FePt基磁性薄膜的超快自旋动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
96年至今,由于超快自旋动力学在基础研究和技术应用上的重要意义,人们对其做了大量的实验和理论研究,试图获悉磁性材料自旋瞬态翻转的特性和磁性体系中磁化翻转的速度极限。FePt-基磁性薄膜以其优越的磁学特性被认为是下一代超高密度垂直磁记录介质的理想材料。本论文以FePt-基磁性薄膜作为研究对象,用时间分辨的磁光克尔效应研究了其光诱导瞬态退磁和磁化恢复的过程及机制。
     首先,我们用时间分辨的极向磁光克尔效应研究了高垂直各向异性L10相FePt薄膜的飞秒激光脉冲诱导超快自旋动力学过程,得到了激光泵浦功率、膜厚和生长温度对薄膜的瞬态退磁率和磁性恢复速率的影响,以及这些过程中材料的矫顽力与克尔迥线的演化规律。我们的结论指出,对于中等功率的激光泵浦,由于样品内不均匀FePt颗粒不同的退磁程度,以及激光的热效应引起的颗粒间交换耦合的减弱,高垂直各向异性的L10相FePt薄膜在超快退磁时保留了一个大的矫顽力,这将不利于热辅助磁记录(HAMR)技术的应用。因此,为了降低材料在最大退磁点的剩余矫顽力,实现HAMR技术的真实超快写入,必须使得样品在激光脉冲诱导下达到完全退磁,这可以通过调节泵浦光的激发强度和样品厚度来完成。对于较薄的薄膜在强激发功率下磁化恢复速率较慢的问题,可以通过附加合适的非磁性散热层来解决。其次,我们用时间分辨的纵向和极向磁光克尔效应,研究了铁磁耦合FePt/CoFe双层膜结构在超短激光脉冲激励下的自旋动力学过程。从不同延迟时刻瞬态磁光克尔迥线的分段翻转现象上,发现水平的交换耦合双层膜在超快激光脉冲激发下0-10 ps内出现瞬态的交换解耦合现象,这个过程依赖于泵浦强度、软硬磁层的交换耦合强度,以及覆盖的软磁层厚度,然后在10—20 ps内交换耦合被重新建立。耦合消退和重建过程是由于FePt层界面处的自旋有序度在激光脉冲作用下的热激发和弛豫过程造成的。我们用此对观察到的FePt层溅射和退火温度为425℃、退火时间为150分钟的Corning Glass/Fe0.5-Pt0.5 (6nm)/Co0.8Fe0.2(5,7nm)/Ta(3nm)样品在磁化恢复过程的前0-100 ps中的磁化进动现象提出了解释。在高磁晶各向异性的垂直取向L10-FePt/CoFe耦合的双层膜中,由于其很高的耦合强度,我们并没有发现激光诱导下的解耦合现象。
Extensive experimental and theoretical studies have been carried out from 1996 in photo-induced ultrafast spin dynamics because of its importance in both science and technology. People are trying to investigate transient spin switch process in magnetic material and detect its speed limit. FePt-based magnetic material is one of the main candidates for the next generational ultra-high density perpendicular magnetic recording because of its outstanding magnetic features. Its laser-induced transient demagnetization and magnetic recovery process is studied in the dissertation by time-resolved magnetic optical Kerr effect (TRMOKE) of different geometry.
     Firstly, Laser-induced ultrafast magnetization dynamics in perpendicular magnetized L10-FePt films are investigated using time-resolved polar magneto-optical Kerr technique. We observed the coercivity and the transient loop evolution at different delay time. We demonstrate that there is a pronounced laser power and film thickness effect on magnetic softening and magnetization recovery rate. Our results indicate that due to the nonuniform demagnetization of the weakly coupled FePt grains upon photoexcitation, the hard FePt films hold a residual large coercivity that probably affects the desirable HAMR writing. We propose that it is necessary in the real ultrafast writing to achieve a full demagnetization in order to eliminate the residual large coercivity, by means of controlling the film thickness and laser energy. Additionally, the problem of slow magnetization recovery happened in thinner film pumped by high power laser could be solved by adding suitable nonmagnetic heat sink layers.
     Secondly, photo-induced magnetization dynamics in FePt/CoFe bilayer is investigated by Longitudinal-and Polar-TRMOKE. The transient Kerr loops of the in-plane coupled bilayers in 0-10 ps exhibit an instantaneous separated switching behavior indicating the decoupling between FePt and CoFe layers induced by photo-excitation. This process is related to the pump fluence, the coupling strength between the hard/soft interface, and the thickness of the soft layer. In the subsequent 10-20 ps, the loops recover to the original uniform switching, the coupling between the bilayer is rebuilt. The decoupling phenomena is due to the laser-created spin disordering mainly in FePt layer, while the following onset of interfacial coupling results from spin/lattice cooling process. We use this model to explain the observed magnetization precesional motion during the first 0-100 ps of magnetization recovery process in the Corning Glass/Feo.s-Pto.s (6 nm)/Co0.8Fe0.2(5,7nm)/Ta(3nm) sample whose FePt layer is sputtered at 425℃and annealed at the same temperature for 150 min. In the high magnetocrystalline anisotropy perpendicular magnetized L10-FePt/CoFe bilayers, because of its high coupling strength, we did not observed the later-induced decoupling phenomenon.
引文
[1]A.V. Melnikov, J. Gudde, E. Matthias. Demagnetization following optical excitation in nickel and Permalloy.lms[J], Appl. Phys. B 2002,74:735-740.
    [2]W.D. Doyle, L. He and P.J. Flanders. Measurement of the switching speed limit in high coercivity magnetic media[J], IEEE Trans. Magn.1993,29:3634.
    [3]L. Landau, L. Lifshitz. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[J]. Phys. Z. Sowjetunion.1935,8:153.
    [4]T.L. Gilbert. A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field[J]. Phys. Rev.1935,100:1243.
    [5]E. Beaurepaire, J.C. Merle, A. Daunois, J.Y. Bigot. Ultrafast spin dynamics in ferromagnetic nickel[J], Phys. Rev. Lett.1996,76:4250-4253.
    [6]A. Vaterlaus, T. Beutler, F. Meier. Spin-lattice relaxation time of ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission[J], Phys. Rev. Lett.1991,67:3314-3317.
    [7]A. Vaterlaus, T. Beutler, D. Guarisco, M. Lutz, F. Meier. Spin-lattice relaxation in ferromagnets studied by time-resolved spin-polarized photoemission[J], Phys. Rev. B 1992,46:5280-5286.
    [8]G.P. Zhang, W. Hubner, E. Beaurepaire et al. Laser-Induced Ultrafast Demagnetization:Femtomagnetism, a New Frontier? Spin Dynamics in Confined Magnetic Structure I[J],Topics Appl.Phys.2002,83:245-290.
    [9]J.Y. BIGOT. Femtosecond magneto-optical processes in metals[J] C.R.Acad.Sci.Paris,2001, t.2,Serie Ⅳ,1483-1504.
    [10]H.B. Zhao, D. Talbayev, Q.G. Yang, et al. Ultrafast magnetization dynamics of epitaxial Fe films on AlGaAs (001)[J]. Appl. Phys. Lett.,2005,86:152512-1-152512-3.
    [11]T. Kampfrath, R.G. Ulbrich, F. Leuenberger, et al. Ultrafast magneto-optical response of iron thin films[J]. Phys. Rev. B,2002,65:104429-1-104429-6
    [12]A. Comina, M. Rossi, C. Mozzati, et al. Femtosecond dynamics of Co thin films on Si support[J]. Solid State Communications 2004,129:227-231.
    [13]M. Vomir, L.H.F. Andrade, L. Guidoni, et al. Real space trajectory of the ultrafast magnetization dynamics in ferromagnetic metals[J]. Phys. Rev. Lett. 2005,94:237601-1-237601-4.
    [14]R. Wilks, N.D. Hughes and R.J. Hicken. Investigation of ultrafast spin dynamics in a Ni thin film[J]. J. Appl. Phys 2002,91:8670-8672.
    [15]B. Koopmans, M.V. Kampen, J.T. Kohlhepp, et al. Ultrafast magneto-optics in nickel magnetism or optics[J]. Phys. Rev. Lett 2000,85:844-847.
    [16]J. Hohlfeld, E. Matthias, R. Knorren, et al. Nonequilibrium magnetization dynamics of nickel[J]. Phys. Rev. Lett.1997,78:4861-4864.
    [17]J. Gudde, U. Conrad, V. Jahnke, et al. Magnetization dynamics of Ni and Co films on Cu(001) and of bulk nickel surfaces[J]. Phys. Rev. B 1999,59:R6608-R6611
    [18]H. Regensburger, R. Vollmer, and J. Kirschner. Time-resolved magnetization-induced second-harmonic generation from the Ni (110) surface[J]. Phys. Rev. B 2000,61:14716-14722
    [19]Q.Y. Jin, H. Regensburger, R. Vollmer, et al. Periodic oscillations of the surface magnetization during the growth of Co films on Cu(001)[J]. Phys. Rev. Lett. 1998,80:4056-4059
    [20]Th. Rasing. Nonlinear magneto-optical probing of magnetic interfaces[J]. Appl. Phys. B 1999,68:477-479.
    [21]A. Scholl, L. Baumgarten, R. Jacquemin, et al. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission[J]. Phys. Rev. Lett.1997,79:5146-5149.
    [22]M. Aeschlimann, M. Bauer, S. Pawlik, et al. Ultrafast spin-dependent electron dynamics in fcc Co[J]. Phys. Rev. Lett.1997,79:5158-5161.
    [23]H.S. Rhie, H.A. Durr and W. Eberhardt. Femtosecond electron and spin dynamics in Ni/W(110) films[J]. Phys. Rev. Lett.2003,90:247201-1-247201-4
    [24]W. Hubner and K.H. Bennemann. Electronic theory for the nonlinear magneto-optical response of transition metals at surfaces and interfaces:Dependence of the Kerr rotation on the polarization and magnetic easy axis[J]. Phys. Rev. B 1995,52:13411-13418.
    [25]V.V. Pavlov, G. Tessier and C. Malouin. Observation of magneto-optical second-harmonic generation with surface plasmon excitation in ultrathinn Au/Co/Au films[J]. Appl. Phys. Lett.1999,75:190-192.
    [26]G.P. Ju and A.V. Nurmikko. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic antiferromagnetic exchange coupled system[J]. Phys. Rev. Lett.1999,82:3705-3708.
    [27]E. Beaurepaire, M. Maret, V. Halte, et al. Spin dynamics in CoPt3 alloy films:A magnetic phase transition in the femtosecond time scale[J]. Phys. Rev. B 1998, 58:12134-12137.
    [28]A.V. Kimel, A. Kirilyuk, A. Tsvetkov, et al. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3[J]. Nature 2004,429:850-853.
    [29]A.V. Kimel, C.D. Stanciu, P.A. Usachev, et al. Optical excitation of antiferromagnetic resonance in TmFeO3[J]. Phys. Rev. B 2006,74:060403-1-060403-4.
    [30]M.V. Kampen, C. Jozsa, J.T. Kohlhepp, et al. All-optical probe of coherent spin waves[J]. Phys. Rev. Lett.2002,88:227201-1-227201-4.
    [31]A.V. Kimel, A. Kirilyuk, P.A Usachev, et al. Ultrafast nonthermal magnetization control by fs laser[J]. Nature 2005,435:655-657.
    [32]F. Hansteen, A. Kimel, A. Kirilyuk, et al. Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films[J]. Phys. Rev. Lett.2005,95: 047402-1-047402-4.
    [33]A. Melnikov, I. Radu, U. Bovensiepen, et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface[J]. Phys. Rev. Lett.2003,22:227403-1-227403-4.
    [34]M.I. Kaganov, I.M. Lifshitz, and L.V. Tanatarov. Relaxation between electrons and the crystalline lattice[J]. Sov. Phys. JETP 1957,4:173-180.
    [35]G.P. Ju, A. Vertikov, A.V. Nurmikko, et al. Ultrafast nonequilibrium spin dynamics in a ferromagnetic thin film[J]. Phys. Rev. B 1998,57:R700-R704.
    [36]L. Guidoni, E. Beaurepaire and J.Y. Bigot. Magneto-optics in the ultrafast regime thermalization of spin populations in ferromagnetic films[J]. Phys. Rev. Lett.2002,89:017401-1-017401-4.
    [37]J.Y. Bigot, L. Guidoni, E. Beaurepaire, et al. Femtosecond Spectrotemporal Magneto-optics[J]. Phys. Rev. Lett.2004,93:077401-1-077401-4.
    [38]T.M. Crawford, T.J. Silva, C.W. Teplin, et al. Subnanosecond magnetization dynamics measured by the second-harmonic magneto-optic Kerr effect[J]. Appl. Phys. Lett.1999,74:3386-3388.
    [39]D. Guarisco, R. Burgermeister, C. Stamm, et al. Magnetization reversal in the picosecond range measured with time-resolved magneto-optical Kerr effect[J].Appl. Phys. Lett.1996,68:1729-1731.
    [40]X.D. Liu, Z. Xu, R.X. Gao, et al. Dynamics of magnetization, reversal, and ultrafast demagnetization of TbFeCo amorphous films[J]. Appl. Phys. Lett.2008, 92:232501.
    [41]M.B. Agranat, S.I. Ashikov, A.B. Granovskii, G.I. Rukman. Interaction of picosecond laser pulses with the electron, spin and phonon subsystem of nickel[J], Sov. Phys. JETP 1984,59:804-806; Zh. Eksp. Teor. Fiz.1984,86: 1376-1379.
    [42]M. Cinchetti, M.S. Albaneda, D. Hoffmann, et al. Spin-flip processes and ultrafast magnetization dynamics in Co:unifying the microscopic and macroscopic view of femtosecond magnetism[J]. Phys. Rev. Lett.2006, 97:177201-1-177201-4.
    [43]J. Barnas, A. Fuss, R.E. Camley, et al. Novel magnetoresistance effect in layered magnetic structures Theory and experiment[J]. Phys. Rev. B 1990,42:8110-8120.
    [44]D.U. Bartholomew, J.K. Furdyna and A.K. Ramdas. Interband faraday rotation in diluted magnetic semiconductors Zn1-xMnxTe and Cd1-xMnxTe[J]. Phys. Rev. B 1986,34:6943-6951.
    [45]P.M. Oppeneer and A. Liebsch. Ultrafast demagnetization in Ni:theory of magneto-optics for non-equilibrium electron distributions[J]. J. Phys.:Condens. Matter,2004, vol.16, p.519.
    [46]W. Hubner and G. P. Zhang. Ultrafast spin dynamics in nickel[J]. Phys. Rev., vol. B 1998,58, p. R5920.
    [47]A. Vernes and P. Weinberger. Formally linear response theory of pump-probe experiments[J]. Phys. Rev.2005, vol. B71, p.165108.
    [48]R.G.H. Groeneveld, R. Sprik, A. Lagendijk. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au[J]. Phys. Rev. B 1995,51:11433.
    [49]B. Sinkovic, L.H. Tjeng, N.B. Brookes, J.B. Goedkoop, et al. Local Electronic and Magnetic Structure of Ni below and above TC:A spin-resolved circularly polarized resonant photoemission study[J]. Phys. Rev. Lett.1997,79:3510-3513.
    [50]T.J. Kreutz, T. Greber, P. Aebi, J. Osterwalder. Temperature-dependent electronic structure of nickel metal[J]. Phys. Rev. B 1998,58:1300-1317.
    [51]M. Farle. Ferromagnetic resonance of ultrathin metallic layers[J]. Prog. Rep. Phys.1998,61:755-826.
    [52]G.P Ju, A.V. Nurmikko, R.F.C. Farrow, R. F. Marks, M. J. Carey, B.A. Gurney. Coherent magnetization rotation by optical modulation in ferromagnetic/antiferromagnetic exchange-coupled bilayers[J]. Phys. Rev. B 2000,62:1171-1177.
    [53]G.P. Ju, A.V. Nurmikko, R.F.C. Farrow, R. F. Marks, M. J. Carey, B. A. Gurney. Ultrafast optical modulation of an exchange biased ferromagnetic/antiferromagnetic bilayer[J]. Phys. Rev. B 1998,58, R11857-R11860.
    [54]C.D. Stanciu, F. Hansteen, A.V. Kimel. Ultrafast Interaction of the Angular Momentum of Photons with Spins in the Metallic Amorphous Alloy GdFeCo[J].Phys. Rev. L 2007,98:207401.
    [55]C.D. Stanciu, F. Hansteen, A.V. Kimel. All-Optical Magnetic Recording with Circularly Polarized Light[J]. Phys. Rev. L 2007,99:047601.
    [56]A.I. Kirilyuk, A.V. Kimel, and Th. Rasing. Ultrafast Opto-Magnetic Excitation of Magnetization Dynamics[J]. IEEE TRANSACTIONS ON MAGNETICS, 2008,44:1905-1910.
    [57]A.B. Chizhik, I.I. Davidenko, A. Maziewski and A. Stupakiewicz. High-temperature photomagnetism in Co-doped yttrium iron garnet films[J]. Phys. Rev. B 1998,57:14366-14369.
    [58]B. Koopmans, M. van Kampen, J.T. Kohlhepp, and W.J.M. de Jonge. Femtosecond spin dynamics of epitaxial Cu(111)/Ni/Cu wedges [J]. J. Appl. Phys.,2000,87:5070-5072
    [1]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991:
    [2]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001:
    [3]杨邦朝,王文生.薄膜物理与技术[M].北京:电子科技大学出版社,1994:
    [4]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社,1991:
    [5]S. Jeon. Structure and magnetic properties of polycrystalline FePt and CoPt thin films for high density recording media [D],2002, PA:Carnegie Mellon University.
    [6]查超麟.L10-FePt基磁记录介质材料的研究[D].上海:复旦大学,2006:
    [7]叶骏.磁性超薄膜磁光效应的研究[D].上海:复旦大学,2006:
    [8]K.H. Bennemann. Nonlinear Optics in Metals [M]. Oxford, Clarendon press, 1998:2
    [9]R.M. Osgood, S.D. Bader, B.M. Clemens, R.L. White and H. Matsuyama. Second-order magneto-optic effects in anisotropic thin films [J]. J. Magn. Man. Mater,1998,182:297-323.
    [10]M. Thomas. Faraday Diary [M]. Londan, ibid,1845:7437-7444.
    [11]H.R. Hulme. The Faraday Effect in Ferromagnetics[J], Proc. R. Soc. Lond. A, 1932,135:237-257.
    [12]G.L. Easley. Observation of Nonequilibrium Electron Heating in Copper [J]. Phys. Rev. Lett,1983,51:2140
    [13]B. Hillebrands, K. Ounadjela (Eds.). Spin Dynamics in Confined Magnetic Structures Ⅱ [J], Topics Appl. Phys,2003,87:253-320.
    [14]J. Hohlfeld, J. Gudde, U. Conrad, O. Duhr, G. Korn and E. Matthias. Ultrafast magnetization dynamics of nickel [J]. Appl. Phys. B,1999,68:505-510.
    [1]W.F. Brown Jr. Thermal Fluctuations of a Single-Domain Particle[J], Phys. Rev.,1963,130(5):1677-1686.
    [2]H. Kanazawa, G. Lanhoff, and T. Suzuki, Magnetic and structural properties of (CoxFe100-x)50Pt50 alloy thin films[J]. J. Appl. Phys.2000,87:6143.
    [3]S. Okamoto, N. Kikuchi,O. Kitakami, T. Miyazaki, Y. Shimada and K. Fukamichi. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films[J]. Phys. Rev. B 2002,66:024413.
    [4]J.S. Chen, B.C. Lim, J.F. Hu, and B. Liu, G.M. Chow. Low temperature deposited L10 FePt-C (001) films with high coercivity and small grain size[J]. Appl. Phys. Lett.2007,91:132506.
    [5]J.M. Qiu and J.P. Wang. Monodispersed and highly ordered L10 FePt nanoparticles prepared in the gas phase[J]. Appl. Phys. Lett.2006,88:192505.
    [6]C. Kim, T. Loedding, S. Jang, H. Zeng, Z. Li, Y. Sui, and D.J. Sellmyer. FePt nanodot arrays with perpendicular easy axis, large coercivity, and extremely high density[J]. Appl. Phys. Lett.2007,91:172508.
    [7]S. Sun, S. Anders, H.F. Hamann, J. Thiele, et al. Polymer mediated self-assembly of magnetic nanoparticles[J]. J. Am. Chem. Soc.2002,124:2884.
    [8]T. Shima, K. Takanashi, Y.K. Takahashi, and K. Hono. Preparation and magnetic properties of highly coercive FePt films[J]. Appl. Phys. Lett.2002,81:1050.
    [9]S. Cumpson, P. Hidding, and R. Coehoorn. A hybrid recording method using thermally assisted writing and flux sensitive detection[J]. IEEE Trans. Magn.2000, 36:2271.
    [10]A. Lyberatos and K.Yu. Guslienko. Thermal stability of the magnetization following thermomagnetic writing in perpendicular media[J]. J. Appl. Phys.2003, 94:1119.
    [11]K.Yu. Guslienko, O.C. Fesenko, O. Mryasov, R. Chantrell, and D. Weller. Magnetization reversal via perpendicular exchange spring in FePt/FeRh bilayer films[J]. Phys. Rev. B 2004,70:104405.
    [12]E. Beaurepaire, J.C. Merle, A. Daunois, and J.Y. Bigot. Ultrafast Spin Dynamics in Ferromagnetic Nickel[J]. Phys. Rev. Lett.1996,76:4250.
    [13]B. Koopmans, J.J. Ruigrok, F. Dalla Longa, and W.J.M. de Jonge. Unifying Ultrafast Magnetization Dynamics[J]. Phys. Rev. Lett.2005,95:267207.
    [14]J. Hohlfeld, Th. Gerrits, M. Bilderbeek, and Th. Rasing. Fast magnetization reversal of GdFeCo induced by femtosecond laser pulses[J]. Phys. Rev. B 2001, 65:012413.
    [15]A.V. Kimel, A. Kirilyuk, A. Tsvetkov, R.V. Pisarev, and Th. Rasing. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3[J]. Nature 2004,429:850.
    [16]G.P. Ju, A.V. Nurmikko, R.F.C. Farrow, R.F. Marks, M.J. Carey, and B.A. Gurney. Coherent magnetization rotation induced by optical modulation in ferromagnetic/antiferromagnetic exchange-coupled bilayers[J]. Phys. Rev. B 2000,62:1171.
    [17]Y. Ren, H. Zhao, Z.Z. Zhang, Q.Y. Jin. Ultrafast optical modulation of exchange coupling in FePt/CoFe composite structure[J]. Appl. Phys. Lett.2008, 92:162513.
    [18]R. Wilks and R.J. Hicken. Ultrafast demagnetization of Co25Ni75/Pt multilayers with perpendicular anisotropy at elevated temperatures[J]. J. Appl. Phys.2005, 97:10A705.
    [19]M. Djordjevic, M. Luttich, P. Moschkau, P. Guderian et al. Comprehensive view on ultrafast dynamics of ferromagnetic films[J]. Phys. Stat. Sol. (c) 2006,3: 1347-1358.
    [20]M.L. Yan, Y. Liu, M.J. Yu, S.H. Liou, and D.J. Sellmyer. Magnetic properties and nanostructures of composite CoxPt100-x:C thin films[J]. IEEE Trans. Magn. 2001,37:1671.
    [21]T. Roth, D. Steil, D. Hoffmann, M. Bauer, M. Cinchetti, and M. Aeschlimann. Dynamics of the coercivity in ultrafast pump-probe experiments[J]. J. Phys. D: Appl. Phys.2008,41:164001.
    [22]E. Beaurepaire, M. Maret, V. Halte, J.C. Merle, A. Daunois, and J.Y. Bigot. Spin dynamics in CoPt3 alloy films:A magnetic phase transition in the femtosecond time scale[J]. Phys. Rev. B 1998,58:12134.
    [23]D. Cheskis, A. Porat, L. Szapiro, O. Potashnik, and S. Bar-Ad. Saturation of the ultrafast laser-induced demagnetization in nickel[J]. Phys. Rev. B 2005,72: 014437.
    [24]M. van Kampen, C. Jozsa, J.T. Kohlhepp, P. LeClair, L. Lagae, W.J.M. de Jonge, and B. Koopmans. All-Optical Probe of Coherent Spin Waves[J]. Phys. Rev. Lett.2002,88:227201.
    [25]王淑华,查超麟,高静等.c轴垂直取向FePt薄膜的磁和磁光性能研究[J].物理学报2007,56:1719.
    [26]A. Tsukamoto, K. Nakagawa, A. Itoh. Excitation of coherent spin waves at ultrafast thermomagnetic writing[J]. IEEE Trans. Magn 2004,40:2543.
    [27]D. Guarisco, R. Burgermeister, C. Stamm, et al. Magnetization reversal in the picosecond range measured with time-resolved magneto-optical Kerr effect[J]. Appl. Phys. Lett.1996,68:1729.
    [28]W. Hubner W and K.H. Bennemann. Simple theory for spin-lattice relaxation in metallic rare-earth ferromagnets[J]. Phys. Rev.1996, B 53:3422.
    [29]Y. Ren, J.Q. Zhao, Z.Z. Zhang and Q.Y. Jin, H.N. Hu, and S.M. Zhou. Effect of heat sink layer on ultrafast magnetization recovery of FeCo films[J]. J. Phys. D: Appl. Phys.2008,41:085005.
    [1]J. Zhou, R. Skomski, X.Z. Li, et al. Permanent-magnet properties of thermally processed FePt and FePt-Fe multilayer films[J], IEEE TRANSACTIONS ON MAGNETICS,2002,38 (5):2802-2804.
    [2]O. Hellwig, J.B. Kortright, and K. Takano,et al. Switching behavior of Fe-Pt/Ni-Fe exchange-spring films studied by resonant soft-x-raymagneto-optical Kerr effect[J], PHYSICAL REVIEW B,2000,62(17):11694-11698.
    [3]Y. Sonobe, H. Muraoka, K. Miura, and Y. Nakamura, et al.Thermally stable CGC perpendicular recording media with Pt-rich CoPtCr and thin Pt layers[J]. IEEE Trans. Magn.,2002,38(5):2006.
    [4]Y. Sonobe, H. Muraoka, K. Miura, et al. Coupled granular/continuous perpendicular recording media with soft magnetic underlayer[J]. J. Appl. Phys., 2002,91:8055.
    [5]J.P. Wang, W.k. Shen, J.M. Bai, Exchange Coupled Composite Media for Perpendicular Magnetic Recording[J]. IEEE Trans. Magn.,2005,41:3181.
    [6]J.P. Wang, W.k. Shen, J.M. Bai et al, Composite media (dynamic tilted media) for magnetic recording[J]. Appl. Phys. Lett.2005,86:142504.
    [7]R.H. Victora and X. Shen.Exchange coupled composite media for perpendicular magnetic recording[J]. IEEE Trans. Magn.2005,41:2828.
    [8]J.U. Thiele, S. Maat, and E.E. Fullerton, FeRh/FePt exchange spring films for thermally assisted magnetic recording media[J]. Appl. Phys. Lett.2003,82:2859.
    [9]Z.L. Zhao, J.S. Chen, J. Ding, J.B. Yi, B.H. Liu, and J. P. Wang. Fabrication and microstructure of high coercivity FePt thin films at 400℃[J]. Appl. Phys. Lett. 2006,88:052503.
    [10]F.G. Sancheza, O.C. Fesenko, O.Mryasov, R.W. Chantrell, and K. Yu. Guslienko, Exchange spring structures and coercivity reduction in FePt/FeRh bilayer:A comparison of multiscale and micromagnetic calculations[J].Appl. Phys. Lett.2005,87:122501.
    [11]R.H. Victora and X. Shen. Composite media for perpendicular magnetic recording[J]. IEEE Trans. Magn.2005,41:537.
    [12]E. Beaurepaire, J.C. Merle, A. Daunois, and J.Y. Bigot,Ultrafast spin dynamics in ferromagnetic nickel[J]. Phys. Rev. Lett.1996,76:4250-4253.
    [13]A.V. Kimel, A. Kirilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov,and Th. Rasing, Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulse[J]. Nature 2005,435:655-657.
    [14]T. Ogasawara and K. Ohgushi, Y. Tomioka, K.S. Takahashi, H. Okamoto, M. Kawasaki,and Y. Tokura. General Features of Photoinduced Spin Dynamics in Ferromagnetic and Ferrimagnetic Compounds[J]. Phys.Rev.Lett.,2005,94:087202.
    [15]C.D. Stanciu, A.V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, Akirilyuk, and Th. Rasing. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo:The role of angular momentum compensation[J]. Phys.Rev.B,2006, 73:220402.
    [16]M. Vomir, L.H.F. Andrade, L. Guidoni, E. Beaurepaire, and J.Y. Bigot. Real Space Trajectory of the Ultrafast Magnetization Dyanmics in Ferromagnetic Metals[J]. Phys.Rev.Lett.,2005,94:237601.
    [17]G.P. Ju, A.V. Nurmikko, R.F.C. Farrow, R.F. Marks, M.J. Carey, and B.A. Gurney. Ultrafast Time Resolved Photoinduced Magnetization Rotation in a Ferromagnetic/Antiferromagnetic Exchange Coupled System[J]. Phys.Rev.Lett, 1999,82:3705.
    [18]G.P. Ju, and L. Chen. Coherent magnetization rotation induced by optical modulation in ferromagnetic/antiferromagnetic exchange-coupled bilayers[J]. Phys.Rev.B,2000,62:1171.
    [19]M.C. Weber, Hembach, and J. Fassbender. All-optical probe of magnetization dynamics in exchange biased bilayers on the picosecond timescale[J]. J.Appl. Phys. 2004,95:6613.
    [20]任杨,磁性薄膜的光诱导超快自旋动力学研究[D],上海:复旦大学,2008:
    [21]M.V. Kampen, C. Jozsa, and J.T. Kohlhepp et al. All-Optical Probe of Coherent Spin Waves[J]. Phys.Rev.Lett.,2002,88:227201.
    [22]J.Y. Bigot, M. Vomir, L.H.F. Andrade, E. Beaurepaire. Ultrafast magnetization dynamics in ferromagnetic cobalt:The role of the anisotropy[J]. Chemical Physics 2005,318:137.
    [23]A. Kirilyuk, A. Kimel, F. Hansteen, and Th. Rasing. Ultrafast all-optical control of the magnetization in magnetic dielectrics[J]. LOW TEMPERATURE PHYSICS 2006,32:748
    [1]刘晓东,半导体与铁磁薄膜中超快自旋动力学研究[D],厦门:中山大学,2008:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700