超细煤粉O_2/CO_2燃烧及NOx异相还原机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,生态环境越来越受到人们的重视,如今人类正面临着三大环境问题的困扰:温室效应、酸雨和臭氧层破坏。后二者均已爆发过严重的环境危机,如1952年的英国伦敦烟雾酸雨事件、美国洛杉矶烟雾事件和南极臭氧层空洞,因此早在20世纪60、70年代就引起了国际社会的重视,至今已发展了一系列卓有成效的控制和减排技术与措施。但化石燃料尤其是煤燃烧过程排放的大量二氧化碳造成的温室效应近年来才引起了各国的普遍重视。许多控制CO_2排放的技术应运而生。其中O_2/CO_2燃烧技术是一种行之有效且性价比较高的综合控制污染物排放的新型洁净燃烧技术。本文提出的超细煤粉O_2/CO_2燃烧技术将超细煤粉应用于传统的O_2/CO_2燃烧技术,试图将两者的优点结合起来以达到扬长补短的效果,进一步发展成为既拥有良好的燃烧性质,又具有较好的污染物排放性能的煤粉燃烧新技术,研究成果可为新一轮的高效低污染燃烧设备的开发提供技术支撑,甚至有可能成为一种值得大力推广的污染物协同脱除的新兴技术。本论文主要采用热显微镜、热天平、固定床试验台和携带流综合燃烧试验台,结合X射线光电子能谱仪(XPS)和量子化学计算软件,对超细煤粉/焦表面性质和超细煤粉在O_2/CO_2气氛中热解和燃烧过程、污染物排放特性以及NO异相还原机理等关键问题,进行了一系列探索性的研究。
     机械力化学效应在无机物制备领域不仅是一个研究热点,而且已得到应用;但在煤研究领域却鲜有研究或报道。本文第一章对超细煤粉粉磨过程中机械力化学效应进行了研究,利用XPS对超细煤粉表面的元素种类和碳、氮、氧和硫元素存在形态进行了测试和分析,得到了它们随粒径变化的规律,可为粉碎理论和超细煤粉表面化学特性提供参考。结果表明机械力化学作用对不同元素作用的程度不同。
     热解过程是煤转化过程的初级阶段,对其进行深入研究有助于增进对煤的利用过程如燃烧、气化、液化等的理解。为此在固定床试验台上进行了超细煤粉CO_2气氛中的热解试验,研究了煤种、煤粉粒度和温度对超细煤粉在高浓度CO_2下的热解气体成分的影响,并分析了它们的生成机理。结果显示煤中氮主要以NH3、HCN和N2O形式析出,N2O的生成与NO的存在以及CO_2气氛有较大关系;热解气氛、温度和粒径对于CO析出的影响都较大。
     了解燃烧特性是燃料利用的前提和基础。本文分别在热显微镜和高温热天平中研究了超细煤粉在O_2/CO_2气氛中的着火和燃烧特性。在改装的热显微镜系统中观察和分析了超细煤粉在O_2/CO_2气氛中着火形态和火焰特征,揭示了气氛、煤粉粒径、氧气流量和氧气浓度等参数对着火的影响规律。试验发现在所设定的条件下,煤柱在N2/O_2中比在CO_2/O_2中更容易着火,火焰更明显。煤粉粒径会影响着火方式;实验条件下,平均粒径为33.68μm的煤粉是均相着火方式,而平均粒径低于20μm的煤粉都是非均相着火。在热重试验中,采用非等温热重分析方法,详细分析了煤粉粒径、升温速率、气氛和氧气含量等因素对细化和超细化煤粉在O_2/CO_2气氛中燃烧的影响。结果表明:氧气浓度对超细煤粉在O_2/CO_2气氛中的燃烧性能影响最大;煤粉平均粒径越小,煤粉的燃烧性能也越好;升温速率的增大在氧气浓度较高时对于煤粉燃烧性能的提升作用较明显。
     为进一步了解超细煤粉在O_2/CO_2气氛中燃烧的特点和污染物的析出特性,设计、建成了一个能够较好地模拟燃烧过程的携带流综合燃烧试验台。通过试验得出了煤粉粒度、炉膛温度和过量空气系数、循环NOx以及气氛等因素对CO_2、CO气体和NOx排放的影响规律,对它们的影响机理进行了分析。采用灰色关联方法对过氧系数、煤粉粒径、温度和循环NO浓度等4个因素对5种烟气成分(CO_2,CO,N2O,NO和NO)和氮转化率的关联度进行了排序,结果发现循环NO浓度只对NO_2影响较明显,铁法烟煤的其他三种对各种母因素的影响都比较明显,而内蒙古煤稍有不同,过氧系数和温度对CO_2、NO和氮转化率的影响比较明显而粒径对CO_2、CO和氮转化率影响比较明显。
     超细煤粉在高浓度CO_2气氛中热解过程中煤粉/焦表面氮官能团的变化对于理解煤粉在O_2/CO_2气氛中热解、燃烧时氮元素的转化过程有重要参考作用,也可为后续的量子化学模拟提供参考。本文在固定床试验台上在高浓度CO_2气体中制取了不同温度下的煤焦,并对它们进行了XPS测试,得到了NO在高浓度CO_2气氛下与煤焦异相反应的重要信息。基于试验结果,以密度泛函理论和有机反应理论为基础,本文从微观角度对超细煤粉在O_2/CO_2气氛中NO异相还原机理进行了研究。提出了气化/燃烧过程的简化煤焦模型,计算了小分子在超细煤焦表面吸附和NO在气化煤焦表面吸附的热力学、结构参数和吸附选择性,发现气体分子在煤焦表面倾向于以分子整体或部分在两个活性点之间侧向平行方式吸附;未气化煤焦表面有利于NO的吸附而气化煤焦表面相对不利。以反应热和布居数分析为基础,进一步详细分析了异相还原反应通道的各个反应步骤,最后确定出可能的NO异相还原的反应机理,可为煤粉在O_2/CO_2气氛中燃烧过程中NOx转化机理提供参考。
With the development of the society, more and more attention has been paid to ecological environment. Nowadays, mankind is facing three serious environmental problems: greenhouse effect, acid rain and ozone depletion. The latter two have ever caused serious environmental crisis, such as the London smog rain event in 1952,Los Angeles smog event and Antarctic ozone hole which have aroused the attention of the international community during the 60s and 70s of 20th century. From then on, a series of effective technologies and measures for control and reduction of pollutant have been developed. However, the greenhouse effect, caused by emission of carbon dioxide from fossil fuel combustion especially coal combustion, has gained attention and credibility in recent years. Many technologies for controlling CO_2 emission are developing, among which O_2/CO_2 combustion technology is an effective, high cost-effective, highly competitive comprehensive clean combustion technology. Superfine pulverized coal O_2/CO_2 combustion technology is proposed in the paper which applies superfine pulverized coal to the traditional O_2/CO_2 combustion technology. We attempt to combine the advantages of both in order to achieve good combustion properties and lower pollutant emission. The research results could provide technical support for a new round of research and design of high efficiency and low combustion equipments and might become a new widely promoting technology for simultaneous removal of contaminants.
     A series of exploratory studies have been conducted on many key issues concerning superfine pulverized coal O_2/CO_2 combustion technology. Surface properties of superfine coal/char, the pyrolysis and combustion process of superfine coal in O_2/CO_2, pollutants emission characteristics and NO heterogeneous reduction mechanism have been studied using hot stage microscope, thermogravimetric analysis(TGA), fixed-bed reactor bench and entrained flow comprehensive combustion bench combined with X-ray photoelectron spectroscopy(XPS) and quantum chemistry calculation software.
     Mechanochemical effect is not only a research focus, but also has been applied in inorganic preparation. However, there are few reports in coal research field. The mechanochemical effect during the grinding process was studied in the first chapter. The element types,the functionalities of carbon, nitrogen, oxygen and sulfur on coal surface and their variations with coal particle size have been tested and analyzed using X-ray photoelectron spectroscopy (XPS). The results showed that mechanical force have different effects on different elements. The research could enrich the comminution theory and surface chemical characteristics of superfine pulverized coal.
     Pyrolysis is the initial stage of coal conversion process. Therefore a thorough study on pyrolysis helps to understand coal utilization processes such as combustion, gasification, liquefaction. Pyrolysis experiment of superfine pulverized coal in CO_2 using the fixed bed reactor bench were carried out. Moreover, the effects of coal type, particle size and temperature on the evolved gas composition and the gas release mechanism were analyzed. The results showed that nitrogen in coal evolves mainly in the forms of NH3, HCN and N2O while the occurrence of N2O and NO are closely related to the existence of CO_2 atmosphere. The atmosphere, temperature and coal particle size have great influence on the release of CO.
     A deep insight into the combustion characteristics of fossil fuel provides the prerequisite and basis for their usage. The ignition and combustion characteristics of superfine pulverized coal were investigated using a thermogravimetry and a hot stage microscopy. Ignition flame characteristics of superfine pulverized coal in the O_2/CO_2 atmosphere have been observed using a hot stage microscope attaching a camera. The effects of atmosphere, particle size, oxygen flow rate and oxygen concentration on the ignition characteristics of micro-pulverized coal were analyzed. It is found that it is easier for coal to ignite in N2/O_2 mixture than in CO_2/O_2 mixture and for the coals particle size above 20μm, the ignition process become more violent for the volatile matter evolves intensively. Particle size of coal affects the ignition mode. Homogeneous ignition occurred in the case of 33.68μm while heterogeneous ignition took place in the cases of lower than 20μm. On the thermogravimetry the effects of oxygen concentration, particle size and heating rate on the coal combustion characteristics under O_2/CO_2 atmosphere were analyzed. The results indicated that oxygen concentration played the most important role. As the particle size decreases, the ignition and burnout temperatures decrease while the comprehensive combustion index S increases. Higher oxygen concentration helps to promote the effect of heating rate.
     An entrained flow comprehensive combustion test bench has been designed and built to further study the combustion and emission characteristics of superfine pulverized coal in the O_2/CO_2 atmosphere. The effects of particle size, furnace temperature, stoichiometric ratio, recycled NOx on the CO_2, CO and NOx emissions have been analyzed. Grey correlation method has been applied to calculate and sort the relation degrees of the factors over the gases CO_2, CO, N2O, NO_2 and NO and nitrogen conversion rate. The results indicated that the concentration of recycled NO only have apparent impact on the formation of NO_2 .Other three factors have great influence on the gases and nitrogen conversion rate for Tiefa bituminous coal while it is slightly different for Neimenggu coal. Furnace temperature and stoichiometric ratio have obvious influence on CO_2 and NO concentrations and nitrogen conversion rate while particle size has apparent influence on CO_2 and CO concentrations and nitrogen conversion rate.
     The variations of functional groups on the surface of superfine pulverized coal/char during pyrolysis in CO_2 atmosphere promote the understanding of the conversion process of the functional groups during pyrolysis and combustion in the O_2/CO_2 atmosphere and it is also an important reference to the simulation of quantum chemistry. We have acquired coal char in the high concentration of CO_2 at different temperatures on the fixed bed reactor. Afterwards, XPS tests have been conducted to reveal the variations of the functional groups of coal/char at different stages of pyrolysis.The heterogeneous mechanism of NO reduction during superfine pulverized coal O_2/CO_2 combustion has been investigated from a microscopic view based on the experimental results and combined with the density functional theory and organic reaction theory. Simplified models of coal char during gasification and combustion have been proposed and the thermodynamic, structural parameters and adsorption selectivity of adsorption process of small molecules the surfaces of coal char and coal char during gasification. It is found that small gas molecules tend to wholly or partly adsorb onto the char surfaces between two active sites in a side parallel way. The ungasified coal char surface is more favorable of NO adsorption than the coal char during gasification. On the basis of reaction heat and population analysis, heterogeneous reduction reaction steps and pathways are further analyzed in detail and finally the NO heterogeneous reduction mechanism is concluded which could provide a reference for the conversion of NOx in the oxy-fuel combustion process.
引文
[1]李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展.热能动力工程,2007, 22(3): 231- 236
    [2]李庆钊,赵长遂.燃煤电站二氧化碳控制技术研究.锅炉技术,2007,38(6):65-69
    [3] Thomas. Carbon dioxide capture for storage in deep geologic formations-result from the CO2 capture project I. Elservier, UK, 2005:1-15.
    [4]黄斌,刘练波,许世森.二氧化碳的捕获和封存技术进展.中国电力,2007,40(3):14-17
    [5]毛玉如.循环流化床富氧燃烧技术的试验和理论研究.浙江大学,2003
    [6]刘彦丰,阎维平,丁千岭.控制和减缓电力生产过程中CO2排放的技术.华北电力大学学报, 2000, 27(2):36-41
    [7] Akai M., Kagajo T., Inoue M.Performance evaluation of fossil power plant with CO2 recovery and sequestering system. Energy Conversion and Management,1995,36(6-9):801~804
    [8] Gottlicher R., Pruschek R. Compare of removal systems for fossil-fuelled power plant process. Energy conversion and management.1995,38:s173-s178
    [9] Singh D., Croiset E., Douglas P. L., el al. Techno-economic study of CO2 capture from an exist- ing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy conver- sion and management, 2003,44(19): 3073-3091
    [10]郑瑛,池保华,王保文,等.燃煤CO2减排技术.中国电力,2006,39(10):91-94
    [11]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究.中国电力,1997,30(6):59-62
    [12] Molina A., Shaddix C. R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion.Proceedings of the Combustion Institute, 2007, 31(2): 1905-1912
    [13] Suda T., Masuko K., Sato J., et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion. Fuel, 2007,86(12-13): 2008-2015
    [14] Kimura N., Omata K., Kiga T., et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion Management, 1995, 36(6-9): 805-808.
    [15]姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究.中国电机工程学报,2000, 20 (6):71-74, 78
    [16]姜秀民,邱健荣,李巨斌,等。超细化煤粉低温燃烧的NOx、SO2生成特性研究.环境科学学报,2000,20(4):431-434
    [17] Yamada T., Kiga T., Fujita N., et al. O2/CO2 combustion-applied pulverized coal-fired power plant for CO2 recovery.Ishikawajima-Harima Giho,1999,39(l):29-34.(In Japanese)
    [18] Nsakala N., Marion J., Guha M., et al. Engineering feasibility of CO2 capture on an existing US coal-fired power plant. In: First Conference on Carbon Sequestration, Washington DC, United States, 2001.
    [19] Salatino P., Senneca O., Masi S. Gasification of a coal char by oxygen and carbon dioxide. Carbon, 1998, 36(4): 443-452.
    [20] Anderson, R.E.et al. Oxygen-enriched gasification of coal and other solid fuels for zero- emission power generation via synthesis gas and carbon dioxide sequestration . PCT Int. Appl. WO 03 49 122 (Cl.G21D), 12 Jun 2003,US Appl.PV336673.
    [21] Andries J., Becht J. G. M., Hoppesteyn P. D. J. Pressurized fluidized bed combustion and gasification of coal using flue gas recirculation and oxygen injection. Energy Conversion and Management, 1997, 38( Supplement 1,Proceedings of the Third International Conference on Carbon Dioxide Removal,1996),S117-S122.
    [22] Marcourta M., Paquay V., Piela A., Pirard J. P. Coal gasification at pressure by mixtures of carbon dioxide and oxygen. Fuel, 1983,62(7): 823-828
    [23] Chang L. P., Xie K. C., Li C. Z. Release of fuel-nitrogen during the gasification of Shenmu coal in O2 .Fuel Processing Technology,2004,85(8-10):1053-1063
    [24]张阿玲,方栋.温室气体CO2的控制和回收利用.北京:中国环境科学出版社,1996
    [25] Chiesa P., Lozza S. C. A comparative analysis of IGCCs with CO2 sequestration. Proceeding of the 4th International Conference on Greenhouse Gas Control Technologies.Interlaken, Switzerland, 1999:107-112
    [26] Meisen A., Shuai X. S. Research and development issues in CO2 capture. Energy Conversion Management,1997,38:37~42
    [27] Hosoda H., Hirama T. Sulphur removal by limestone in a fluidized-bed coal combustion with a mixture of oxygen and recycled flue gas.Ryusan to Kogyo,2000,53,(5):55-59.(In Japanese)
    [28] Liu H., Okazaki K. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. 2003,Fuel, 82 (11): 1427-1436
    [29] Chen J. C., Li Z. S. Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere. Journal of Hazardous Materials, 2007,142(1-2): 266-271
    [30] Tan Y. W., Croiset E., Douglas M. A., et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 2006,85(4): 507-512
    [31] Croiset E., Thambimuthu K.V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel, 2001,80(14): 2117-2121
    [32] Hu Y., Naito S., Kobayashi N., et al. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel, 2000,79:1925-1932
    [33] Okazaki K., Ando T. NOx reduction mechanism in coal combustion with recycled CO2. Energy, 1997,22(2-3):207-215
    [34] Nozaki T., Takano S., Kiga T.,et al. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture. Energy, 1997,22(2-3): 199-205
    [35] Zheng L.G., Furimsky E. Assessment of coal combustion in O2+ CO2 by equilibrium calculations. Fuel Processing Technology, 2003,81(1): 23-34
    [36]刘靖昀.富氧环境下煤粉燃烧特性试验研究.浙江大学博士论文,2006
    [37] Liu H., Zailani R., Gibbs B. M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel, 2005,84(7-8): 833-840
    [38] Liu H., Zailani R., Gibbs B. M. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel, 2005,84(16): 2109-2115
    [39] Hu Y. Q., Nikzat H., Nawata M.,et al. The characteristics of coal-char oxidation under high partial pressure of oxygen. Fuel, 2001,80(14): 2111-2116
    [40] Hu Y. Q., Kobayashi N., Hasatani M. Effects of coal properties on recycled-NOx reduction in coal combustion with O2/recycled flue gas. Energy Conversion and Management, 2003,44(14): 2331-2340
    [41] Hu Y. Q., Kobayashi N., Hasatani M. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio. Fuel, 2001,80:1851-1855
    [42] Croiset E., Thambimuthu K., Palmer A. Coal combustion in O2/CO2 mixtures compared with air. The Canadian Journal of Chemical Engineering, 2000, 78(2):402-407
    [43]杨冬,路春美,王永征,等.不同煤种燃烧中NOx排放规律的试验研究.华东电力, 2006, 34(6):9-12
    [44]毛玉如,方梦祥,吴学成,等.富氧气氛下煤焦热重试验与模拟.热力发电,2005,(3):22-24
    [45]毛玉如,方梦祥,骆仲泱,等.富氧气氛下循环流化床煤燃烧试验研究.燃烧科学与技术, 20 05,(2):188-191
    [46]毛玉如,方梦祥,王勤辉,等. O2/CO2气氛下循环流化床煤燃烧污染物排放的试验研究.动力工程,2004,(3):411-415
    [47]毛玉如,方梦祥,骆仲泱,等. O2/CO2气氛下石灰石煅烧与硫化反应研究.燃料化学学报, 20 04,(3):323-328
    [48]骆仲泱,毛玉如,吴学成,等. O2/CO2气氛下煤燃烧特性试验研究与分析.热力发电, 2004,6: 14-18
    [49]毛玉如,方梦祥,骆仲泱. O2/CO2气氛下煤焦热重试验研究.电站系统工程,2004,(5):17-18
    [50]毛玉如,方梦祥,骆仲泱. O2/CO2气氛下石灰石煅烧分解的动力学和热力学研究.电力环境保护, 2004,(4):43-45
    [51]毛玉如,方梦祥,骆仲泱,等.循环流化床富氧燃烧技术的试验研究.锅炉技术, 2004,6:27-31
    [52]毛玉如,骆仲泱,玉树荣,等.火电厂CO2排放降低和控制技术研究.热力发电,2003,1:39-41
    [53]毛玉如,蒋林,方梦祥,等.工业锅炉CO2减排控制研究.电站系统工程,2002,(2):19-22
    [54]孟德润,赵翔,周俊虎,等.煤在O2/CO2中燃烧的NOx释放规律.化工学报, 2005, 56(12): 2410- 2414
    [55]刘彦. O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究.浙江大学博士论文,2004
    [56]于岩,阎维平,刘彦丰,等.空气分离/烟气再循环技术中NOx排放特性及机理分析.热力发电, 2003,32(10):47-49
    [57]于岩. O2/CO2燃烧技术中NOx排放特性的实验研究及机理分析.华北电力大学硕士论文.2003
    [58] Zhang X. Experimental study on SO2 removal in O2/CO2 coal combustion. Preprints of Symposia- American Chemical Society, Division of Fuel Chemistry, 2003, 48 (1): 417-418
    [59] Sastranegara A. Mechanism of highly efficient in-fumace desulfurization in O2/CO2 pulverized coal combustion. Seminar on Air-PPI Tokyo Institute of Technology, 1999, (1): 104-109
    [60]王宏,邱建荣,郑楚光.燃煤在O2/CO2方式下SO2生成特性的研究.华中科技大学学报(自然科学版), 2002,30(1):100-102
    [61]陈传敏,赵长遂,赵毅,等. O2/ CO2气氛下燃煤过程中SO2排放特性实验.东南大学学报(自然科学版), 2006, 36(4):546-550
    [62] Wang J. W., Srisamanee P., Hosoda H. et al. Emission characteristics of NOx, N2O and SO2 under O2/CO2 Combustion from Fluidized Bed Combustor.Guizhou Science, 1999,17(1):7-13
    [63] Hayashi J.I., Hirama T.,Okawa R., et al. Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed. Fuel, 2002, (81): 1179-1188
    [64] Hosoda H., Hirama T. A novel FBC process of coal for pure Oxygen added to flue-gas recycled. Australian Coal Science, 1996
    [65] Hosoda H., Hirama T., Azuma N., et al. NOx and N2Oemission in bubbling fluidized-bed coal combustion with Oxygen and recycled flue gas: macroscopic characteristics of their formation and reduction. Energy&Fuels, 1998,12(1): 102-108
    [66] Hirma T., Hosoda H., Azuma N., et al. Drastic Reduction of NOx and N2O emissions from BFBC of coal by means of CO2/O2combustion: effects of fuel gas recycle and coal type. International Symposium of Engineering Foundation FLUIDIZATION IX, USA, 1998
    [67]祝文杰,周永刚,杨建国,等.用热天平研究煤的燃烧特性.煤炭科学技术,2004,32 (3): 8-11
    [68]樊越胜,邹峥,高巨宝,等.富氧气氛中煤粉燃烧特性改善的实验研究.西安交通大学学报,2006,40(1):18-21
    [69] Yan W. P., Liu Y. F. Prediction and measurements of carbon combustion rate in O2/CO2 environment. 1st U.S.-China Symposium on CO2 Emission Control Science&Technology. Hangzhou, China, 2001/8/22~24
    [70] Liu Y. F., Yan W. P., Kang Z. Z., et al. Simulation of pulverized coal combustion in O2/CO2 mixture.1st U.S.-China Symposium on CO2 Emission Control Science&Technology. Hangzhou, China,2001/8/22~24
    [71]刘彦丰,阎维平,宋之平.碳粒在CO2/O2气氛中燃烧速率的研究.工程热物理学报,1999, 20(6): 769-777
    [72]刘彦丰.煤粉在高浓度CO2下的燃烧与气化.华北电力大学博士学位论文,2001,12
    [73] Kiga T., Takano S., Kimura N., et al. Characteristics of pulverized-coal combustion in the sys- tem of oxygen/recycled flue gas combustion. Energy Conversion and Management, 1997,38, Supplement 1:S129-S134
    [74] Okawa M., Kimura N., Kiga T., et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/ CO2.Energy Conversion and Management, 1997,38,Supplement 1, Pages S123-S127
    [75]韩才元,徐明厚,周怀春,等.煤粉燃烧.科学出版社,2001
    [76] Wolsky A. M. A new method of CO2 recovery.79th Annual Meeting of the Air Pollution Control Assoiation, Minneapolis, Minnesota, June 22~27,1986
    [77] Takano S., Kiga T., Endo Y., et al. CO2 recovery from PCF power plant with O2/CO2 combustion process, IHI Engineering Review, 1995,28(4): 446~450
    [78] Gohlke O., busch M. Reduction of combustion by-products in WTE: O2 enrichment of under fire air in the Martin Syncom process waste-to-energy (WTE) plants, Chemosphere, 2001, 42: 545-550
    [79]刘忠,宋蔷,姚强,张利琴. O2/CO2燃烧技术及其污染物生成与控制.华北电力大学学报, 2007, 34(1):82-88
    [80] Gibbins J. Immediate Strategies of CO2 Capture. GCEP International Workshop on Clean Coal Technology Development—CO2 Mitigation, Capture, Utilization and Sequestration. August 2005. Beijing, China
    [81]张超群,于立军,崔志刚,等.超细与常规煤粉燃烧动力学特性及计算分析.化工学报, 2005, 56(11):2189-2194
    [82]姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析.中国电机工程学报, 2002, 22(12):142-145
    [83]姜秀民,杨海平,李彦,等。煤粉颗粒粒度分形分析.煤炭学报,2003, 28(4):414-418
    [84]姜秀民,杨海平,李巨斌,等.煤粉超细化对炉内受热面积灰与结渣的影响.热能动力工程, 2002, (3):254-257
    [85]李巨斌,姜秀民,王红,等.煤粉颗粒粒度对低温NOx和SO2生成特性的影响.煤炭转化.1999, 22(4): 63-67
    [86]薛永强,来蔚鹏,王志忠.粒度对煤粒燃烧和热解影响的理论分析.煤炭转化,2005, 28(3) :19-21
    [87]李可夫.一维沉降炉上的超细化煤粉热解与再燃实验研究.哈尔滨工业大学硕士学位论文, 2004
    [88]陈占军,金晶,钟海卿,等.超细化煤粉气流着火特性的试验研究.热力发电,2004,4:45-47
    [89]白旭东,王阳,赵炎钧,等.超细化煤粉的投入量对再燃效果影响的实验研究.热能动力工程,2005,20(6):596-598
    [90]金晶,张忠孝,李瑞阳,等.超细煤粉燃烧氮氧化物释放特性的研究.动力工程, 2004, 4(5): 716-720
    [91]董平,单忠健,吕玉庭,等.超细煤粉燃烧过程中污染物生成特性的研究.洁净煤技术, 2004, 10(3): 33-37
    [92]姜秀民,刘辉,闫澈,等.超细煤粉NOx和SO2排放特性与燃烧特性.化工学报,2004,55(5):783- 787
    [93]郭永红,孙保民,康志忠.超细煤粉再燃低NOx燃烧技术的数值模拟.动力工程, 2005,25 (3):422-426
    [94]金晶,张忠孝,李瑞阳.超细煤粉再燃的模拟计算与试验研究.中国电机工程学报,2004,24(10): 215-218
    [95]金晶,李瑞阳,张忠孝.煤粉粒度对煤粉燃烧NOx排放的影响.环境科学学报,2005,25(4): 502- 506
    [96]胡满银,刘忠,王小敏.再燃中超细煤粉热解机理及挥发分释放的数值模拟.动力工程,2005, 25(3): 427-432
    [97]徐璋.超细粉再燃降低NOx排放的热态试验研究与数值模拟.浙江大学博士论文.2003.7
    [1]杨华明,邱冠周,王淀佐.超细粉碎机械化学的发展.金属矿山,2000(9):21-24.31
    [2] Peters K. Mechanochemische Peaktionen. Frankfurt,1962,78-79
    [3]帅英,张少明,路承杰.机械力化学研究进展及其展望.新技术新工艺,2006(11):21-24
    [4] Urakaev F. K., Boldyrev V. V. Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technology ,2000,107(1-2): 93-107
    [5] Urakaev F. K., Boldyrev V. V. Mechanism and kinetics of mechanochemical processes in comminuting devices: 2.Applications of the theory. Experiment. Powder Technology,2000,107 (3):197-206
    [6]席生岐,屈晓燕.高能球磨固态扩散反映研究.材料科学与工艺,2000,8 (3) :88-91
    [7]杨南如.机械力化学过程及效应(I)--机械力化学效应.建筑材料学报,2000,3(1):19-26
    [8] Khodakov G. S., Gorlov E.G., Golovin G. S. coal suspension fuel. Solid Fuel Chemistry (English Translation of Khimiya Tverdogo Topliva), 2005,39(6): 15-3
    [9] Red'Kina N. I., Khodakov G. S. Effect of mechanically activated sorption on the rheological behavior of coal slurries. Theoretical Foundations of Chemical Engineering, 2003, 37(3):263- 267
    [10] Khrenkova T.M., Kirda V.S.Change in the chemical composition of coal on mechanical action in solvents. Solid Fuel Chemistry (English Translation of Khimiya Tverdogo Topliva), 1988, 22 (3):11-14
    [11] Kuznetsov P.N., Kuznetsova L.I., Chumakov V. G. Mechanochemical activation of iron ore-based catalysts for the hydrogenation of brown coal.Materials Research Innovations,2000,3(6):340- 346
    [12]姜秀民,李巨斌,邱健荣.煤粉颗粒粒度对煤质分析特性与燃烧特性的影响.煤炭学报, 1999,24(6):643~647
    [13]刘忠,阎维平,高正阳,等.超细煤粉粒度对煤质分析特性的影响.华北电力大学学报,2004,31(4):63-65
    [14]付晓恒,李萍,刘虎,等.煤的超细粉碎与超净煤的分选.煤炭学报,2005,30(2):219-223
    [15]曾凡桂.矿物质在煤粉中的分布规律.燃烧科学与技术,2001,7(2):170-173
    [16]卢建军,谢克昌.煤的超细气流粉碎和分级对组成和结构的影响.中国粉体技术,2003, 6: 8-11
    [17]刘转年,周安宁,金奇庭.超细煤粉的制备及性质研究.煤化工, 2002,1:19-21
    [18]周安宁,郭树才,葛岭梅.神木煤的气流超细粉碎研究.西安矿业学院学报,1996,16(2):139-141
    [19]陈鹏.中国煤中硫的赋存特征及脱硫.煤炭转化,1994,17(2):1-9
    [20]高连芬,刘桂建,ChouChen-Lin,等.中国煤中硫的地球化学研究.矿物岩石地球化学通报. 2005.24(1):79-87
    [21]于洪观,刘泽常,王力,等.煤燃烧过程中各形态硫析出规律的研究.煤炭转化,1993, 22(3): 53-57
    [22]向军,胡松,孙路石,等.煤燃烧过程中碳,氧官能团演化行为.化工学报, 2006, 57(9):2180 -2184
    [23] Robert P., Helena W. The influence of oxidation with HNO3 on the surface composition of high-sulphur coals XPS study. Fuel Processing Technology. 2006,87:1021–1029
    [24] Kelemen S. R., Afeworki M., Gorbaty M. L. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods. Energy Fuels, 2002, 16 (6):1450~1462
    [25] Kapteijn F.,Moulijin J.A., Matzner S., Boehm H.P. The development of nitrogen functionality in model chars during gasification in CO2 and O2.Carbon, 1999, 37(7):1143~l150
    [26] Schmiers H., Friebel J., Streubel P. K?psel R. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compunds during pyrolysis.Carbon,1999,37(12):1965~1978
    [27]刘艳华,车得福,李荫堂,惠世恩,徐通模.X射线光电子能谱确定铜川煤及其焦中氮的形态.西安交通大学学报,2001,35(7):661-665
    [28] Perry D.L., Grint A. Application of XPS to coal characterization. Fuel,1983,62(9):1024-1033
    [29] Jones R.B.,McCourt C. B., Swift P. XPS studies of nitrogen and sulphur in coal.Proceeding of lnternational Conference on Coal Science. Dusseldorf, VDI-Verlag, 1981:657-663
    [30] Kelemen S R,Gorbaty M L,Kwiatek P J. Quantification of nitrogen forms in Argonne premium coals. Energy&Fuels,1994,8(4):896-906
    [31] Pels J.R., Kapteijn F., Moulijn J. A., et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis.Carbon, 1995,33(11):1641-1653
    [32] Buckley A.N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoel- ectron spectroscopy. Fuel Process Technology, 1994,38: 165-179
    [33]姚明宇,刘艳华,车得福.宜宾煤中氮的形态及其变迁规律研究.西安交通大学学报,2003, 37(7):759-763
    [34] Suzuki T., Kyotani T., Tomita A. Study on the carbon-nitric oxide reaction in the presence of oxygen. Industrial&Engineering Chemistry Research, 1994, 33 (11):2840-2845
    [35]周强.煤的热解行为及硫的脱除.大连:大连理工大学.2004
    [36] Li P.S., Hu Y., Yu W.,et al. Investigation of sulfur forms and transformation during the co- combustion of sewage sludge and coal using X-ray photo- electron spectroscopy. Journal of Hazardous Materials, 2009.167(1-3):1126-1132
    [37] Olivella M.A., Palacios J.M., Vairavamurthy A. A study of sulfur functionalities in fossil fuels using destructive- (ASTM and Py–GC–MS) and non-destructive- (SEM–EDX, XANES and XPS) techniques.Fuel,2002, 81(4):405-411
    [38]徐秀峰,张蓬洲.用XPS表征氧,氮,硫元素的存在形态.煤炭转化,1996,19(1):72-77
    [39]李敏.煤表面含氧官能团的研究[硕士论文].山西:太原理工大学.2004
    [1]朱学栋,朱子彬,张成芳,等.煤的热解研究IV.官能团热解模型.华东理工大学学报, 2001, 27(2):113-116,120
    [2]樊俊杰,金晶,张建民,等.超细煤粉热解时轻质烃的析出规律.燃烧科学与技术,2006, 12(4):308-311
    [3]张妮.不同变质程度煤热解甲烷生成特征及反应机制[硕士论文].太原:太原理工大学. 2005.
    [4]谢克昌.煤的结构与反应性.北京:科学出版社.2002
    [5]崔银萍,秦玲丽,杜娟,等.煤热解产物的组成及其影响因素分析.煤化工,2007,2:10-15
    [6]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究.山西:太原理工大学. 2004
    [7]赵丽红,郭慧卿,马青兰.煤热解过程中气态产物分布的研究.煤炭转化,2007,30(1):5-9
    [8]降文萍.煤热解动力学及其挥发分析出规律的研究.山西:太原理工大学[硕士论文].2004
    [9]刘银河,张晓燕,刘艳华,等.程序升温气化过程中氮的释放规律研究.工程热物理学报,2009, 30(12):2125-2128
    [10]许世森,张东亮,任永强.大规模煤气化技术.北京:化学工业出版社.2006
    [11] Feng J.,Li W.Y.,Xie K.C.,Liu M.R.,Li C.Z. Studies of the release rule of NOx precursors during gasification of coal and its char. Fuel processing technology,2003,84(1-3):243-254
    [12] Winter F., Warth C., Loffler G. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized bed conditions.In:26th symposium (International) on combustion.Pittsburgh:The Combustion Institute,1996,3325-3334
    [13] Goel S., Zhang B., Sarofim A. NO and N2O formation during char combustion: Is it HCN or surface attached nitrogen. Combustion and Flame, 1996, 104:213-217
    [1] Dong D. K., Wall T. F.Ignition of coal particles: the influence of experimental technique .Fuel, 1994, 73(7):1114-1119
    [2]牛胜利,路春美,赵建立,等.O2/CO2气氛下煤粉的燃烧规律与动力学特性.动力工程, 2008, 28 (5):769-773
    [3]骆仲泱,毛玉如,吴学成,等.O2/CO2气氛下煤燃烧特性试验研究与分析.热力发电, 2004, 33 (6) :14-18
    [4]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究.中国电机工程学报, 2005, 25(24):118-121
    [5] Molina A., Shaddix C. R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion.Proceedings of the Combustion Institute, 2007, 31(2):1905-1912
    [6] Suda T., Masuko K., Sato J., et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion.Fuel,2007,86(12-13):2008-2015
    [7]骆仲泱,毛玉如,吴学成,等. O2/CO2气氛下煤燃烧特性试验研究与分析.热力发电, 2004, (6):14-18
    [8]李庆钊,赵长遂,武卫芳,等. O2/CO2气氛下煤粉燃烧反应动力学的试验研究.动力工程, 2008, 28(3):447-452
    [9]牛胜利,路春美,赵建立,等. O2/CO2气氛下煤粉的燃烧规律与动力学特性.动力工程,2008,28 (5):769-773
    [10]姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究.中国电机工程学报,2000,20(6):71- 74,78
    [11] Kimura N., Omata K., Kiga T., et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery.Energy Conversion and Management,1995,36(6-9): 805-808
    [12]李庆钊,赵长遂. O2/CO2气氛煤粉燃烧特性试验研究.中国电机工程学报, 2007, 27 (35): 39-43
    [13]张保生,刘建忠,程军,等.微分差热法确定沉降炉试验中低挥发分混煤的着火点.浙江大学学报:工学版,2008,42(5):839-842
    [14]刘靖昀.富氧环境下煤粉燃烧特性试验研究.杭州:浙江大学,2006
    [15] Tan Y., Croiset E., Douglas M.A., et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 2006, 85(4):507-512
    [16]喻秋梅,庞亚军.煤燃烧试验中着火点确定方法的探讨.华北电力技术, 2001(7): 9-10
    [17]朱群益,李瑞扬,秦裕琨,等.煤粉燃烧反应动力学参数的试验研究.动力工程, 2000, 20 (3): 703-706
    [1]朱堃.混煤燃尽特性实验研究及优化配比[硕士论文].武汉:华中科技大学.2009
    [2]徐远纲,张成,夏季,陈刚.不同粒度煤粉的表面结构与燃烧特性研究.热能动力工程,2010, 25 (1):47-50
    [3] Kramlich J.C.,Colea J.A.,McCarthy J.M.,et al. Mechanisms of nitrous oxide formation in coal flames. Combustion and Flame, 1989, 77(3-4):375-384
    [4] Hulgaard T., Johansen K.D. Homogeneous nitrous oxide formation and destruction under combustion conditions. AIChE Journal, 1993, 39(8):1342-1354
    [5]于岩,阎维平,刘彦丰,等. O2/CO2气氛下O2,CO对NO排放特性影响的实验研究.华北电力大学学报,2004,31(2):28-31
    [6]周浩生,陆继东,周琥,等.程序升温条件下铁及其氧化物在CO存在时对N2O的还原机理.环境科学学报,2001,21(2):167-171
    [7]李英杰,赵长遂,段伦博. O2/CO2气氛下煤燃烧产物的热力学分析.热能动力工程, 2007,22(3): 332-335
    [8] Okazaki K., Ando T. NOx reduction mechanism in coal combustion with recycled CO2. Energy, 1997, 22(2-3): 207-215
    [9] Nozaki T., Takano S., Kiga T.,et al. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture. Energy, 1997,22(2-3): 199-205
    [10] Kiga T., Takano S., Kimura N., et al. Characteristics of pulverized-coal combustion in the sys- tem of oxygen/recycled flue gas combustion. Energy Conversion and Management, 1997, 38, Supplement 1:S129-S134
    [11]姜秀民,刘辉,闫澈,等.超细煤粉NOx和SO2排放特性与燃烧特性.化工学报, 2004, 55(5): 783-787
    [12] Visona S. P., Stanmore B. R. Modeling NOx release from a single coal particle:I.Formation of NO from volatile nitrogen. Combustion and Flame, 1996, 105(1-2):92-103
    [13] Maier H., Spliethoff H., Kicherer A., et al. Effect of coal blending and particle size on NOx emission and burnout. Fuel, 1994, 73(9):1447-1452
    [14] Afonso R., Dusatko G. C., Pohl J. H. Measurements of NOx emissions from coal boilers.Com- bustion Science Technology, 1993, 93:41-51
    [15]金晶,李瑞阳,陈占军,等.煤粉粒度对煤粉燃烧NOx排放特性影响的试验研究.热力发电, 2004,33(9):16-18,26
    [16]赵宗彬,李文,李保庆.矿物质对煤焦燃烧过程中NO释放规律的影响.化工学报,2003, 54 (1):100-105
    [17]李巨斌,姜秀民,王红,等.煤粉颗粒粒度对低温NOx和SO2生成特性的影响.煤炭转化.199 9,22(4): 63-67
    [18] Nakamura M., Takashi K., Muwahara M., et al. Demonstration test and practical studies on combustion technologies of Micro-Pulverized coal. International Conference on Power Engineer- ing-97, Tokyo, 1997, 2: 453-458
    [19]周俊虎,周宁,周志军,等.低挥发分煤NO释放特性试验研究.能源工程, 2010,3:44-48
    [20] Lee J.W., Chen S.L., Pershing D.W.,et al. Western States Section/Combustion Institute, Brigham Young University,Provo, UT, 1979
    [21]邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社, 1990:53~84
    [22] Fu C. Y., Zheng J. S., Zhao J. M., et al. Application of grey relational analysis for corrosion failure of oil tubes. Corrosion Science, 2001, 43(5): 881-889
    [1]曾谨言.量子力学.北京:科学出版社,2000
    [2] Foresman J.B., Frisch E. Exploring Chemisty with Electronic Structure Methods. Second Edition
    [3]朱维良,蒋华良,陈凯先,等.分子间相互作用的量子化学研究.化学进展,1999,11(3):247- 253
    [4]姚明宇,刘艳华,车得福.宜宾煤中氮的形态及其变迁规律研究.西安交通大学学报, 2003, 37(7):759-763
    [5] Pels J.R., Kapteijn F., Moulijn J. A., et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis.Carbon, 1995,33(11):1641-1653
    [6] Kapteijn F., Moulijin J.A., Matzner S., et al. The development of nitrogen functionality in model chars during gasification in CO2 and O2.Carbon, 1999, 37(7):1143-1150
    [7] Barckholtz C.,Barckholtz T. A., Hadad C.M. C-H and N-H bond dissociation energies of small aromatic hydrocarbons.Journal of the American Chemical Society,1999,121(3): 491-500
    [8] Kyotani T., Tomita A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory. Journal of Chemical Physics,1999,103 (17):3434-3441
    [9]王宝俊.煤结构与反应性的量子化学研究.太原:太原理工大学,2006
    [10]刘海明,张军营,郑楚光,等.煤中吡啶型氮热解机理的量子化学研究.煤炭转化,2004,27(2): 19-22
    [11]肖继军,张骥,杨栋,等.环四甲撑四硝胺(HMX)结构和性质的DFT研究.化学物理学报,2002, 15(1): 41-45
    [12]黎新,颜肖慈,刘义等.丝氨酸热分解机理的研究.物理化学学报,2003,16(3): 232-236
    [13] Chen N.,Yang R.T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry.Carbon, 1998,36(7-8):1061-1070
    [14] Montoya A., Mondragón F., Truong T.N. Adsorption on carbonaceous surfaces:cost-effective computational strategies for quantum. Carbon, 2002, 40(11):1863-1872
    [15] Zhuang Q.L., Kyotani T., Tomita A. Dynamics of surface oxygen complexes during carbon gasification with oxygen. Energy Fuels, 1995, 9(4):630–634
    [16]申泮文.近代化学导论(上册).北京:高等教育出版社.2002:44
    [17] Chen S.G., Yang R.T., Kapteijn F., et al. New surface oxygen complex on carbon: toward a unified mechanism for carbon gasification reactions. Industrial&Engineering Chemistry Research, 1993,32:2835-2840
    [18] Chen N., Yang R.T. Ab initio molecular orbital study of the unified mechanism and pathways for gas–carbon reactions. Journal of chemical physics,1998; 102:6348-56
    [19] Radovic L.R. The mechanism of CO2 chemisorption on zigzag carbon active sites:A computa- tional chemistry study. Carbon, 2005, 43(5): 907-915
    [20] Montoya A., Truong T.N., Sarofim A.F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion. Journal of Chemical Physics, 2000, 104 (36):8409-8417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700