若干含氮羧酸配体功能配位聚合物的水热合成、晶体结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能配位聚合物在光学、磁学、多孔、催化和手性等方面具有潜在的应用价值,基于含氮羧酸配体合成的功能配位聚合物材料目前已成为该领域最有吸引力的研究课题之一。
     本文通过选择几种含氮羧酸类型的配体和金属离子,依据晶体工程学原理,利用水热合成方法成功地合成了系列具有一维,二维和三维结构的配位聚合物,并对它们磁学、光学性质进行了调控和表征。初步总结了含氮羧酸配位聚合物的组装方法及其空间结构调控规律,探讨了部分配合物结构与性能的关系和规律。
     全文共分七章,第二、三、四章首次较详细地报道了1H-苯并咪唑-5-羧酸(Hbimc)配体的配位特点,合成了九种含bimc配体的配位聚合物,发现了其六种配位模式。
     第一章为前言部分,较系统地介绍了当前配位聚合物的主要研究内容、热点以及在磁学、光学、多孔材料方面的潜在应用,并说明了本课题选题意义和目前取得的研究成果。
     第二章利用bimc配体合成了三种锰、镍低维结构的稳定性高的配位聚合物,其中配合物[Mn(bimc)_2(H_2O)_2]·2H_2O(1)是一维线型链状结构,而配合物[Ni(bimc)_2]·H_2O(2)和Ni(bimc)_2(3)是两个因空间堆垛方式的不同而引起的互为超分子异构体的配位聚合物,两者都为二维(4,4′)层结构,配合物2是一种多孔材料,孔洞内装有溶剂水分子,去掉客体水分子后每个单元有效体积为750.1 (?)3(占总体积36.4%)。弱酸性的配体Hbimc表现了三种配位形式,a:μ_2-O2,N3、b:μ_2-(η_2-O1,O2),N3和c:μ_2-(η_2-O1,O2),N1。配合物1表现出顺磁行为,在低温时可能由链间金属磁耦合作用而产生了弱的反铁磁行为。配合物2表现反铁磁相互作用,主要来源于链间存在的反铁磁耦合作用,链内单核金属由桥联配体bimc连接的超交换作用非常小。
     第三章采用刚性的Hbimc配体和柔性的已二酸(H_2hex)配体与过渡金属(Mn、Co)盐合成了两种异质同晶的配位聚合物,配合物[Mn_2(bimc)_2(hex)]·2H_2O(4)和[Co_2(bimc)_2(hex)]·2H_2O(5)都是由含有二核四羧酸连接的桨轮形(paddle wheel)的SBU结构单元[M_2(OOCR)_4],在小分子连接器的桥联下拓展成的二维层结构。配体bimc出现的配位模式是d类型:μ_3-O1,O2,N3。配合物4具有不同于一般的二核锰而类似于典型二核铜磁学性质,表现出反铁磁性,温度低于10 K时出现顺磁净质,实部磁化率(x_(ac)~′)对频率有较强的依赖性。配合物5具有自旋-轨道耦合现象,表现出较强的反铁磁性。
     第四章采用刚性的Hbimc作单一配体、以及分别和另外三种刚性的π共轭氮杂环配体混合与金属镉离子合成了四种低维结构的金属镉配位聚合物,其中配合物Cd(bimc)_2(6)和Cd(bimc)(phen)(H_2O)(7)是二维层状结构,而配合物Cd(bimc)(hq)(H_2O)(8)和[Cd_2(bimc)(bbp)_2(CH_3COO)]·H_2O(9)是一维链状结构。配体bimc出现了两种新的配位模式e和f类型,e:μ_3-(η_2-O1,O2′),N1,N3、f:μ_3-O1,N1,N3。配体bimc内由于存在含π共轭的芳香环,与d~(10)金属镉形成的配合物具有荧光性质。当分别引入刚性的含π共轭的氮杂环的8-羟基喹啉、邻菲啰啉、2,6-二苯并咪唑毗啶时对配合物的荧光性质具有一定的影响,发出不同颜色的特征荧光,配合物6、7和8具有荧光寿命,其中尤以引入8-羟基喹啉的三元配合物8寿命较长。研究表明:刚性的含π共轭芳香环的Hbimc配体在构筑具有荧光性质的功能配位聚合物方面表现出了潜在的应用价值。
     第五章基于Hbimc和两种二羧酸混合配体与锰离子合成了二种只含二羧酸配体的锰配位聚合物。配合物Mn_3(imdc)_2(H_2O)_2(10)和Mn_5(suc)_4(OH)_2(11)是两种柱层式三维网状聚合物。其中配合物10是以二聚合体Mn(2)_2(imdc)_2(H_2O)_2连接成的层结构,在Mn(1)(imdc)_2(H_2O)为柱单元拓展下成的三维柱层结构。化合物11是以五核[Mn_5(OOCCH_2CH_2COO)_2(OH)_2]单元相互连接成层结构,以一个丁二酸配体柱单元拓展成的三维柱层结构。配合物10表现出较弱的反铁磁相互作用,主要是由二聚合体内两金属中心通过两个μ_2、η~1-COO~-桥联磁超交换作用的结果,而单聚体金属中心间的磁交换作用非常小。
     第六章利用三功能性的膦酸氨基甘氨酸(Hpmg)合成了两种三维网状结构的配位聚合物,其中配合物Pb_3[O_3PCH_2NHCH_2COO]_2·H_2O(12)内含有24-、10-、10-、8-四种成员环构成的通道体系,而配合物Cd(O_3PCH_2NH_2CH_2COO)_2(H_2O)_2(13)内含有12-、20-和20-三种成员环构成的通道体系,两配合物都具有类似于沸石结构的三维框架。本章配体pmg所表现的三种配位模式b、c、e,是以前文献从没报道过的。热稳定性分析表明配合物12沸石结构框架具有较高的热稳定性。研究表明:金属离子配位方式或离子半径的差别,反应条件中PH值的不同,可能会明显改变配体pmg去质子化方式,产生不同类型的阴离子和配位模式;三功能性的pmg配体在碱性较强的条件下易形成阴、阳两性离子[(O~-)_2OPCH_2NH_2~+CH_2COO~-]。
     第七章对本论文工作进行了较全面地总结,归纳得到了结论,提出了展望。
Functional coordination polymers have potential applications in theareas of luminescence, magnetism, porosity, catalysis, conductivityand chirality etc, The carboxylic acids with N donor as bridged ligandsconstruct directionally functional coordination polymers is one of themost attractive topics of current researches.
     In this manuscript, we use some carboxylic with acid N donorligands and metal ions to synthesized a series of 1D, 2D, 3D coordinationpolymers with hydrothermal synthetic methods in terms ofcrystallography theory and further studied their magnetism andfluorescence. It is also investigated how to controlled assembly thestucture and desired properties coordination polymers, moreover, therelation between structure and property is discussed.
     This thesis is divided into seven chapters, and in the former threechapters we first detailedly report coordination characteristic of1H-benzimidazole-5-carboxylic acid(Hbimc) with nine complexes andsix coordination modes.
     In the first chapter, the main studied content, topics and potentialapplications in magnetism, luminescence and porosity of coordinationpolymers are systemically introduced, as well as the research significanceand the results of this thesis.
     In the second chapter, three low dimensional coordination polymerswere obtained by hydrothermal reaction with high thermal stability.Thecomplex of [Mn(bimc)_2(H_2O)_2]·(H_2O)_2(1) exhibits 1D linear chainsturcture, and two surpramolecular isomerisms of [Ni(bimc)_2]·H_2O(2)and [Ni(bimc)_2] (3) are 2D (4, 4') layer architecture. Complex 2 is amicroporous material comtaining neutral guest water molecules with avoid volume of 750.1 (?)~3 (36.4%) throwing off water. Bimc ligandexhibits three bridging coordinational modes of a: (μ_2-O2, N3), b: [μ_2--(η_2-O1, O2), N3] and c: (μ_2-(η_2-O1, O2'), N1). Complex 1 showsparamagnetic property, and in the lower temperature weak antiferromagnetism by possibly Mn(Ⅱ) ions coupling interaction betweeninterchains. There is weak antiferromagnetic coupling interaction in thecomplex 2 between Ni(Ⅱ) ions through the bimc bridging, and also thereis partly weak ferromagnetic property.
     In the third chapter, two heterogeneous isostructural coordinationpolymers were synthesized containing rigid bimc, flexible hex andtranstion metals(Mn, Co). Both [Mn_2(bimc)_2(hex)]·2H_2O(4) and[Co_2(bimc)_2(hex)]·2H_2O(5) are 2D structure via bridging paddle wheelSBU [M_2(OOCR)_4] by small molecule linker. Bimc ligand exhibits anew coordinational modes of d:μ_3-O1, O2, N3. Complex 4 showsantiferromagnetism like dinuclear copper complex and the presence ofparamagnetic impurities below 10 K, and in-phase susceptibility x_(ac)~′exhibits a frequency-independent peak, and complex 5 shows stronglyantiferromagnetism with spin-orbit coupling.
     In the fourth chapter, four low dimensional cadmium coordinationpolymers were obtained with rigid bimc and threeπ-conjugate with Nligands. The complexes of Cd(bimc)_2(6), Cd(bimc)(phen)(H_2O)(7)belong to 2D layer architecture, and Cd(bimc)(hq)(H_2O)(8),Cd_2(bimc)(Hbbp)_2(CH3COO)(H_2O)(9) exhibit 1D chain sturcture. Thesecond ligand and void obstruct can influence the coordination mode ofbimc to behave two novel forms of e:μ_3-(η_2-O1,O2'), N1, N3 and f;μ_3-O1, N1, N3. Complexes containing bimc and d~(10) metals showfluorescence owing toπ-conjugate aroma ring in ligand bimc, andComplex 6, 7, 8 exhibit fluorescence releasing out differ tinctorial lightwith fluorescence life, and complex 8 behave bigger life. Result indicate:the rigid ligand Hbimc containingπ-conjugate aroma ring in theassembling functional coordination polymers with fluorescence exhibitspotential applications.
     In the fifth chapter, two manganeses complexes were synthesizedonly containing dicarboxylic acid based on mixed ligand of Hbimc anddicarboxylic acids. Two three-dimensional manganese coordinationpolymers of [Mn_2(imdc)_2(H_2O)_2]n(10) and [Mn_5(hex)_2(OH)_2]_n(11) are 3Dnetworks containing pillared layers, complex 10 consists of dimeric[Mn(2)_2(imdc)_2(H_2O)_2] layers and [Mn(1)(imdc)_2(H_2O)] pillars, and complex 11 consists of [Mn_5(OOCCH_2CH_2COO)_2(OH)_2] layers anddeprotonated succinic acid pillars. Complex 10 shows a weakantiferromagnetic coupling interaction between theμ_2,η~1-COO~-bridging Mn~Ⅱions of the dimeric units of [Mn(2)_2(imdc)_2(H_2O)_2],however, the magnetic coupling between the Mn~Ⅱions of[Mn(1)(imdc)_2(H_2O)] units is little.
     In the sixth chapter, two coordination polymers with 3D networkswere obtained in hydrothermal reaction. Both of Pb_3[O_3PCH_2NHCH_2COO]_2·0.5H_2O(12) and Cd(O_3PCH_2NH_2CH_2COO)_2(H_2O)_2(13) containcomplex channel systems constituted of 24-, 10-, 10-, 8-membered ringsand 12-, 20-and 20-membered rings, respectively, and are analogous tozeolite-type frameworks. The three coordination modes of pmg are notreported in the references. Result indicate: coordination fashions andradius of metal ions and the pH value of the reaction system can changedeprotonated mode of the ligand pmg to result different types of ions andcoordination modes, as well as trifunctional pmg reveals easily zwitterionof [~(-2)O_3PCH_2NH_2~+CH_2COO~-] in the strong alkali. Complex 12 show highthermal stability.
     In the last chapter, a briefly conclusion on this work has beenviewed and an outlook have been viewed.
引文
[1] 游效曾,孟庆金,韩万书主编.配位化学进展.北京:高等教育出版社,2003,1-15
    [2] A. F. Willamas, C. Floriani, A. E. MeMerbach et al. Perspectives in Coordination Chemistry. Weinheim: VCH, 1992
    [3] 中国化学会.无机化学命名原则.北京:科学出版社,1980
    [4] S.J. Lippard, J. M. Berg. Principles of Bioinorgnic Chemistry. California: University Science Books, 1994
    [5] F. Ciardelli, E. Tsuchida, D. Wohrle, Macromoleculae-Metal Complexes. Bedin: Spdnger-Verlag, 1996
    [6] D. W. Bruce, D. O'Hare et al. Inorg. Materials, 2nd ed. New York: John Wiley&Sons, 1996
    [7] P. Day, Coordination complexes in two dimensional magnets and superconductors. Coord. Chem. Rev., 1999, 190-192:827-839
    [8] O. Kahn. Molecular Magnetism. New York: VCH Publishers, 1993
    [9] C. T. Chen, K. S. Suslick. One-dimensional coordination polymers: Applications to material science. One-dimensional coordination polymers: Applications to material science Coord. Chem. Rev., 1993, 128:293-301
    [10] J.C. Bailar, Jr.,"Coordination Polymers". Prep. Inorg. React, 1964, 1-6
    [11] A.F. Wells, Three Dimensional Nets and Polyhedra. New York: 1977
    [12] A.F. Wells, Structural inorganic Chemistry, 5th. Oxford Univ. Press, 1983
    [13] B. F. Abrahams, B. F. Hoskins, R. Robson. A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks. J.. Am. Chem. Soc., 1991, 113:3606-3608
    [14] S. Kitagawa, R. Kitaura, S. I. Noro. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 2004, 43:2334-2375
    [15] A.N. Khlobystov, A. J. Blake, N. R. Champness, et. al. Supramolecular design of one-dimensional coordination polymers based on silver(Ⅰ) complexes of aromatic nitrogen-donor ligands. Coord. Chem. Rev., 2001, 222:155-192
    [16] N.G. Pschirer, D. M. Ciurtin, M. D. Smith, et. al. Noninterpenetrating Square-Grid Coordination Polymers With Dimensions of 25×25 (A~2 Prepared by Using N,N'-Type Ligands: The First Chiral Square-Grid Coordination Polymer. Angew. Chem., 2002, 114: 603- 605
    [17] H.X. Zhang, B. S. Kang, A. W. Xu, et. al. Supramolecular architectures from the self-assembly of trans-oxamidato-bridged dicopper(Ⅱ) building blocks and phenyldicarboxylates. J. Chem. Soc. Dalton Trans., 2001:2559-2566
    [18] A. D. Burrows, R. W. Harrington, M. F. Mahon, et. al.. The influence of hydrogen bonding on the structure of zinc co-ordination polymers. J. Chem. Soc. Dalton Trans., 2000: 3845- 3854
    [19] S.O.H. Gutschke, D. J. Price, A. K. Powell, et. al.. Hydrothermal Synthesis, Structure, and Magnetism of [Co_2(OH){1,2,3-(O_2C)_3C_6H_3} (H_2O)]-H_20 and [Co_2(OH){1,2,3-(O_2C)_3C_6H_3}]: Magnetic-Chains with Mixed Cobalt Geometries. Angew. Chem.,2001, 113:1974-1977
    [20] T. J. Prior, M. J. Rosseinsky. Crystal engineering of a 3-D coordination polymer from 2-D building blocks. Chem. Commun., 2001:495-496
    [21] O. M. Yaghi, H. Li, T. L. Groy, Construction of Porous Solids from Hydrogen-Bonded: Metal Complexes of 1,3,5-Benzenetricarboxylic Acid. J. Am. Chem. Soc., 1996, 118:9096-9101
    [22] H. Kumagai, C. J. Kepert, M. Kurmoo. Construction of Hydrogen-Bonded and Coordination-Bonded Networks of Cobalt(Ⅱ) with Pyromellitate: Synthesis, Structures, and Magnetic Properties. Inorg. Chem., 2002, 41:3410-3422
    [23] 孙为银等编著,配位化学.化学工业出版社:2004,45-56
    [24] M. Fujita. Self-Assembly of [2]Catenanes Containing Metals in Their Backbones. Acc. Chem. Res., 1999, 32:53-61
    [25] T. Kusukawa, M. Fujita. Self-Assembled M_6L_4-Type Coordination Nanocage with 2,2'-Bipyridine Ancillary Ligands. Facile Crystallization and X-ray Analysis of Shape-Selective Enclathration of Neutral Guests in the Cage. J. Am. Chem. Soc., 2002, 124:13576-13582
    [26] S. Tashiro, M. Tominaga, T. Kusukawa, et. al.. PdⅡ-Directed Dynamic Assembly of a Dodecapyridine Ligand into End-Capped and Open Tubes: The Importance of Kinetic Control in Self-Assembly. Angew. Chem. Int. Ed., 2003, 42:3267-3270
    [27] K. Kim. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc, Rev., 2002, 31:96-107
    [28] A. J. Blake, N. R. Brooks, N. R. Champness, et. al.. Two-and threedimensional CuSCN co-ordination networks including new CuSCN structural motifs. J. Chem.Soc., Dalton Trans., 1999, 2813-2817
    [29] A. J. Blake, N. R. Brooks, N. R. Champness, et. al.. Controlling copper(Ⅰ) halide framework formation using N-donor bridging ligand symmetry: use of 1,3,5-triazine to construct architectures with threefold symmetry. J. Chem. Soc., Dalton Trans., 1999, 2103-2104
    [30] L. Tei, V. Lippolis, A. J. Blake, P. A. Cooke and M. Schroder, Nitrile functionalised pendant-arm derivatives of [9]aneN3 as new multidentate ligands for inorganic crystal engineering ([9]aneN3=1,4,7-triazacyclononane) Chem. Commun., 1998, 2633-2634
    [31] M. Eddaoudi, D. B. Moler, H. Li, et. al.. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res., 2001, 34:319-324
    [32] A. Rabenau. Die Rolle der Hydrothermalsynthese in der praparativen Chemie. Angew. Chem., 1985, 97:1017-1020
    [33] A. Rabenau. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem. Int. Ed. Engl. 1985, 24:1026-1029
    [34] R. M. Barrer, Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982
    [35] H. P. Zhang, R. F. Zhang, J. C. Shen. Self-assembly of supramolecular complexes based on hydrogen bonding Supramoleeular Science, 1998, 5-10: 627-629
    [36] E. C. Constable, M. D. Wand. Spontaneous assembly of a double-helical binuclear complex of 2, 2':6', 2":6", 2'":6'", 2"":6"", 2'""-sexipyridine. J. Am. Chem. Soc. 1990,112:1256-1258
    [37] O. Mamula, A. V. Zelewsky. Supramolecular coordination compounds with chiral pyridine and polypyridine ligands derived from terpenes. Coord. Chem. Rev., 2003, 242: 87- 95
    [38] Z. N. Chen, H. X. Zhang, K. B. Yu, et. al.. Extended network via hydrogen bond linkages of zig-zag coordination chains {Cu2(trans-oxen)(μ-OH)(μ-H2O)}n]~(n+) or [Cu2(trans-oxen)(μ-OCN)2]n [H2oxen=N,N'-bis(2-aminoethyl)-oxamide]. J. Chem. Soc., Dalton Trans., 1998, 1133-1136
    [39] L. Carlucci, G Ciani, D. M. Proserpio, A. Sironi. Extended networks via hydrogen bond cross-linkages of [M(bipy)](M= Zn21 or Fe21; bipy=4,4'-bipyridyl) linear co-ordination polymers. J. Chem. Soc., Dalton Trans., 1997, 1801-1803
    [40] V.A. Russel, M. D. Ward. Molecular Crystals with Dimensionally Controlled Hydrogen-Bonded Nanostructures. Chem. Mater. 1996, 8:1654-1660
    [41] S. Subramanian, M. Zaworotko. Exploitation of the hydrogen bond: recent developments in the context of crystal engineering. Coord. Chem. Rev., 1994, 137:357-361
    [42] P. Brunet, M. Simard, J. D. Wuest. Molecular Tectonics. Porous Hydrogen-Bonded Networks with Unprecedented Structural Integrity. J. Am. Chem. Soc.,1997, 119:2737-2739
    [43] M. Eddaoudi, D. B. Moler, H. Li, et. al.. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res., 2001, 34:319-325
    [44] W. Chen, J. Y. Wang, C Chen. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates. Inorg. Chem., 2003, 42:944-951
    [45] R. P. Catalina, S. Joaquin, M. Maria. Ferromagnetism in Malonato-Bridged Copper(Ⅱ) Complexes. Synthesis, Crystal Structures, and Magnetic Properties of {[Cu(H_2O)_3][Cu(mal)_2(H_2O)]}_n and {[Cu(H_2O)_4]_2[Cu(mal)_2(H_2O)]}-[Cu(mal)_2(H_2O)_2]{[Cu(H_2O)_4][Cu(mal)_2(H_2O)_2]}(H_2mal = malonic Acid). Inorg. Chem. 2000, 39:1363-1370
    [46] P. Day, Coordination complexes in two dimensional magnets and superconductors. Coord. Chem. Rev., 1999, 190-192:827-839
    [47] A. P. Alivisatos, P. F. Barbara, A.W. Castleman, et a..l From Molecules to Materials: Current Trends and Future Directions. Adv. Maters., 1998, 10:1297
    [48] P. J. Hay,. J. C. Thibeault, R. Hoffmann. Orbital Interactions in Metal Dimer Complexes. J.. Am..Chem.Soc. 1975, 97:4884
    [49] O. Kahn, B. Briat. Exchange Interaction in Polynuclear Complexes. Part 1. Principles, Model and Application to the Binuclear Complexes of Chromium(Ⅲ) J. Chem. Soc. Trans. Rev., 1976, 72:268
    [50] O. Kahn. Dinuclear Complexes with Predictable Magnetic Properties. Angew. Chem. Int. Ed. Engl., 1985, 24:834
    [51] Y. Pei, M. Verdauger, O. Kahn, et al. Ferromagnetic transition in a bimetallic molecular system. J. Am. Chem. Soc., 1986, 108:7428-7430
    [52] S. M. Holmes, G. S. Girolami. Sol-Gel Synthesis of KV~Ⅱ[Cr~Ⅲ(CN)_6]·2H_2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100℃. J. Am. Chem. Soc. 1999, 121:5593-5595
    [53] 游效曾.分子材料.上海:上海科学技术出版社,2001.10
    [54] Y. Pei, Y. Journaux, O. Kahn. Irregular sp in state structure in trinuclear species: magnetic and EPR p roperties of manganese(Ⅱ) 2copper(Ⅱ) 2manganese(Ⅱ) and nickel(Ⅱ) 2copper(Ⅱ) 2nickel(Ⅱ) compounds. Inorg Chem., 1988, 27:399-404
    [55] P. Cheng, D. Z. Liao. Molecular and crystalmagnetic engineering of polymetallic coup ling system: from magnetic molecules to molecularmagnets. Chin. J. Chem., 2001, 19:208-221
    [56] J. S. Miller, J. C. Calabrese, H. Rommelmann, et. al.. Ferromagnetic behavior of [Fe(C_5Me_5)_2]~+[TCNE]~-: Structural and magnetic characterization of decamethylferrocenium tetracyanoethenide, [Fe(C_5Me_5)_2]~+[TCNE]~-: MeCN and deeamethylferrocenium pentaeyanopropenide, [Fe(C_5Me_5)_2]~+ [C_3(CN)_5]~-. J. Am Chem. Soc., 1987, 109:769-781
    [57] Y. Journaux, O. Kahn, J. Zarembowitch, et al. Symmetry of the magnetic orbitals and exchange interaction in copper iron(CuⅡFeⅢ) and copper chromium (Cu~ⅡCr~Ⅲ) heterobinuclear complexes. Crystal structure of CuFe[(fsa)_2en]Cl(H_2O)(CH_3OH)·CH_3OH. J. Am. Chem. Soc., 1983, 105: 7585-7591
    [58] 缪明明,廖代正,王耕霖.设计高自旋基态分子的一种重要方法.磁轨道正交与铁磁相互作用.结构化学,1995,14:198-204
    [59] B. Gillon, C. Cavata, P. Schweiss, et al.. Spin density in the heterodinuclear compound Cu(salen)Ni(hfa)_2: a polarized neutron diffraction study. J. Am. Chem. Soc., 1989, 111:7124-7132
    [60] 缪明明,廖代正,王耕霖.设计高自旋基态体系的一种新方法——具有非正规自旋态结构的三核配合物.化学通报,1995,2:28-35
    [61] B. S. Snyder, G. S. Patterson, A. J. Abrahamson, et al.. Binuclear iron system ferromagnetic in three oxidation states: synthesis, structures, and electronic aspects of molecules with a Fe_2(OR)_2 bridge unit containing Fe(Ⅲ, Ⅲ), Fe(Ⅲ, Ⅱ), and Fe(Ⅱ, Ⅱ). J. Am. Chem. Soc., 1989, 111: 5214-5223
    [62] O. Kahn, J. Galy, Y. Journaux, et al.. Synthesis, crystal structure and molecular conformations, and magnetic properties of a copper-vanadyl (Cu~Ⅱ-VO~Ⅱ) heterobinuclear complex: interaction between orthogonal magnetic orbitals. J. Am. Chem. Soc., 1982, 104:2165-2176
    [63] P. Cheng, D. Z. Liao, S. P. Yan, et al.. Crystal structure and ferromagnetic behavior of a μ-acetato-bridged one-dimensional linear-chain copper(Ⅱ) complex Inorg. Chim: Acta., 1997, 254:371-373
    [64] M. F. Chariot, O. Kahn, M. Chaillet, et al.. Interaction between copper(Ⅱ) ions through the azido bridge: concept of spin polarization and ab initio calculations on model systems. J. Am. Chem. Soc., 1986, 108:2574-2576
    [65] Y. Pei, Y. Journaux, O. Kahn. Irregular spin state structure in trinuclear species: magnetic and EPR properties of manganese(Ⅱ)-copper(Ⅱ)-manganese(Ⅱ) and nickel(Ⅱ)-copper(Ⅱ)-nickel(Ⅱ) compounds. Inorg. Chem., 1988, 27:399-404
    [66] J S. Miller, A. J. Epstein. Determination of Reaction Paths for Pentacoordinate Metal Complexes with the Structure Correlation Method Angew. Chem. Int. Ed., 1994, 33:385-388
    [67] A. Caneschi, D. Gatteschi, J. P. Renard, et al.. Structure and magnetic properties of ferrimagnetic chains formed by manganese(Ⅱ) and nitronyl nitroxides. Inorg. Chem., 1988, 27:1756-1760
    [68] A. F. Caneschi, D. Gatteschi, et al.. Structure and magnetic properties of a chain compound formed by copper(Ⅱ) and a tridentate nitronyl nitroxide radical. Inorg. Chem., 1991, 30:3162-3166
    [69] K. Inoue, F. Iwahori, A. S. Markosyan, et al.. Synthesis and magnetic properties of one-dimensional ferro- and ferrimagnetic chains made up of an alternating array of 1,3-bis(N-tert-butyl-N-oxyamino)benzene derivatives and Mn(Ⅱ)(hfac)_2. Coord. Chem. Rev., 2000, 198:219-229
    [70] M. Ohba, H. Tamaki, N. Matsumoto, et al.. Oxalate-bridged dinuclear chromium(Ⅲ)-M(Ⅱ)(M=copper, nickel, cobalt, iron, manganese) complexes: synthesis, structure, and magnetism. Inorg. Chem. 1993, 32:5385
    [71] LIAO Dai-Zheng(廖代正),SHI Juan(石娟),JIANG Zong-Hui(姜宗慧),et al..氯冉酸阴离子桥联的Nd(Ⅲ)-Nd(Ⅲ),Dy(Ⅲ)-Dy(Ⅲ)和Ho(Ⅲ)-Ho(Ⅲ)双核配合物的合成与磁性.Acta.Chimica.Sinica.(化学学报),1994,52:485-488
    [72] Y. Pei, Y. Journaux, O. Kahn. Ferromagnetic interactions between t~2g~3 and eg~2 magnetic orbitals in a chromium(Ⅲ)nickel(Ⅱ)3 tetranuclear compound. Inorg. Chem., 1989, 28:100
    [73] J. Larionova, B. Mombelli, J. Sanchiz. et al.. Magnetic Properties of the Two-Dimensional Bimetallic Compounds (NBu_4)[M~ⅡRu~Ⅲ(ox)_3] (NBu_4=Tetra-n-butylammonium; M=Mn, Fe, Cu; ox=Oxalate). Inorg. Chem., 1998, 37:679-685
    [74] H. Tamaki, Z. J. Zhong, N. Matsumoto. et al.. Design of metal-complex magnets. Syntheses and magnetic properties of mixed-metal assemblies {NBu_4[MCr(ox)_3]}_x (NBu~(4+)=tetra(n-butyl)ammonium ion; ox~(2-)= oxalate ion; M= Mn~(2+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+)). J.. Am. Chem. Soc., 1992, 114: 6974-6976
    [75] J. Larionova, B. Mombelli, J. Sanchiz. et al.. Magnetic Properties of the Two-Dimensional Bimetallic Compounds (NBu_4)[M~ⅡRu~Ⅲ(ox)_3] (NBu_4= Tetra-n-butylammonium; M=Mn, Fe, Cu; ox= Oxalate). Inorg. Chem., 1998, 37:679-683
    [76] J. A. Tasiopoulos, A. Vinslava, W. Wemsdorfer, et al.. Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes Angew. Chem. Int. Ed., 2004, 43:2117-2121
    [77] S. L. Myoung, L. P. Vincent. Isolation and characterization of {Mn~Ⅱ[Mn~Ⅲ(salicylhydroximate)]_4(acetate)_2(DMF)_6}·cntdot·2DMF: an inorganic analog ofM~(2+)(12-crown-4). J. Am. Chem. Soc., 1989, 111: 7258-7259
    [78] G. Rajaraman, M. Murngesu, E. C. Sanudo, Soler M., et al.. A Family of Manganese Rods: Syntheses, Structures, and Magnetic Properties. J. Am. Chem. Soc., 2004, 126:15445-15457
    [79] Boskovic C., Wernsdorfer W., Folting K., et al.. Single-Molecule Magnets: Novel Mn_8 and Mn_9 Carboxylate Clusters Containing an Unusual Pentadentate Ligand Derived from Pyridine-2,6-dimethanol. Inorg. Chem. 2002, 41:5107-5118
    [80] E. K. Brechin, C. Boskovic, W. Wernsdorfer, et al.. Quantum Tunneling of Magnetization in a New [Mn_(18)]~(2+) Single-Molecule Magnet with S= 13. J. Am. Chem. Soc.. 2002, 124(33): 9710-9711
    [81] M. Murngesu, J. Raftery, W. Wernsdorfer. et al.. Synthesis, Structure, and Magnetic Properties of a [Mn_(22)] Wheel-like Single-Molecule Magnet. Inorg. Chem., 2004, 43(14): 4203-4209
    [82] M. Murugesu, M. Habrych, W. Wernsdorfer, Abboud K. A.. Single-Molecule Magnets: A Mn_(25) Complex with a Record S= 51/2 Spin for a Molecular Species. J. Am. Chem. Soc.. 2004, 126(15):4766 -4767
    [83] P. Gutlich, A. Hauser, H. Spiering. Thermal and Optical Switching of Iron(Ⅱ) Complexes. Angew. Chem., Int. Ed. Engl.. 1994, 33:2024-2027
    [84] S. Wang. Luminescence and electroluminescence of Al(Ⅲ), B(Ⅲ), Be(Ⅱ) and Zn(Ⅱ) complexes with nitrogen donors. Coord. Chem. Rev.. 2001, 215:79-81
    [85] 黄春辉,李富友,黄岩宜.光电功能超薄膜.北京:北京大学出版社,2001
    [86] 陈国珍.荧光分析法.科学出版社,1990
    [87] B. Valeur. Molecular Fluorescence: Principles and Applications. Wiley-VCH, Weinheim, 2002
    [88] S. A. Barnett, A. J. Blake, N. R. Champness, et al.. Structural isomerism in CuSCN coordination polymers. Chem. Commun. 2002. 1640-1641
    [89] L. Caducei. G. Ciani, P. Macchi, et al.. An unprecedented triply interpenetrated chiral network of 'square-planar' metal centres from the self-assembly of copper(ⅱ) nitrate and 1,2-bis(4-pyridyl)ethyne. Chem. Commun. 1998, 1837-1838
    [90] Bourne S. A., L u J., MondalA. et al. Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. Angew. Chem. Int. Ed.. 2001, 40: 2111-2113
    [91] J. Lu, Mondal A., Moulton B. et al.. Polygons and Faceted Polyhedra and Nanoporous Networks. Angew. Chem. Int. Ed.. 2001, 40:2113-2116
    [92] Noro S. I., Kitagawa S., Kondo M. et al. A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF_6(4,4'-bipyfidine)_2}_n]. Angew. Chem. Int. Ed.. 2000, 39:2081-2084
    [93] K. Barthelet, J. Marrot, D. Riou, et al.. A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics Angew. Chem. Chem. Int. Ed..2002, 41:281-284
    [94] Sun J. Y., W eng L. H., Zhao D. Y. et al.. QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology. Angew. Chem. Int. Ed.. 2002, 41:4471-4473
    [95] M. L. Tong, B. H. Ye, J. W. Cai et al.. Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structures of [M(4,4'-bpy)_2(H_2O)_2] (ClO_4)_2·(2,4'-bpy)_2·H_2O and [Cu(4,4'-bpy)_2(H_2O)_2](ClO_4)_4·(4,4'-H_2Bpy) (M=Cd~Ⅱ, Zn~Ⅱ and bpy = Bipyridine). Inorg. Chem.. 1998, 37:2645-2650
    [96] T. L. Hennigar, D. C. MacQuarrie, P. Losier, et al.. Supramolecular Isomerism in Coordination Polymers: Conformational Freedom of Ligands in [Co(NO_3)_2(1,2-bis(4-pyridyl)ethane)_(1.5)]_n. Angew. Chem. Int. Ed. Engl.. 1997, 36:972-975
    [97] S. I. Noro, S. Kitagawa, M. Kondo, et al.. A New, Methane Adsorbent, Porous Coordination Polymer[{CuSiF6(4,4'-bipyridine)_2}_n]. Angew. Chem. Int. Ed.. 2000, 39:2082
    [98] M. Fujita, Y. J. Kwon, S. Washizu, et al.. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(Ⅱ) and 4,4'-Bipyridine. J.. Am. Chem. Soc., 1994, 116, 1151-1152
    [99] K. Biradha, Y. H. Hongo, M. Fujita. Open Square-Grid Coordination Polymers of the Dimensions 20×20 A: Remarkably Stable and Crystalline Solids Even after Guest Removal. Angew. Chem. Int. Ed.. 2000, 39:3843-3845
    [100] K. Biradha, M. Fujita. Crystal-to-Crystal Sliding of 2D Coordination Layers Triggered by Guest Exchange. Angew. Chem. Int. Ed.. 2002, 41: 3395-3398
    [101] M. Kondo, Y. Yoshitomi, H. Mstsuzaka, et al.. Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4'-bpy)_3(NO_3)_4]·xH_2O}_n (M= Co, Ni, Zn). Angew. Chem. Int. Ed.. 1997, 36: 1725-1727
    [102] M. Eddaoudi, H. Li, O M. Yaghi. Highly Porous and Stable Metal-Organic Frameworks: Structure Design and Sorption Properties. J. Am. Chem. Soc.. 2000, 122:1391-1397
    [103] H. Li, M. Eddaoudi, M. O'Keeffe, et al.. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402:276-279
    [104] M. Eddaoudi, J. Kim, N. Rosi, et al.. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 2002, 295:469-472
    [105] H. K. Chae, D. Y. Siberio-Perezl, et al.. J. Kim, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523-527
    [106] J. L. C. Rowsell, E. C. Spencer, J. Eckert, et al.. Science. Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. 2005, 309, 1350-1354
    [107] J. S. Seo, D. Whang, H. Lee, et al.. A homochiral metal organic porous materal for enantioseletive separation and catalysis. Nature, 2000, 404: 982-986
    [108] R. X. Yuan, R. G. Xiong, Z. F. Chen, et al.. Crystal structure of zinc(Ⅱ) 2-sulfanilamidopyrimidine: a widely used topical bum drug. J.. Chem. Soc. Dalton Trans., 2001. 774-776
    [109] H Y. Shen, D Z. Liao, Z H. Jiang, et al. A new one-dimensional 4,4'-bipybridged compound [Mn(hfac)_2(4,4'-bipy)]_n(hfac= hexafluoroacetetylacetonato; 4,4'-bipy= 4,4'-bipyridine). Synthesis, crystal structure and magnetic properties. Polyhedron, 1998, 17:1953-1957
    [110] R. L. Carlin, Magnetochemistry, Berlin: Springer-Verlag Berlin Heidelbery, 1986
    [111] J. C. Bailin: Jolly W L Ed. Preparative Inorganic Reactions Vol1. Inter science, New York, 1964, 1-25
    [112] Kahn O, Molecular magnetism, New York: VCH Publishers, 1993
    [113] J. S. Miller. Extended Linear Chain Compounds. New York: Plenum, 1982, VOL 3
    [114] P. Delhaes, M. Drillon. Organic and Inorganic Linear Dimensional Crystalline Materials. NATO ASI Ser. 168, New York, 1989
    [115] S. R. Batten, R. Robson. Interpenetrating Nets: Ordered, Periodic Entanglement. Angew. Chem. Int. Ed. Engl.. 1998, 37:1460-1494
    [116] P. J. Hagrman, D. Hagrman, J. Zubieta, et al.. Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiarnine-Templated Molybdenum Oxides. Angew. Chem. Int. Ed. Engl.. 1999, 38: 2638-2684
    [117] B. Moulton, M. J. Zaworotko. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev. 2001, 101: 1629-1658
    [118] M. Eddaoudi, D. B. Moler, H. Li, et al.. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-organic Carboxylate Frameworks. Acc. Chem. Res. 2001.34:319-330
    [119] O. R. Evans, W. B. Lin, Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks. Acc. Chem. Res.. 2002, 35:511-522
    [120] S. L. James, Metal-organic frameworks. Chem. Soc. Rev.. 2003, 32:276-288
    [121] C. Janiak, Engineering coordination polymers towards applications. Dalton Trans. 2003, 2781-2804
    [122] O. M. Yaghi, M. O'Keeffe, N. W Ockwig, et al.. Reticular synthesis and the design of new materials. Nature, 2003, 423:705-708
    [123] S. Kitagawa, R. Kitaura, S. I. Noro, Functional Porous Coordination Polymers Angew. Chem. Int. Ed.. 2004, 43:2334-2375
    [124] C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Metal Carboxylates with Open Architectures. Angew. Chem., Int. Ed.. 2004, 43:1466-1496
    [125] G. Ferey, C. Mellot-Draznieks, C. Serre, et al.. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Acc. Chem. Res. 2005, 38:176-182
    [126] B. Moulton, M. J. Zaworotko. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev.. 2001, 101:1629-1658
    [127] T. L. Hennigar; D. C. MacQuarrie; P. Losier; et al.. Supramolecular Isomerism in Coordination Polymers: Conformational Freedom of Ligands in [Co(NO_3)_2(1,2-bis(4-pyridyl)ethane)_(1.5)]_n. Angew. Chem. Int. Ed.. 1997, 36: 972-973
    [128] H. Abourahma, B. Moulton, V. Kravtsov; et al.. Supramolecular Isomerism in Coordination Compounds: Nanoscale Molecular Hexagons and Chains. J. Am. Chem. Soc. 2002, 124, 9990-9991
    [129] X. C. Huang, J. P. Zhang, X. M. Chen. A New Route to Supramolecular Isomers via Molecular Templating: Nanosized Molecular Polygons of Copper(Ⅰ)2-Methylimidazolates. J.. Am. Chem. Soc. 2004, 126:13218
    [130] G. C. Pimentel, A. L. McLella. Hydrogen Bond, W.H. Freeman, San Francisco. CA, 1960
    [131] L. Pauling. The Nature of Chemical Bond, Ithaca: Cornell University Press, NY, 1960
    [132] G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Berlin: Springer, 1991
    [133] B. Ishtvan, S. Joachim, V. Konstantin. A unique polymeric coordination system that exhibits supramolecular isomerism within two dimensions, Inorg. Chem. Commun.. 2003, 6, 769-772
    [134] C. A. Hunter. Arene-Arene Interactions: Electrostatic or Charge Transfer. Angew. Chem. Int. Ed. Engl.. 32(1993)1584-1587
    [135] S. Subramanian, M. J. Zaworotko. Exploitation of the hydrogen bond: recent developments in the context of crystal engineedng Coord. Chem. Rev. 1994, 137, 357-401
    [136] 曾明华,梁宏,石少明,等.锌与烟酰胺苦味酸根配合物的合成与晶体结构.结构化学.2002,21:651-654
    [137] 曾明华,梁宏,石少明,等.{Cu[H_2NC(CH_2OH)_3]_2(Pic)_2}·H_2O的合成与晶体结构.结构化学.2002,21,541-544
    [138] S. Ozbey, S. Ide, E. Kendi, The crystal and molecular structure of two benzimidazole derivatives: 1-(phenylmethyl)-2-(4-methoxyphenylmethyl)-1H-benzimidazole-5-carboxylic acid(Ⅱ) and 1,2-di-(phenylmethyl)-1H-benzimidazole-5-carboxylic acid(Ⅱ). J. Mole. Struct. 1998, 442:23-30
    [139] Q. J. Deng, M. H. Zeng, H. Liang, et al.. catena-Poly[[[diaquamanganese(Ⅱ)] bis(μ-1H-benzimidazole-5-ylearboxylato-K~2-O, N)manganese(Ⅱ) dihydrate] Acta Cryst. 2006, E62, m1293-m1295
    [140] G. M. Sheldrick, SHELXS-97 Program for Crystal Structure Solution, University of Gottingen, Germany, 1997
    [141] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Refinement, University of Grttingen, Germany, 1997
    [142] 中本一雄编著.无机和配位化合物的红外和拉曼光谱.黄德如,汪仁庆译.第4版.北京:化学工业出版社,1991
    [143] F. A. Cotton, F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, fifth, Interscience, New York, 1988. 729-732, 744-748
    [144] J. Kim, B. L. Chen, T. Reineke, et al.. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. J Am. Chem. Soc., 2001, 123:8239-8243
    [145] M. Eddaoudi, D. B. Moler, H. L. Li, et al.. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res., 2001, 34:319-331
    [146] S. Y. Yang, L. S. Long, R. B. Huang, et al.. Total synthesis of fostriecin (C1-920) via a convergent route. Chem. Commun.. 2002, 742-743
    [147] D. T. Vodak, M. B. Braun, J. Kim, et al.. Metal-organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units. Chem. Commun.. 2001, 2534-2536
    [148] W. Clegg, D. R. Harbron, C. D. Homan, et al.. Crystal structures of three basic zinc carboxylates together with infrared and FAB mass spectrometry studies in solution. Inorg. Chim. Acta.. 1991, 186:51-60
    [149] M. Eddaoudi, D. B. Moler, L. Li, et al.. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res. 2001, 34, 319-330
    [150] R. Robson. A net-based approach to coordination polymers. J Chem. Soc. Dalton. Trans.. 2000, 3735-3744
    [151] 张琳萍,侯红卫,樊耀亭,程风宏,配位聚合物.无机化学学报,2000,16(1):2-12
    [152] M. L. Tong, S. L. Zheng, X. M. Chen. Synthesis and structures of two-dimensional coordination polymers constructed by metal salts and 4,4'-bipyridine. Polyhedron, 2000, 19:1809-1814
    [153] K. Biradha, Y. Hongo, M. Fujita, Open Square-Grid Coordination Polymers of the Dimensions 20×20 A: Remarkably Stable and Crystalline Solids Even after Guest Removal. Angew. Chem. Int. Ed.. 2000, 39: 3843-3845
    [154] H. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC=1,4-Benzenedicarboxylate). J Am. Chem. Soc. 1998, 120:8571-8572
    [155] M. Eddaoudi, J. Kim, M. O'Keeffe, et al.. Cu_2[o-Br-C_6H_3(CO_2)_2]_2(H_2O)_2·(DMF)_8(H_2O)_2: A Framework Deliberately Designed To Have the NbO Structure Type. J. Am. Chem. Soc.. 2002, 124:376-377
    [156] F. Thetiot, S. Triki, J.S. Pala, et al.. Discrete Dinuclear Complexes and Two-Dimensional Architectures from Bridging Polynitrile and Bipyrimidine (bpym) Ligands: Syntheses, Structures and Magnetic Properties of [M_2(bpym) (dcne)_4(H_2O)_2] (M = Mn~Ⅱ, Co~Ⅱ) and M_2(bpym)(dcne)_4(H_2O)_4]·2H_2O(M =Fe~Ⅱ, Cu~Ⅱ)(dcne =[(CN)_2CC(O)OEt)]~-). Eur. J. Inorg. Chem. 2004, 3783-3791
    [157] E. Albert, S. Nuria, A. M. Franz, et al.. Phenylcyanamido Ligand Building Molecular, 1-D, and 2-D Systems-Syntheses, Crystal Structures and Magnetic Properties. Eur. J. Inorg. Chem. 2004, 309-316
    [158] M. L. Tong, X. M. Chen, B. H. Ye, et al.. Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag-Ag Bonds: Syntheses, Structures, and Luminescent Properties. Angew. Chem., Int. Ed. Engl.. 1999, 38:2237-2240
    [159] M. -L. Tong, X. -L. Yu, X. -M. Chen. Synthesis and structure of a photoluminescent three-dimensional network [AgL(MeCN)] (L=4,5-dichloro-2-cyano-3,6-dione-1,4-cyclohexen-1-ol anion). Inorg. Chem. Commun.. 2000, 3:694-696
    [160] H. K. Fun, S. S. Raj, R. G. Xiong, et al.. A three-dimensional network coordination polymer, (terephthalato)(pyridine)cadmium, with blue fluorescent emission. J. Chem. Soc. Dalton Trans., 1999, 1915-1916
    [161] J. C. Dai, X. T. Wu, Z. Y. Fu, et al.. A novel ribbon-candy-like supramolecular architecture of cadmium(Ⅱ)-terephthalate polymer with giant rhombic channels: twofold interpenetration of the 3D 8~2 10-a net. Chem. Commun.. 2002, 12-13
    [162] M. -C. Brandys, R. J. Puddephatt. Strongly Luminescent Three-Coordinate Gold(Ⅰ) Polymers: 1D Chain-Link Fence and 2D Chickenwire Structures. J. Am. Chem. Soc.. 2001, 123, 4839-4840
    [163] J. M. Shi, W. Xu, Q. Y. Liu, et al.. Polynitrile-bridged two-dimensional crystal: Eu(Ⅲ) complex with strong fluorescence emission and NLO property. Chem. Commun.. 2002, 756-757
    [164] C. Seward, N. X. Hu, S. Wang, 1-D Chain and 3-D grid green fluminescent terbium(Ⅲ) coordination polymers: {Tb(O_2CPh)_3(CH_3OH)_2(H_2O)}_n and {Tb_2(O_2CPh)_6-(4,4'-bipy)}_n. J. Chem. Soc. Dalton Trans.. 2001, 134-137
    [165] R. A. Heintz, H. Zhao, X. Ouyang, et al.. New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior. Inorg. Chem.. 1999, 38:144-149
    [166] Y. B. Dong, G. X. Jin, M. D. Smith, et al.. [Ag_2(C_(33)H_(26)N_2O_2)(H_2O)_2 (SO_3CF_3)_2]·0.5C_6H_6: A Luminescent Supramolecular Silver(Ⅰ) Complex Based on Metal-Carbon and Metal-Heteroatom Interactions. Inorg. Chem.. 2002, 41: 4909-4914
    [167] T. Ren, C. Lin, P. Amalberti, et al.. Bis(μ-N,N'-η~2-N,O-η~2-N',O'-di(omethoxyphenyl)formamidinato)disilver(Ⅰ): an interesting coordination geometry for silver(Ⅰ)and room temperature fluorescence. Inorg. Chem. Commun., 1998, 1: 23-26
    [168] Z. Y. Fu, X. T. Wu, J. C. Dai, et al.. Interpenetration in [Cd(isonicotinate)_2(1,2-bis(4-pyridyl)-ethane)_(0.5)(H_2O)]_n, a novel octahedral polymer containing an unusual two-dimensional bilayer motif generated by self-assembly of rectangle building blocks. Chem. Commun.. 2001, 1856-1857
    [169] G. Yu, S. W. Yin, Y. Q. Liu, et al.. Structures, Electronic States, and Electroluminescent Properties of a Zinc(Ⅱ) 2-(2-Hydroxyphenyl) benzothiazolate Complex. J. Am. Chem. Soc.. 2003, 125(48): 14816-14824
    [170] S. G. Liu, J. L. Zuo, Y. Z. Li, et al.. Syntheses, crystal structures of blue flumineseent complexes based on 2, 6-bis(benzimidazolyl)pyridine. Journal of Molecular Structure, 2004, 705(1-3): 153-157
    [171] J. C. Dai, X. T. Wu, Z. Y. Fu et al.. Synthesis, Structure, and Fluorescence of the Novel Cadmium(Ⅱ)-Trimesate Coordination Polymers with Different Coordination Architectures. Inorg. Chem., 2002, 41, 1391-1398
    [172] H. K. Fun, S. S. Raj, R. G. Xiong, et al.. A three-dimensional network coordination polymer, (terephthalato)(pyridine)cadmium, with blue fluorescent emission. J. Chem. Soc.. Dalton Trans.. 1999, 1915-1916
    [173] 董南,朱龙观.稀土三氯醋酸盐与8-羟基喹啉配合物合成和表征.稀土,1992,13(1):9-12
    [174] 王学智.稀土丙烯酸盐与8-羟基喹啉三元固体配合物的合成和表征.化学研究与应用,1997,9(1):60-62
    [175] 王文,汪联辉,等.Sm,Eu-丙烯酸-8-羟基喹啉三元配合物的合成及荧光性质研究.稀土,1999,1(20):50-52
    [176] T. S. Miller. Molecular ferromagnets. Acc. Chem.Res.1988, 21:114-126
    [177] O. Kahn. Molecular Magnetism, New Yo rk: VCH Publishers, 1993
    [178] R. E. Melendez, C. V. K. Sharma, M. J. Zaworkotko, et al. Toward the Design of Porous Organic Solids: Modular Honeycomb Grids Sustained by Anions of Trimesic Acid. Angew. Chem. Int. Ed.. 1996, 35:2213-2223
    [179] M. J. Plater, M. R. Foreman, R. A. Howie, et al. Hydrothermal synthesis of polymeric metal carboxylates from benzene-1,2,4,5-tetracarboxylie acid and benzene-1,2,4-tricarboxylic acid. Inorg. Chim. Acta.. 2001, 315, 126-132
    [180] R. Cao, D. Sun, U. Liang, et al. Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracarboxylic Acid. Inorg. Chem.. 2002, 41: 2087-2094
    [181] S. O. H. Gutschke, D. J. Price, A. K. Powell, et al. Rational Design of Open-Framework Coordination Solids-Synthesis and Structure of [Co_5(OH)_2{1,2,4,5-(O_2C)_4C_6H_2}_2(H_2O)_4]·xH_2O. Eur J. Inorg. Chem.. 2001, 11: 2739-2741
    [182] C. D. Wu, C. Z. Lu, D. M. Wu, et al. Hydrothermal synthesis of two new zinc coordination polymers with mixed ligands, Inorg. Chem. Commun., 2001, 4, 561-564
    [183] Z. L. Lu, Wei Chen, J. Q. Xu, et al. A novel 3-D chiral coordination polymer: hydrothermal synthesis and structural characterization of [Co_3(μ_3-OH)(μ_5-btc)(μ_6-Hbtc)(H_2O)_3·6H_2O]_n Inorg. Chem. Commun.. 2003, 244-248
    [184] G. A. van Albada, S. Gorter, J. Reedijk. Synthesis, spectral characterization and X-ray structure of aquasodium triaquabis(pyridine-2,6-dicarboxyl-diato)-samadate trihydrate, an unique bis-pdc compound, with a sheet-type structure stabilised by sodium ions in each direction. Polyhedron, 1999, 18:1821-1824
    [185] S. K. Ghosh, P. K. Bharadwaj. Coexistence of Water Dimer and Hexamer Clusters in 3D Metal-Organic Framework Structures of Ce(Ⅲ) and Pr(Ⅲ) with Pyridine-2,6-dicarboxylic Acid. Inorg. Chem., 2003, 42:8250-8255
    [186] X. J. Zheng, L. P. Jin, and S. Z. Lu, Hydrothermal Syntheses, Structures, and Properties of First Examples of Lanthanide(Ⅲ)2,3-Pyrazinedicarboxylates with Three-Dimensional Framework. Eur. J.. Inorg. Chem., 2002, 3356-3363
    [187] L. Pan, X. Y. Huang, J. Li, et al.. Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation. Angew. Chem. Int. Ed., 2000, 39:527-530
    [188] 梁玉仓,洪茂椿,曹荣,等.含吡啶-2,5-二羧酸稀土-锌配位聚合物的合成结构和性能.无机化学学报,2002,99-106
    [189] J. M. Li, H. Q. Zeng, J. H. Chen, et al.. Crystal structure of a flexible selfassembled two-dimensional square network complex [Cu_2(C_3H_2O_4)_2(H_2O)_2-(4,4'-bpy)]·H_2OChem. Commun., 1997, 1213-1214
    [190] F. S. Delgado, J. Sanchiz, C. Ruiz-Perez, et al. High-dimensional malonatebased materials: Synthesis, crystal structures and magnetic properties of [M_2(mal)_2(L)(H_2O)_2]_n(H_2O)M= Zn(Ⅱ), Co(Ⅱ); H2mal= malonic acid, L= pyrimidine, pyrazine. Cryst. Eng. Comm., 2003, 5:280-284
    [191] C. Livage, C. Egger, G.. Ferey, Hybrid Open Networks (MIL 16): Synthesis, Crystal Structure, and Ferrimagnetism of Co_4(OH)_2(H_2O)_2(C_4H_4O_4)_3·2H_2O, a New Layered Cobalt(Ⅱ) Carboxylate with 14-Membered Ring Channels. Chem. Mater., 1999, 11:1546-1550
    [192] P. M. Forster, A. K. Cheetham, Open-Framework Nickel Succinate, [Ni_7(C_4H_4O_4)_6(OH)_2(H_2O)_2]_2H_2O: A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity. Angew. Chem. Int. Ed. 2002, 41:457-459
    [193] Z. Shi, L. Zhang, S. Gao, et al. Coordination Polymers: Structural Transformation from Two to Three Dimensions through Ligand Conformation Change. Inorg. Chem., 2000, 39, 1990-1993
    [194] S. Dalai, P. S. Mukherjee, E. Zangrando, et al. A novel class of interpenetrated 3-D network of a dimeric cupric-tetracarboxylate unit. J. Chem.Soc., 2002, 822-823
    [195] R. Vaidhyanathan, S. Natarajan, C. N. R. Rao, Aliphatic dicarboxylates with three-dimensional metal-organic frameworks possessing hydrophobic channels. Dalton Trans., 2003, 1459-1464
    [196] V. Kiritsis, A. Michaelides, S. Skoulika, S. Golhen, L. Ouahab, Assembly of a Porous Three-Dimensional Coordination Polymer: Crystal Structure of {[La_2(adipate)_3(H_2O)_4]_6H_2O}_n. Inorg. Chem., 1998, 37, 3407
    [197] A. Dimos, D. Tsaousis, A. Michaelides, S. Skoulika, S. Golhen, L. Ouahab, C. Didierjean, A. Aubry, Microporous Rare Earth Coordination Polymers: Effect of Lanthanide Contraction on Crystal Architecture and Porosity. Chem. Mater., 2002, 14: 2616.
    [198] L. J. Zhang, J. Q. Xu, Z. Shi, et al.. Hydrothermal synthesis and haracterization of the fist oxalate-bta mixed-ligand three-dimensional frameworks: [M_2(μs-bta) (μ_2-C_2O_4)](H_3O)_2(H_2O)_2), (M = Co~Ⅱ, Fe~Ⅱ; Bta=benzene-1,2,4,5-tetracarboxylate). Dalton Trans., 2003, 1148-1152
    [199] L. G. Gillaizeau, F. Odobel, M. Alebbi, et al. Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorg. Chem, 2001, 40:6073-6077
    [200] G. Alberti, Syntheses, crystalline structure, and ion-exchange properties of insoluble acid salts of tetravalent metals and their salt forms. Acc. Chem. Res., 1978, 11:163-168
    [201] G. Cao, V. M. Lynch, I. Yacullo. Synthesis, structural characterization, and intercalation chemistry of two layered cadmium organophosphonates. Chem. Mater., 1993, 5:1000-1003
    [202] D. Deniaud, B. Schollom, D. Mansuy, et al. Synthesis and Catalytic Properties of Manganese Porphyrins Incorporated into Phosphonate Networks. Chem. Mater., 1995, 7:995-999
    [203] S. B. Ungashc, W. L. Wilson, H. E. Katz, et al. Synthesis, self-assembly, and photophysical dynamics of stacked layers of porphyrin and viologen phosphonates. J. Am. Chem. Soc., 1992, 114:8717-8718
    [204] T. William, A. Harrison, L. L. Dussack, et al. Syntheses and Properties of New Layered Alkali-Metal/Ammonium Vanadium(V) Methylphosphonates: M(VO_2)_3(PO_3CH_3)_2 (M = NH_4, K, Rb, T1). Single-Crystal Structures of K(VO_2)_3(PO_3CH_3)_2 and NH_4(VO_2)_3(PO_3CH_3)_2. Inorg. Chem., 1996, 35: 1461-1465
    [205] G. Huan, V. W. Day, A. J. Jacobson, D. P. Goshom, Synthesis and crystal structure of a spherical polyoxovanadium organophosphonate anion: [H_(12)(VO_2)_(12)(C_6H_5PO_3)_8]~(4-). J. Am. Chem. Soc., 1991, 113:3188-3189
    [206] D. Y. Kong, Y. Li, O. Y. Xiang, et al.. Syntheses, Structure, and Magnetic Properties of New Types of Cu(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Organophosphonate Materials: Three-Dimensional Frameworks and a One-Dimensional Chain Motif. Chem. Mater., 2004, 16:3020-3026
    [207] D. M. Poojary, B. L. Zhang, P. Bellinghausen, et al.. Synthesis and X-ray Powder Structures of Covalently Pillared Lamellar Zinc Bis(phosphonates). Inorg. Chem., 1996, 35:5254-5258
    [208] L. M. Zheng, S. Gao, P. Yin, et al.. One-Dimensional Cobalt Diphosphonates Exhibiting Weak Ferromagnetism and Field-Induced Magnetic Transitions. Inorg. Chem., 2004, 43:2151-2154
    [209] P. Yin, S. Gao, L. M. Zheng, et al.. Magnetic Properties of Metal Diphosphonate Compounds with One-Dimensional Chain Structures. Chem. Mater., 2003, 15:3233-3237
    [210] J. G. Mao, Z. K. Wang, A. Clearfield. The role of deprotonation of the ligand on the structures of metal phosphonates: synthesis, characterization and crystal structures of two new metal diphosphonates with a 1D double chain and a 2D layer structure. J. Chem, Soc.. Dalton. Trans., 2002, 4457-4463
    [211] H. H. Song, L. M. Zheng, Z. M. Wang, et aL Zinc Diphosphonates Templated by Organic Amines: Syntheses and Characterizations of [NH_3(CH_2)_2NH_3]Zn(hedpH_2)_2·2H_2O and [NH_3(CH_2)_nNH_3]Zn_2(hedpH)_2·2H_2O (n= 4, 5, 6) (hedp= 1-Hydroxyethylidenediphosphonate). Inorg. Chem., 2001, 40:5024-5027
    [212] A. Clearfield, C. V. K. Sharma, B. L. Zhang, Crystal Engineered Supramolecular Metal Phosphonates: Crown Ethers and Iminodiacetates. Chem. Mater., 2001, 13:3099-3093
    [213] A. M. Datelbaum, J. D. Martin, Benzene-Copper(Ⅰ) Coordination in a Bimetallic Chain Complex. Inorg. Chem., 1999, 38:6200-6204
    [214] L. M. Zheng, H. H. Song, C. Y. Duan, et al.. Template-Directed One- and Two-Dimensional Copper(Ⅱ) Diphosphonates: Structures and Characterizations of (NH_4)_2Cu_3(hedp)_2(H_2O)_4, [NH_3(CH_2)_4NH_3]Cu_3(hedp)_2·2H_2O, and [NH_2(C_2H_4)_2NH_2]Cu_3(hedp)_2(hedp = 1-Hydroxyethylidenediphosphonate). Inorg. Chem., 1999, 38:5061-5064
    [215] D. L. Lohse, S. C. Sevov. Co_2(O_3P-CH_2-PO_3)·H_2O:A Novel Microporous Diphosphonate with an Inorganic Framework and Hydrocarbon-Lined Hydrophobic Channels. Angew. Chem. Int. Ed., Engl. 1997, 36:1619-1622
    [216] Q. M. Gao, N. Guillou, M. Nogues, et al.. Structure and Magnetism of VSB-2, -3, and -4 or Ni_4(O_3P-(CH_2)-PO_3)_2-(H_2O)_n (n = 3, 2, 0), the First Ferromagnetic Nickel(Ⅱ) Diphosphonates: Increase of Dimensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration. Chem, Mater., 1999, 11, 2937-2941
    [217] V. Soghomonian, Q. Chen, R. C. Haushalter, et al. Investigations into the Targeted Design of Solids: Hydrothermal Synthesis and Structures of One-, Two-, and Three-Dimensional Phases of the Oxovanadium-Organodiphospho-Nate System. Angew. Chem. Int. Ed., Engl., 1995, 34:223-226
    [218] D. M. Poojary, B. Zhang, A. Clearfield. Syntheses and X-ray Powder Structures of Two Zinc Propylenebis(phosphonates). Chem. Mater., 1999, 11: 421-425
    [219] B. A. Adair, G. D. Delgado, J. M. Delgado, et al. On the synthesis and characterization of open-framework antimony(Ⅲ) diphosphonates. Solid. State. Sci., 2000, 2:119-126
    [220] R. B. Fu, X. T. Wu, S. M. Hu, W. X. Du, et al. Crystal structures of five transition-metal, 4-butylenediphosphonates. Polyhydron, 2003, 22:2739-2744
    [221] R. B. Fu, X. T. Wu, S. M. Hu, et al. Single crystal structure of a two-dimensional framework: [{Co(4,4-bpy)(HO_3PCH_2CH_2CH_2CH_2PO_3H) (H_2O)_2}·4H_2O]_n. Inorg. Chem. Commun., 2003, 6:827-829
    [222] S. Drumel, P. Janvier, P. Barboux, et al. Synthesis, Structure and Reactivity of Some Functionalized Zinc and Copper(Ⅱ) Phosphonates. Inorg. Chem., 1995, 34:148-152
    [223] Riou-Cavellec, M.; Sanselme, M.; Nogues, et al. Synthesis, structure and metamagnetic behaviour of a three-dimensional Fe(Ⅱ) carboxyethylphosphonate: [Fe_3(OH)_2(H_2O)_4(O_3P-(CH_2)_2-CO_2H)_2] or MIL-38Solid. State. Sci., 2002, 4:619-625
    [224] N. Stock, Synthesis and structural characterization of the Pb(Ⅱ)-organophosphonates: the three-dimensional Pb[HO_3PCH_2NHCH_2PO_3H] and the two-dimensional Pb[O_3PCH_2NH_2CH_2COO] Solid State Sci., 2002, 4:1089-1094
    [225] G. B. Hix, B. M. Kariuki, S. Kitchin, et al.. Synthesis and Structural Characterization of Zn(O_3PCH_2OH), a New Microporous Zinc Phosphonate. Inorg Chem., 2001, 40:1477-1450
    [226] P. Ying, L. M. Zheng, S. Gao, et al.. Cu_4{CH_3C(OH)(PO_3)_2}_2(C_4H_4N_2)(H_2O)_4: a novel, three-dimensional copper diphosphonate with metamagnetism. Chem. Commun.. 2001, 2346-2347
    [227] Z. M. Sun, J. G. Mao, B. P. Yang, et al. Two new layered inorganic-organic hybrids: intercalation of 1,3,5-benzenetricarboxylate in lead bisphosphonate. Solid. State. Sci., 2004, 6:295-300
    [228] Z. M. Sun, J. G. Mao, B. P. Yang, S. M. Ying, Two new layered inorganic-organic hybrids: intercalation of 1,3,5-benzenetricarboxylate in lead bisphosphonate. Solid. State. Sci.. 2004, 6:295-300
    [229] B. Zhang, A. Clearfield. Crown Ether Pillared and Functionalized Layered Zirconium Phosphonates: A New Strategy to Synthesize Novel Ion Selective Materials. J. Am. Chem. Soc., 1997, 119:2751-2752
    [230] J. G. Mao, Z. Wang, A. Clearfield. Synthesis, Characterization, and Crystal Structures of Two New Divalent Metal Complexes of N, N'-Bis(phosphonomethyl)-1,10-diaza-18-crown-6: A Hydrogen-Bonded 1D Array and a 3D Network with a Large Channel. Inorg. Chem., 2002, 41:3713-3718
    [231] C. V. K. Sharma, A. Clearfield. Deprotonation of Phosphonic Acids with M~(2+) Cations for the Design of Neutral Isostructural Organic-Inorganic Hybrids. J. Am. Chem. Soc., 2001, 123:2885-2886
    [232] C. V. K. Sharma, A. Clearfield, "Macrocyclie Leaflets". J.. Am. Chem. Soc., 2000, 122:558-559
    [233] J. L. Song, H. H. Zhao, J. G. Mao, et al.. New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4'-Bipyridine Ligand. Chem. Mater.. 2004, 16:1884-1889
    [234] J. L. Song, A. V. Prosvirin, H. H. Zhao, et al.. Syntheses and Crystal Structures of Two Cobalt Carboxylate-Phosphonates with 4,4'-Bipyridine as a Secondary Metal Linker. Eur. J. Inorg. Chem., 2004, 24:3706-3711
    [235] X. Shi, G. Zhu, S. Qiu, et al.. Zn_2[(S)-O_3PCH_2NHC_4H_7CO_2]_2: A Homochiral 3D Zinc Phosphonate with Helical Channels. Angew. Chem. Int. Ed. Engl., 2004, 43, 6482
    [236] B. P. Yang, J. G. Mao, Y. Q. Sun, et al. Syntheses, Characterizations, and Crystal Structures of Three New Metal Phosphonocarboxylates with a Layered and a Microporous Structure. Eur. J. Inorg. Chem., 2003, 4211-4217
    [237] D. L. Lohse, S. C. Sevov. Co_2(O_3P-CH_2-PO_3)·H_2O: A Novel Microporous Diphosphonate with an Inorganic Framework and Hydrocarbon-Lined Hydrophobic Channels. Angew. Chem. Int. Ed., Engl. 1997, 36:1619-1622
    [238] Q. M. Gao, N. Guillou, M. Nogues, et al.. Structure and Magnetism of VSB-2,-3, and -4 or Ni_4(O_3P-(CH_2)-PO_3)_2·(H_2O)_n (n = 3, 2, 0), the First Ferromagnetic Nickel(Ⅱ) Diphosphonates: Increase of Dimensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration. Chem, Mater., 1999, 11: 2937-2940
    [239] V. Soghomonian, Q. Chen, R. C. Haushalter, et al.. Investigations into the Targeted Design of Solids: Hydrothermal Synthesis and Structures of One-, Two-, and Three-Dimensional Phases of the Oxovanadium-organodiphos phonate System. Angew. Chem. Int. Ed. Engl.. 1995, 34, 223-227
    [240] D. M. Poojary, B. Zhang, A, Clearfield. Syntheses and X-ray Powder Structures of Two Zinc Propylenebis(phosphonates). Chem. Mater.. 1999, 11: 421-425
    [241] B. A. Adair, G. D. Delgado, J. M. Delgado, et al.. On the synthesis and characterization of open-framework antimony(Ⅲ) diphosphonates. Solid. State. Sci., 2000, 2:119-126
    [242] R. B. Fu, X. T. Wu, S. M. Hu, et al.. Crystal structures of five transition-metal 1,4-butylenediphosphonates. Polyhydron, 2003, 22:2739-2744
    [243] R. B. Fu, X. T. Wu, S. M. Hu, et al.. Single crystal structure of a two-dimensional framework: [{Co(4,4'-bpy)(HO_3PCH_2CH_2CH_2CH_2PO_3H)(H_2O)_2}·4H_2O]_n. Inorg. Chem. Commun.. 2003, 6:827-829
    [244] R. B. Fu, X. T. Wu, S. M. Hu, et al.. Single crystal structure of a heterometallic one-dimensional polymer: [{Cu(1,10-phen)}_2(V_2O_4)(O_3PCH_2CH_2CH_2CH_2PO_3H)_2(H_2O)]_n. Inorg. Chem. Commun., 2003, 6:694-696
    [245] J. L. Song, H. H. Zhao, J. G. Mao, et al.. New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4'-Bipyridine Ligand. Chem. Mater., 2004, 16:1884
    [246] N. Stock. Synthesis and structural characterization of the Pb(Ⅱ)-organophosphonates: the three-dimensional Pb[HO_3PCH_2NHCH_2PO_3H] and the two-dimensional Pb[O_3PCH_2NH_2CH_2COO]. Solid State Sci., 2002, 4: 1089-1094
    [247] M. Ramstedt, C. Norgren, J. Sheals, et al.. Thermodynamic and spectroscopic studies of cadmium(Ⅱ)-N-(phosphonomethyl)glycine (PMG) complexes. Inorg. Chim. Acta. 2004., 357:1185-1192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700