燃区炉膛图像进行了在线采集,并采用上面开发的方法预报了再燃煤粉的着火状态。从理论上说明了煤粉再燃脱硝与煤粉着火过程相互作用的内在本质,阐述了再燃区各运行参数影响脱硝时的内在关联。
     再燃温度较低时,煤粉脱硝效率及烟气中H2、CO含量曲线随再燃区过量空气系数增大均呈现不规则“M”型的变化规律,煤粉着火状态对脱硝效率有关键影响。当煤粉尚未着火时,少量氧气的存在有利于煤粉的同相脱硝反应,此时煤粉在再燃区的最佳停留时间与烟气中碳氢化合物的消耗速率有关。但当过量空气系数较高以致引起煤粉发生均相着火时,碳氢化合物及其中间产物被氧化反应大量消耗掉,脱硝效率明显降低,煤粉在再燃区的最佳停留时间与煤粉着火时间基本吻合。当再燃区过量空气系数进一步增大时,挥发分燃烧产生的热量加热并引燃煤焦,此时煤粉着火方式为联合着火,颗粒大幅升温,残留挥发分释放及表面氧化反应速率快速上升,有利于煤焦表面CO和自由活性点的生成。NO的异相还原反应速率随颗粒温度升高也会快速上升,此时异相还原反应开始占优,总体脱硝效率上升,在实验研究的停留时间范围内脱硝效率持续上升,此时最佳停留时间的确定应与煤粉燃尽一起来考虑。太高的过量空气系数会导致煤焦燃烧开始受到扩散控制,火焰离开颗粒表面外移,氧气难以到达颗粒表面,不利于煤焦升温和表面自由活性点的生成,异相脱硝作用开始减弱,总体脱硝效率再次下降。较高再燃温度下煤焦颗粒升温对异相脱硝的促进作用不如低温工况明显。再燃温度固定时较粗煤粉发生均相着火及联合着火时的临界过量空气系数下降,导致出现上述现象时的过量空气系数亦有所降低。
     针对上述研究结论,本文认为,在实际锅炉的大多数再燃工况下,由于煤粉的均相着火,挥发分对NOx的均相还原效用并没有得到充分的发挥。在煤粉再燃初期,应尽量避免发生着火,以使煤粉热解释放出的挥发分能够主要用于对NOx的同相还原反应,而不是被燃烧反应消耗掉;在再燃过程后期,应该使煤焦刚好发生着火,从而促进颗粒升温和异相还原反应的进行。
     本文最终提出了理想的再燃方案:极少量空气或部分来源于尾部烟道的烟气携带再燃煤粉进入再燃区起始段,该区段过量空气系数很低,从而避免煤粉发生着火,确保同相还原反应效果占优并最大化。在再燃区第二段,注入少量空气,确保起始段形成的煤焦刚好发生非均相着火,从而使得异相脱硝反应效果占优并最大化。采用该方案应该能够同时有效解决“均相着火”对同相脱硝的抑制作用、以及“非均相不着火”对异相脱硝的不利影响。本文研究结论对实际工程应用中确定再燃区各运行参数、实施再燃方案有重要的指导意义。
In this paper, based on the theoretical prediction method investigation of homogeneous ignition temperature of pulverized coal, the interaction between two extremely complicated and highly non-linear critical phenomena during pulverized coal reburning, i.e., that on homogeneous and heterogeneous denitration, and that on pulverized coal ignition, was investigated by combining experiment and numerical simulation. For the first time, the abrupt variations of denitration efficiency with excess air coefficient during coal reburning, were found to be relevant with the typical critical phenomenon during coal combustion, i.e., "ignition", the physical essence of the interaction between pulverized coal denitration and ignition was theoretically elucidated, and a reasonable explanation was made on the critical phenomenon about the variation jump of denitration efficiency with excess air coefficient. The investigation results of this paper have important practical significance for the prediction of pulverized coal ignition and combustion characteristics, and the determination of the operating parameters during industrial reburning. Those results also provide a solid scientific guidance for the industrial application of pulverized coal reburning.
     The fast pyrolysis characteristics of Shenmu bitiminous coal, Erhao bitiminous coal and Jincheng anthracite coal were investigated with curie point pyrolyzer and gas chromatography, and the following experimental results were found. The mass loss of coal pyrolysis mainly occurs in the temperature rising stage, the mass fraction of tar in volatiles is ranked the first for both bituminous coal and anthracite coal, which exceeds 50% for bituminous coal and is higher than that for anthracite coal. According to the release data of pyrolysis products, the single-equation model was used for calculating the kinetic parameters of pyrolysis reactions. Based on these parameters, the exact whole-coupling transient model on single pulverized coal combustion was developed, with various pyrolysis products including tar, heat transfer, mass transfer, and chemical reactions considered, and the igntion and combustion processes of the three coals mentioned above were simulated exactly. The ignition modes of those were found all to be joint heterohomogeneous ignition, the high temperature caused by CO flame on char surface at the beginning of char ignition was validated by simulation results, which also proved that the primary surface reaction product, i.e., CO was ignited by volatile flame. In addition, the energy distribution coefficient during joint heterohomogeneous ignition was also calculated with the above mentioned model.
     Considering some disadvantages of the whole-coupling transient model, such as too complicated simulation process and too long simulation time, a simplified unsteady homogeneous ignition model of single pulverized coal was developed, based on the ignition limit theory of combustible gas, whose calculation precision was verified with that whole-coupling model. The simulation results of above three coals showed that the theoretical assumptions of the simplified model were reasonable, and it owned high precision, simple process, and short calculation time, which can meet the industrial demand. Based on the above simplified homogeneous ignition theory, the homogeneous ignition model of pulverized coal stream was developed, which can be used in industrial applications. The above investigation about models solves a basic theoretical problem in coal combustion field, which has never been solved well in the past, the research results are much significant for both academic theory and practical application. Ultimately, combined with heterogeneous ignition model (TET) of coal char, the prediction method on critical ignition condition of pulverized coal stream during reburning was developed.
     In this paper, the experimental system of pulverized coal reburning was designed and established, the variations of denitration efficiency, main gas concentrations in flue gas, and some residual char with excess air coefficient and residence time were investigated, and the on-line images in furnace were also acquired. The model mentioned above was also used to predict the ignition status of reburning coal. The physical essence of the interaction between denitration and ignition during pulverized coal reburning was elucidated, and the intrinsic relationship of the influences of operating parameters on denitration was discussed.
     At lower reburning temperature, the curves of denitration efficiency, H2, and CO volume fractions in flue gas all present irregular M-shaped variation with increasing excess air coefficient, the ignition status of pulverized coal has key influences on denitration efficiency. When the coal is not ignited yet, the appropriate amount of oxygen is in favor of homogeneous NO reduction, and the optimal residence time of coal in reburning zone is related to the consumption rates of hydrocarbons in fuel gas. When the excess air coefficient is relatively high to cause homogeneous ignition, the hydrocarbons released from pyrolysis and their relevant intermediates important for homogeneous NO reduction are consumed greatly by the volatile flame; then, the denitration efficiency decreases abruptly, and the optimal residence time coincides with the ignition time of volatiles on the whole. At higher excess air coefficient, the coal char is ignited by the volatile flame, and the ignition mode is joint heterohomogeneous ignition mode. The particle temperature rises greatly, the rates of residual volatile release and surface oxidation reaction also increase greatly, which is favorable for the generation of CO and free active sites on char surface. As a result the heterogeneous reducing reactions begin to strengthen and dominate the whole denitration process, and the denitration efficiency increases again. Here, that efficiency increases continuously with prolonging residence time in this experiment, and the determination of optimal residence time should be considered together with the burnout of pulverized coal. At even higher excess air coefficient, the char combustion begins to be controlled by diffusion, the flame begins to move away from char surface, and it is difficult for the oxygen to reach that surface, which goes against char temperature rising and free active site generation. As a result, the heterogeneous reducing reactions are weakened, and the whole denitration efficiency decreases again. At higher reburning temperature the promotion effects of char ignition on denitration are less obvious than those at lower temperature. As to bigger coal particles, the excess air coefficients, at which the above-mentioned phenomena appear, are slightly lower due to their lower ignition temperatures.
     Aiming at the above results, it is considered that the homogeneous reducing reactions of volatiles do not give their full play due to homogeneous ignition at most industrial reburning conditions. In the initial stage of pulverized coal reburning, the ignition should be avoided as much as possible so that the volatiles are mainly used for NO reduction, instead of consumed by combustion reactions. In the latter stage of reburning, the char ignition should be just ensured, which is in favor of char temperature rising and heterogeneous NO reduction.
     According to the above analyses, the ideal scheme of pulverized coal reburning is presented and described below. At first little air or part flue gas from tail duct of boiler enters the upstream region of reburning zone with pulverized coal, so that the excess air coefficient in this region is very low, the ignition is avoided, and the homogeneous NO-reduction reactions will maximize and dominate the whole denitration process. Then some air enters the downstream region of reburning zone, the coal char formed in the upstream region will be just ignited, and the heterogeneous NO-reduction reactions will maximize and dominate the whole denitration process. Based on the above scheme, the homogeneous NO-reduction reactions and the heterogeneous NO-reduction reactions will play their roles in two time-stages respectively, which can avoid not only the unfavorable influences of homogeneous ignition on homogeneous NO reduction, but also the unfavorable influences of no ignition on heterogeneous NO reduction. In a word, the above mentioned investigation results have much guiding significance for the determination of operating parameters and the implement of reburning scheme in industry.
引文
[1]美国能源情报署(EIA). 2007国际能源展望[M]. 2007.
    [2]黄盛初,孙欣,张文波,张斌川,胡予红.中国煤炭开发与利用的环境影响研究[R].北京:煤炭信息研究院, 2003.
    [3] Xu H J. Modeling of NOx control through advanced reburning[D]. Provo: Brigham Young University, 1999.
    [4]国家环境保护总局.火电厂大气污染物排放标准(GB13223-2003)[M]. 2003.
    [5] Tree D R, Clark A W. Advanced reburning measurements of temperature and species in a pulverized coal flame[J]. Fuel, 2000, 79(13): 1687-1695.
    [6]钟海卿,金晶,陈占军.超细粉再燃技术的探讨[J].锅炉技术, 2003, 34(6): 5-7, 43.
    [7] Dimitriou D J, Kandamby N, Lockwood F C. A mathematical modelling technique for gaseous and solid fuel reburning in pulverised coal combustors[J]. Fuel, 2003, 82(15-17): 2107-2114.
    [8] Ballester J, Ichaso R, Pina A, González M A, Jiménez S. Experimental evaluation and detailed characterisation of biomass reburning[J]. Biomass and Bioenergy, 2008, 32(10): 959-970.
    [9]金晶,张忠孝,李瑞阳.超细煤粉再燃的模拟计算与试验研究[J].中国电机工程学报, 2004, 24(10): 215-218.
    [10]刘忠.煤粉及煤焦再燃还原NO的实验与化学动力学机理研究[D].保定:华北电力大学, 2003.
    [11]新井纪男.燃烧生成物的发生与抑制技术[M].赵黛青,赵哲石,王昶,吴云影译.北京:科学出版社, 2001.
    [12]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社, 1998.
    [13]赵坚行.热动力装置的排气污染与噪声[M].北京:科学出版社, 1995.
    [14] Party M, Engle G. Formation of HCN by the action of nitric oxide on methane at atmospheric pressure, 1. General conditions of formation[J]. Compt. Rend., 1950, (231): 1302-1304.
    [15] Drummond L J. Shock induced reactions of methane with nitrous and nitric oxides[J]. Bulletin of the Chemical Society of Japan, 1969, 42: 285.
    [16] Wendt J O L, Sternling C V, Matovich M A. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection[C]. Proceedings of 14th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1973, pp. 897-904.
    [17] Takahashi Y, Sengoku Y, Nakashima F, et al. Development of MACT in-furnace NOx removal process for steam generators[R]. Proceedings of the 1982 Joint Symposium on Stationary Combustion NOx Control. Palo Alto, Electric Power Research Institute, CS-3182, 1983.
    [18] Smoot L D, Hill S C, Xu H. NOx control through reburning[J]. Progress in Energy and Combustion Science, 1998, 24(5): 385-408.
    [19] Maly P M, Zamansky V M, Ho L, Payne R. Alternative fuel reburning[J]. Fuel, 1999, 78(3): 327-334.
    [20] Shen B X, Yao Q, Xu X C. Kinetic model for natural gas reburning[J]. Fuel Processing Technology, 2004, 85(11): 1301-1315.
    [21] Bilbao R, Millera A, Alzueta M U, Prada L. Evaluation of the use of different hydrocarbon fuels for gas reburning[J]. Fuel, 1997, 76(14-15): 1401-1407.
    [22] Ashworth R A, Maly P M, Carson W R. Results of CWS reburn tests on a 10×106 Btu/hr tower furnace and its impact on CWS reburn economics[C]. Proceedings of 22nd International Technical Conference on Coal Utilization & Fuel Systems. Clearwater, Florida, USA, 1997, pp. 789-800.
    [23]董若凌,周俊虎,孟德润,杨卫娟周志军岑可法.再燃区水煤浆脱硝反应特性的试验研究[J].中国电机工程学报, 2006, 26(4): 56-59.
    [24] Harding N S, Adams B R. Biomass as a reburning fuel: a specialized cofiring application[J]. Biomass and Bioenergy, 2000, 19(6): 429-445.
    [25] Adams B R, Harding N S. Reburning using biomass for NOx control[J]. Fuel Processing Technology, 1998, 54(1-3): 249-263.
    [26] Zhong B J, Shi W W, Fu W B. Effects of fuel characteristics on the NO reduction during the reburning with coals[J]. Fuel Processing Technology, 2002, 79(2): 93-106.
    [27] Li S, Xu T M, Zhou Q L, Tan H Z, Hui S E, Hu H L. Optimization of coal reburning in a 1 MW tangentially fired furnace[J]. Fuel, 2007, 86(7-8): 1169-1175.
    [28] Rüdiger H, Greul U, Spliethoff H, Hein K R G. Distribution of fuel nitrogen in pyrolysis products used for reburning[J]. Fuel, 1997, 76(3): 201-205.
    [29] Hampartsoumian E, Folayan O O, Nimmo W, Gibbs B M. Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal type[J]. Fuel, 2003, 82(4): 373-384.
    [30] Chen W Y, Ma L. Effect of heterogeneous mechanisms during reburning of nitrogen oxide[J]. AIChE Journal, 1996, 42(7): 1968-1976.
    [31] Han D, Mungal M G, Zamansky V M, Tyson T J. Prediction of NOx control by basic and advanced gas reburning using the two-stage lagrangian model[J]. Combustion and Flame, 1999, 119(4): 483-493.
    [32] Miller J A, Klippenstein S J, Glarborg P. A kinetic issue in reburning: the fate of HCNO[J]. Combustion and Flame, 2003, 135(3): 357-362.
    [33] Prada L, Miller J A. Reburning using several hydrocarbon fuels: a kinetic modeling study[J]. Combustion Science and Technology. 1998, 132(1-6): 225-250.
    [34] Dagaut P, Lecomte F, Chevailler S, Cathonnet M. Experimental and detailed kinetic modeling of nitric oxide reduction by a natural gas blend in simulated reburning conditions[J]. CombustionScience and Technology. 1998, 139(1-6): 329-363.
    [35] Williams B A, Pasternack L. The effect of nitric oxide on premixed flames of CH4, C2H6, C2H4 and C2H2 [J]. Combustion and Flame. 1997, 111(1-2): 87-110.
    [36]沈伯雄,姚强.天然气再燃脱硝的原理和技术[J].热能动力工程, 2002, 17(97): 7-9, 13.
    [37] Glass J W, Wendt J O L. Mechanisms governing the destruction of nitrogeneous species during the fuel rich combustion of pulverized coal[J]. Proceedings of the 19th Symposium (International) on Combustion, 1982, 19(1): 1243-1251.
    [38] Chen S L, Heap M P, Pershing D W, Martin G B. Influence of coal composition on the fate of volatileand char nitrogen during combustion[J]. Proceedings of the 19th Symposium (International) on Combustion, 1982, 19(1): 1271-1280.
    [39]郭永红,孙保民,刘彤,冯兆兴,王旸,李振中.褐煤的超细粉再燃中NOx的生成与还原的数值模拟[J].中国电机工程学报, 2005, 25(9): 94-98.
    [40] Yang Y B, Hampartsoumian E, Gibbs B M. The effects of temperature, mixing and volatile release on no reduction mechanisms by coal reburning[J] Proceedings of 27th Symposium (International) on Combustion, 1998, 27(2): 3009-3017.
    [41]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N释放规律的试验研究[J].中国电机工程学报, 2004, 24(8): 238-242.
    [42]钟北京,施卫伟,傅维标.煤粉再燃过程中NO异相还原机理的重要性[J].燃烧科学与技术, 2002, 8(1): 6-8.
    [43] Liu H, Hampartsoumian E, Gibbs B M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning[J]. Fuel, 1997, 76(11): 985-993.
    [44]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料C释放特性的试验研究[J].中国电机工程学报, 2004, 24(10): 244-248.
    [45] Zarnitz R, Pisupati S V. Evaluation of the use of coal volatiles as reburning fuel for NOx reduction[J]. Fuel, 2007, 86(4): 554-559.
    [46] Wang ZH, Zhou J H, Wen Z C, Liu J Z, Cen K F. Effect of mineral matter on NO reduction in coal reburning process[J]. Energy & Fuels, 2007, 21(4), 2038-2043.
    [47] Zarnitz R, Pisupati S. Identification of significant factors in reburning with coal volatiles[J]. Environmental Science Technology, 2008, 42(6): 2004-2008.
    [48] Hampartsoumian E, Yang Y B, Naja T A, Gibbs B M. A pilot-plant study of NO reduction by coal reburning[J]. Fuel and Energy Abstracts, 1998, 39(1): 63.
    [49]胡满银,刘忠,王小敏,阎维平.再燃中超细煤粉热解机理及挥发份释放的数值模拟[J].动力工程, 2005, 25(3): 427-432.
    [50] Muzio L J, Arand J K, Teixeira D P. Gas phase decomposition of nitrix oxide in combustionproducts[C]. Proceedings of 16th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1976, pp. 199-208.
    [51]梁俊秀,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析[J].华北电力技术, 2004, (4): 19-21.
    [52] Thomas K M. The release of nitrogen exides during char combustion[J]. Fuel, 1997, 76(6): 457-473.
    [53]赵莉,阎维平,刘忠,高正阳.温度对超细煤粉再燃降低NO排放的影响[J].动力工程, 2005, 25(6): 887-890.
    [54]郑守忠.煤粉再燃烧技术中煤焦异相还原高温烟气中NO的实验和理论研究[D].南京:东南大学, 1999.
    [55] Burch T E, Chen W Y, Lester T W, Sterling A M. Interaction of fuel nitrogen with nitric oxide during reburning with coal[J]. Combustion and Flame, 1994, 98(4): 391-401.
    [56]卢平,钟文琪.煤粉再燃煤焦异相还原NOx的影响因素分析[J].燃气轮机技术, 2003, 16(4): 18-22.
    [57]沈伯雄,孙幸福.天然气先进再燃区脱硝效率影响因素的实验与模拟研究[J].中国电机工程学报, 2005, 25(5): 146-149, 163.
    [58]钟北京,傅维标.煤的挥发分对NOx再燃特性的研究[J].燃烧科学与技术, 2000, 6(2): 185-189.
    [59]钟北京,傅维标.再燃过程中HCN对NOx还原的重要性[J].燃烧科学与技术, 2000, 6(1): 77-84.
    [60] Brouwer J, Owens W D, Harding N S, Heap M P, Pershing D W. Cofiring waste biofuels and coal for emissions reduction[C]. Proceedings of 2nd Biomass Conference of the Americas. Portland, USA, 1995, pp. 390-399.
    [61] Kordylewski W, Zacharczuk W, Hardy T, Kaczmarczyk J. The effect of the calcium in lignite on its effectiveness as a reburn fuel[J]. Fuel, 2005, 84(9): 1110-1115.
    [62]周昊,邱坤赞,王智化,翁安心,岑可法,樊建人.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响[J].燃料化学学报. 2004, 32(2): 146-150.
    [63] Kicherer A, Spliethoff H, Maier H, Hein K R G. The effect of different reburning fuels on NOx-reduction[J]. Fuel, 1994,73(9): 1443-1446.
    [64] Glarborg P, Alzueta M U, Dam-Johansen K, Miller J A. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J]. Combustion and Flame, 1998, 115(1, 2): 1-27.
    [65] Giral I, Alzueta M U. An augmented reduced mechanism for the reburning process[J]. Fuel, 2002, 81(17): 2263-2275.
    [66] Spliethoff H, Greul U, Rüdiger H, Hein K R G. Basic effects on NOx emissions in air staging andreburning at a bench-scale test facility[J]. Fuel, 1996, 75(5): 560-564.
    [67] Song Y H, Beer J M, Sarofim A F. Reduction of nitric oxide by coal char at temperatures of 1250~1750 K[J]. Combustion Science and Technology, 1981, 25(5-6): 237-240.
    [68]金晶,张忠孝,钟海卿,李瑞阳.超细煤粉分级燃烧降低NOx排放的试验[J].山东大学学报(工学版), 2004, 34(5): 26-29.
    [69]吴少华,刘辉,姜秀民,邱朋华,秦裕琨.采用超细煤粉再燃技术降低氮氧化物排放[J].中国电力, 2003, 36(2): 1-4.
    [70]徐华东,罗永浩,王恩禄,陆方.再燃烧技术及其在我国的应用前景[J].动力工程, 2001, 21(4): 1320-1323, 1302.
    [71] Nazeer W A, Jackson R E, Peart J A. Tree D R. Detailed measurements in a pulverized coal flame with natural gas reburning[J]. Fuel, 1999, 78(6): 689-699.
    [72]苏胜,向军,胡松,孙学信,张忠孝,朱基木.气体再燃降低NOx排放的实验研究[J].动力工程, 2004, 24(6): 884-888.
    [73]高正阳.煤粉再燃还原NOx的实验研究与机理分析[D].保定:华北电力大学, 2003.
    [74] Smart J P, Morgan D J. The effectiveness of multi-fuel reburning in an internally fuel-staged burner for NOx reduction[J]. Fuel, 1994, 73(9): 1437-1442.
    [75]钟北京,施卫伟,傅维标.煤再燃过程中燃料特性对NO还原的影响[J].燃烧科学与技术, 2001, 7(2): 115-119.
    [76]李戈,师东波,池作和,潘维,岑可法.煤粉再燃还原NO的实验研究[J].电站系统工程, 2004, 20(1): 44-46.
    [77]钟北京,施卫伟,傅维标.煤和煤焦还原NO的实验研究[J].工程热物理学报, 2000, 21(3): 383-387.
    [78]方斌,罗永浩,陆方,冯琰磊.燃煤锅炉再燃技术中再燃燃料的特性与选择[J].热能动力工程. 2004, 19(5): 443-446.
    [79]刘忠,阎维平,高正阳,赵莉.煤种对超细煤粉再燃还原NO效率的影响[J].中国电机工程学报, 2004, 24(12): 273-276.
    [80]邓涛.煤粉再燃降低NOx排放的试验研究[D].杭州:浙江大学, 2004.
    [81] Yang Y B, Hampartsoumian E, Gibbs B M. The effects of temperature, mixting and volatile release on NO reduction mechanisms by coal reburning[C]. Proceedings of 27th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1998, pp. 3009-3017.
    [82] Yamashita H, Hamada H, Tomita A. Reaction of nitric oxide with metal loaded carbon in the presence of oxygen[J]. Applied Catalysis, 1991, 78(2): 1-6.
    [83]钟北京,施卫伟,傅维标.烟煤焦催化还原NOx的实验研究[J].燃烧科学与技术, 2001, 7(1): 44-47.
    [84]姜秀民,李巨斌,邱健荣,郑楚光,刘德昌.超细煤粉的物理特性及其对燃烧性能的影响[J].燃料化学学报, 2000, 28(2): 170-174.
    [85]张丹,魏砾宏.影响超细煤粉再燃NOx排放的研究进展[J].黑龙江电力, 2007, 29(4): 270-272.
    [86]金晶,李瑞阳,张忠孝.煤粉粒度对煤粉燃烧NOx排放的影响[J].环境科学学报, 2005, 25(4): 502-506.
    [87]金晶,李瑞阳,陈占军,樊俊杰,钟海卿.煤粉粒度对煤粉燃烧NOx排放特性影响的试验研究[J].热力发电, 2004, 33(9): 16-18, 26.
    [88]平传娟,周俊虎,程军,杨卫娟,岑可法.混煤热解反应动力学特性研究[J].中国电机工程学报, 2007, 27(17): 6-10.
    [89]韩才元,徐明厚,周怀春,邱建荣.煤粉燃烧[M].北京:科学出版社, 2001.
    [90] Wanzl W. Techniques for studying and modeling coal pyrolysis and their relevance to biomass and wastes[J]. Biomass and Bioenergy, 1994, 7(1-6): 131-141.
    [91]徐跃年.煤热解的反应动力学研究[J].热能动力工程, 1995, 10(3): 154-157.
    [92]徐建国,魏兆龙.用热分析法研究煤的热解特性[J].燃烧科学与技术, 1999, 5(2): 175-179.
    [93]熊源泉,刘前鑫,章名耀.加压条件下煤热解反应动力学的试验研究[J].动力工程, 1999, 19(3): 77-81, 70.
    [94] Maki T, Takatsuno A, Miura K. Analysis of pyrolysis reactions of various coals including argonne premium coals using a new distributed activation model[J]. Energy & Fuels, 1997, 11(5): 972-977.
    [95]苏桂秋,崔畅林,卢洪波.煤热解燃烧气体产物的热重-红外联用分析[J].工业锅炉, 2004, (2): 23-26.
    [96] Charland J P, MacPhee J A, Giroux L, Price J T, Khan M A. Application of TG-FTIR to the determination of oxygen content of coals[J]. Fuel Processing Technology, 2003, 81(3): 211-221.
    [97]闫金定,崔洪,杨建丽,刘振宇.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报, 2003, 32(3): 311-315.
    [98] Arenillas A, Pevida C, Rubiera F, García R, Pis J J. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 747-763.
    [99] Griffin T P, Howard J B, Peters W A. An experimental and modeling studying of heating rate and particle size effects in bituminous coal pyrolysis[J]. Energy & Fuels, 1993, 7(2): 297-305.
    [100]Hastaoglu M A, Hassam M S. Application of a general gas-solid reaction model to flash pyrolysis of wood in a circulating fluidized bed[J]. Fuel, 1995, 74(5): 697-703.
    [101]李登新, Makino M,吕俊复,岳光溪张建胜.弱粘煤和不粘煤的快速热解及其团聚研究[J].燃烧科学与技术, 2003, 9(5): 426-429.
    [102]崔丽杰,姚建中,林伟刚,张铮.喷动载流床中温度对霍林河褐煤快速热解产物的影响[J].现代化工, 2003, 23(10): 28-32.
    [103]樊俊杰,金晶,张建民,代纪邦.超细煤粉热解时轻质烃的析出规律[J].燃烧科学与技术, 2006, 12(4): 308-311.
    [104]Badzioch S, Hawksley P G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Ind. Eng. Chem. Process Des. Develop., 1970, 9(4): 521-530.
    [105]Kobayashi H, Howard J B, Sarofim A F. Coal devolatilization at high temperatures[J]. Proceedings of Symposium (International) on Combustion, 1977, 16(1): 411-425.
    [106]Anthony D B, Howard J B, Hottel H C, Meissner H P. Rapid devolatilization of pulverized coal[J]. Proceedings of Symposium (International) on Combustion, 1975, 15(1): 1303-1317.
    [107]Solomon P R, Colket M B. Coal devolatilization[J]. Proceedings of Symposium (International) on Combustion, 1979, 17(1): 131-143.
    [108]Serio M A, Hamblen D G, Markham J R, Solomon P R. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energy & Fuels, 1987, 1(2): 138–152.
    [109]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社. 2003.
    [110]Faraday M, Lyell C. Report on the subject of the explosion at the Haswell Collieries, and on the means of preventing similar accidents[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1845, 26: 16-35.
    [111]Essenhigh R H, Misra M K, Shaw D W. Ignition of coal particles: a review[J]. Combustion and Flame, 1989, 77(1): 3-30.
    [112]Jüntgen H, Van Heek K H. An update of german non-isothermal coal pyrolysis work[J]. Fuel Processing Technology, 1979, 2(4): 261-293.
    [113]Cassel H M, Liebman I. The cooperative mechanism in the ignition of dust dispersions[J]. Combustion and Flame, 1959, 3: 467-475.
    [114]Bejarano P A, Levendis Y A. Single-coal-particle combustion in O2/N2 and O2/CO2 environments[J]. Combustion and Flame, 2008, 153(1-2): 270-287.
    [115]Huang G W, Scaroni A W. Prediction and measurement of the combustion time of single coal particles[J]. Fuel, 1992, 71(2): 159-164.
    [116]Tidona R J. Laser-initiated combustion of single coal particles in quiesent oxygen environments[J]. Combustion and Flame, 1980, 38: 335-337.
    [117]Ragland K W, Weiss C A. Combustion of single coal particles in a jet[J]. Energy, 1979, 4(2): 341-348.
    [118]Nusselt W Z. Ver. Dt. Ing., 1924, 68: 124-128.
    [119]Wall T F, Gururajan V S. Combustion kinetics and the heterogeneous ignition of pulverizedcoal[J]. Combustion and Flame, 1986, 66(2): 151-157.
    [120]Annamalai K, Durbetaki P. A theory on transition of ignition phase of coal particles[J]. Combustion and Flame, 1977, 29: 193-208.
    [121]Gururajan V S, Wall T F, Gupta R P, Truelove J S. Mechanisms for the ignition of pulverized coal particles[J]. Combustion and Flame, 1990, 81(2): 119-132.
    [122]Du X Y, Annamalai K. The transient ignition of isolated coal particle[J]. Combustion and Flame, 1994, 97(3-4): 339-354.
    [123]于娟.挥发分、CO火焰与炭粒燃烧的相互作用及其模化[D].上海:上海交通大学, 2003.
    [124]章明川.煤粉着火及切圆燃烧火焰稳定性分析[D].北京:清华大学, 1990.
    [125]高克凌,章明川.居里点裂解色谱用于煤的快速热分解的研究[J].热力发电, 1988, (4): 7-14.
    [126]Zhao Y H, Kim H Y, Yoon S S. Transient group combustion of the pulverized coal particles in spherical cloud[J]. Fuel, 2007, 86(7-8): 1102-1111.
    [127]盛昌栋,袁建伟,徐明厚,马敏义.受辐射加热的煤粉颗粒群着火模型[J].燃烧科学与技术, 1996, 2(1): 38-45.
    [128]盛昌栋.煤粉气流着火的研究及煤粉浓度连续可调的实现[D].武汉:华中理工大学, 1995.
    [129]Du X Y, Gopalakrishnan C, Annamalai K. Ignition and combustion of coal particle streams[J]. Fuel, 1995, 74(4): 487-494.
    [130]姚强,周俊虎,涂建华,曹欣玉,岑可法.煤粉群非稳态统一着火模型[J].浙江大学学报(自然科学版), 1996, 30(4): 446-454.
    [1]黄郁明,斯东波,徐璋,池作和.超细煤粉孔容积和燃烧特性研究[J].热力发电, 2006, 35(1): 21-24.
    [2]章明川.煤粉着火及切圆燃烧火焰稳定性分析[D].北京:清华大学, 1990.
    [3]陈彩霞,孙学信,吕焕尧.煤粉快速热解规律的试验研究[J].华中理工大学学报, 1994, 22(3): 36-41.
    [4]高克凌.居里点裂解色谱用于煤的快速热分解的研究[D].西安:西安热工研究所, 1986.
    [5]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社, 2003.
    [6] Unger P E, Suuberg E M. Modeling the devolatilization behavior of a softening bituminous coal[J]. Proceedings of Symposium (International) on Combustion, 1981, 18(1): 1203-1211.
    [7] Field M A, Gill D W, Morgan B B, Hawksley P G W.煤粉燃烧[M].章明川,许方洁,许传凯译.北京:水利电力出版社, 1989.
    [8]孙学信,陈建原.煤粉燃烧物理化学基础[M].武汉:华中理工大学出版社, 1991.
    [9] Badzioch S, Hawksley P G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Ind. Eng. Process Des. Develop, 1970, 9(4): 521-530.
    [10]吴江,章明川,陈启峰,尹斌,宋玉宝,赵国峰.煤粉快速热解动力学过程描述的数学处理[J].动力工程, 2002, 22(6): 2093-2095, 2066.
    [11]张超群,魏砾宏,任庚坡,姜秀民.超细与常规煤粉的热解特性及其热解机理的研究[J].哈尔滨工业大学学报, 2006, 38(11): 1948-1951.
    [1] Badzioch S, Hawksley P G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Ind. Eng. Chem. Process Des. Develop., 1970, 9(4): 521-530.
    [2] Bartok W, Sarofim A. Fossil fuel combustion, Chapter 3: Dryer F L[M]. John Wiley & Sons, New York, 1991.
    [3]高克凌.居里点裂解色谱用于煤的快速热分解的研究[D].西安:西安热工研究所, 1986.
    [4]梁法光.我国动力用煤再燃烧技术的应用研究[D].西安:西安热工研究院, 2003.
    [5] Smoot L D, Pratt D T.粉煤燃烧与气化[M].傅维标,卫景彬译.北京:清华大学出版社, 1983.
    [6] Desroches-Ducarne E, Dolignier J C, Marty E, Martin G, Delfosse L. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse[J]. Fuel, 1998, 77(13): 1399-1410.
    [7] Makino A, Law C K. Quasi-steady and transient combustion of a carbon particle: theory and experimental comparisons[C]. Proceedings of 21st Symposium (International) on Combusiton. The Combustion Institute, Pittsburgh, PA, 1986, pp. 183-191.
    [8]于娟.挥发分、CO火焰与炭粒燃烧的相互作用及其模化[D].上海:上海交通大学, 2003.
    [9]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社, 2003.
    [10]姚强,周俊虎,涂建华,曹欣玉,岑可法.煤粉群非稳态统一着火模型[J].浙江大学学报(自然科学版), 1996, 30(4): 446-454.
    [1]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社, 2003.
    [2]章明川.煤粉着火及切圆燃烧火焰稳定性分析[D].北京:清华大学, 1990.
    [3] Yu J, Zhang M C. A simple method for predicting the rate constant of pulverized-coal pyrolysis at higher heating rate[J]. Energy & Fuels, 2003, 17(4): 1085-1090.
    [4] Badzioch S, Hawksley P G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Ind. Eng. Chem. Process Des. Develop., 1970, 9(4): 521-530.
    [5]吴江,章明川,陈启峰,尹斌,宋玉宝,赵国峰.煤粉快速热解动力学过程描述的数学处理[J].动力工程, 2002, 22(6): 2093-2095, 2066.
    [6] Field M A, Gill D W, Morgan B B, Hawksley P G W.煤粉燃烧[M].章明川,许方洁,许传凯译.北京:水利电力出版社, 1989.
    [7]高克凌.居里点裂解色谱用于煤的快速热分解的研究[D].西安:西安热工研究所, 1986.
    [8]李汝辉.传质学基础[M].北京:北京航空学院出版社, 1987.
    [9]西安热工研究所,东北电力局技术改进局.燃煤锅炉燃烧调整试验方法[M].北京:水利电力出版社, 1974.
    [10]傅维镳,卫景彬.燃烧物理学基础[M].北京:机械工业出版社, 1981.
    [11] Desroches-Ducarne E, Dolignier J C, Marty E, Martin G, Delfosse L. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse[J]. Fuel, 1998, 77(13): 1399-1410.
    [1] Cances J, Commandre J M, Salvador S, Dagaut P. NO reduction capacity of four major solid fuels in reburning conditions-experiments and modeling[J]. Fuel, 2008, 87(3): 274-289.
    [2] Howard J B, Essenhigh R H. Pyrolysis of coal particles in pulverized fuel flames[J]. I & EC Process Design and Development, 1967, 6: 74-84.
    [3] Glarborg P, Alzueta M U, Dam-Johansen K, Miller J A. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J]. Combustion and Flame, 1998, 115(1-2): 1-27.
    [4] Fan J J, Zhang Z X, Jin J, Zhang J M. Investigation on the release characteristics of light hydrocarbon during pulverized coal pyrolysis[J]. Energy & Fuels, 2007, 21(5): 2805-2808.
    [5]新井纪男.燃烧生成物的发生与抑制技术[M].赵黛青,赵哲石,王昶,吴云影译.北京:科学出版社, 2001.
    [6] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C Jr, Lissianski V V, Qin Z. GRI Mech-3.0: , 2008.
    [7] Xu H, Smoot L D, Hill S C. A reduced kinetic model for NOx reduction by advanced reburning[J]. Energy & Fuels, 1998, 12(6): 1278-1289.
    [8] Thomas K M. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6): 457-473.
    [9] Jenkins R G, Morgan M E. Pyrolysis of a lignite in an entrained flow reactor: 3. pyrolysis in reactive atmospheres of air, carbon dioxide and wet nitrogen[J]. Fuel, 1986, 65(6): 769-771.
    [10]沈伯雄,姚强.再燃脱硝的动力学模拟和组分影响分析[J].环境科学学报, 2002, 22(5): 677-682.
    [11] Glarborg P, Kristensen P G, Dam-Johansen K, Alzueta M U, Millera A, Bilbao R. Nitric oxide reduction by non-hydrocarbon fuels. Implications for reburning with gasfication gases[J]. Energy & Fuels, 2000, 14(4): 828-838.
    [12] Arthur J R. Reactions between carbon and oxygen[J]. Trans. Faraday Soc., 1951, 47: 164-178.
    [13] Frassoldati A, Faravelli T, Ranzi E. Kinetic modeling of the interactions between NO and hydrocarbons at high temperature[J]. Combustion and Flame, 2003, 135(1-2): 97-112.
    [14] Dagaut P, Lecomte F. Experiments and kinetic modeling study of NO-reburning by gases from biomass pyrolysis in a JSR[J]. Energy & Fuels, 2003, 17(3), 608-613.
    [15] Song Y H, Beer J M, Sarofim A F. Reduction of nitric oxide by coal char at temperatures of 1250~1750 K[J]. Combustion Science and Technology, 1981, 25(5-6): 237-240.
    [16] Zhong B J, Shi W W, Fu W B. Effects of fuel characteristics on the NO reduction during the reburning with coals[J]. Fuel Processing Technology, 2002, 79(2): 93-106.
    [17]钟北京,施卫伟,傅维标.煤和煤焦还原NO的实验研究[J].工程热物理学报, 2000, 21(3): 383-387.
    [18] Liu H, Hampartsoumian E, Gibbs B M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning[J]. Fuel, 1997, 76(11): 985-993.
    [19]赵莉,阎维平,刘忠,高正阳.温度对超细煤粉再燃降低NO排放的影响[J].动力工程, 2005, 25(6): 887-890.
    [20] Chambrion P, Orikasa H, Suzuki T, Suzuki T, Kyotani T, Tomita A. A study of the C-NO reaction by using isotopically labelled C and NO[J]. Fuel, 1997, 76(6): 493-498.
    [21] Lee J K, Suh D J, Park S, Park D. Effects of pyrolysis conditions on the reactivity of char for the reduction of nitric oxide with ammonia[J]. Fuel, 1993, 72(7): 935-939.
    [22] Chen W Y, Ma L. Importance of heterogeneous mechanisms during reburning of nitrogen oxide[C]. 3rd International Symposium on Coal Combustion. Beijing, China, 1995, pp. 594-601.
    [23]郑守忠.煤粉再燃烧技术中煤焦异相还原高温烟气中NO的实验和理论研究[D].南京:东南大学, 1999.
    [24]唐黎华,吴勇强,朱学栋,朱子彬.高温下制焦温度对煤焦气化活性的影响[J].燃料化学学报, 2002, 30(1): 16-20.
    [25] Teng H. The NO-char reaction: kinetics and transport aspects[D]. Providence: Brown University, 1992.
    [1]高正阳.煤粉再燃还原NOx的实验研究与机理分析[D].保定:华北电力大学, 2003.
    [2] Spliethoff H, Greul U, Rüdiger H, Hein K R G. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility[J]. Fuel, 1996, 75(5): 560-564.
    [3]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社, 1998.
    [4]章明川.煤粉着火及切圆燃烧火焰稳定性分析[D].北京:清华大学, 1990.
    [5] Song Y H, Beer J M, Sarofim A F. Reduction of nitric oxide by coal char at temperatures of 1250~1750 K[J]. Combustion Science and Technology, 1981, 25(5-6): 237-240.
    [6] Vilas E, Skifter U, Jensen A D, Lopez C, Maier J, Glarborg P. Experimental and modeling study of biomass reburning[J]. Energy & Fuels, 2004, 18(5): 1442-1450.
    [7] Lee J K, Suh D J, Park S, Park D. Effects of pyrolysis conditions on the reactivity of char for the reduction of nitric oxide with ammonia[J]. Fuel, 1993, 72(7): 935-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700