Co/Cu(001)异质生长的动力学蒙特卡罗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继Fe/Cr多层膜巨磁电阻效应发现以后,巨磁电阻效应己成为国际研究的热点,人们发现过渡族铁磁金属或合金薄膜与非磁性金属构成多层膜后均可呈现巨磁电阻效应,其中以Co/Cu多层膜的GMR值最高,室温巨磁电阻效应可达65%。除多层膜外,在颗粒膜、隧道结,自旋阀中也发现了巨磁电阻效应。在巨磁电阻效应被发现后的第六年,IBM公司研制成巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍,达5G b in2,而如今实验室的记录密度可达100G b in2,从而在与光盘的竞争中重新处于领先地位。由于巨磁电阻效应大,易使器件小型化、廉价化,除了读出磁头外同样可应用于测量位移、角度等传感器以及磁随机存储器中,具有巨大的应用前景,因而引起了广泛的关注。薄膜的生长结构对巨磁阻效应有着重要的影响,特别是膜与膜之间,膜与基底之间的粗糙度对巨磁阻效应有很大的影响,而薄膜的生长过程和生长机制在实验中是很难观测的,这就需要理论计算和模拟的帮助。
     在本文中,我们用一个基于动力学蒙特卡罗(kinetic Monte Carlo)方法的三维模型研究了Co薄膜在Cu(001)面的异质生长。我们模拟了在不同入射能量的情况下,外延沉积Co到Cu(001)基片上时,薄膜生长初期(沉积2500个粒子)和最终态(沉积20000个粒子)的形貌和表面粗糙度的情况,还对薄膜的生长方式做了一定的研究。研究结果表明,在膜厚小于两层时,薄膜的生长呈现岛状,膜厚大于两层时,薄膜以层状的方式生长。在薄膜的生长初期,存在一个能量转折点,在这个能量转折点,薄膜的表面粗糙度最小,而在最终态,薄膜的粗糙度随着入射能量的增加而减少,初态的生长方式对薄膜的最终态有一定的影响,在薄膜的内部仍有空位的存在。模拟的结果和实验基本吻合。
The GMR effect has become an international researching hotspot after the discovery of GMR effect of Fe/Cr multilayers. People found that multilayers formed by ferromagnetic metal of transition family and nonmagnetic metal or by alloy film and nonmagnetic metal will take on GMR effect. The value of GMR of Co/Cu multilayers is the biggest which can reach 65% under room temperature,GMR effect is also discoveried in guanular film, tunneling junction resistance and spin valve. The magnetic head developed by IBM company with GMR effect increase the disk memory density 17 times which can reach 5G b in2 in the sixth year since GMR effect was discovered. The memorizing density in lab now can reach 100G b in2 which keep it ahead in the competition with CD. GMR effect also can be applied in sensor and MRAM, so it brings broad attention. Both theoretical and experimental studies have indicated that the GMR properties are sensitive to nanoscale structural features of the films and the intrinsic properties of the material. But the relationship between the GMR property and the structural properties, including the interfacial roughness between multilayer and the surface roughness of the substrate, has not yet been fully understood.
     In this paper, the Kinetic Monte Carlo simulations of the structure of ultrathin film of Co on Cu (001) are presented. The many-body, tight-binding potential model is used in the simulation to represent the interatomic potential. We simulate the film morphology and the surface roughness of heteroepitaxial Co film on Cu (001) substrate under the transient and final state conditions with various incident energies. The Co covered area and the thickness of the film growth of the first two layers are investigated. The simulation results show that the interfacial and surface roughness strongly depends on the incident energy. There exits a transition energy where the interfacial roughness is a minimum. The final film morphology is related to the early growth mode. In addition, there are deviations from ideal layer-by-layer growth at coverage from 0-2 monolayers (ML). The results are in agreement with experimental results.
引文
[1] James B.Aams , Wang Z.Y and Li Y.H. Modeling Cu thin film growth. Thin Solid Film, 2000 365, 201-210
    [2] Wu F.M,Li Q .W et al. 1999, Chin. Phys. Lett., Vl6 N4, 279-281
    [3] Chen L.Q, 1995, Soripa metal. et al. Meter, 32(1):115-120
    [4] Gilmer G H, Huang H, Tomas Diaz de la Rubia, Torre J D and Baumann F. Lattice Monte Carlo models of thin film deposition. Thin Solid Films, 2000 365, 189
    [5] Witten T. A. and Sender M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett., 1981 47(19):1400-1404
    [6] Foiles S. M., Baskes M. I. and Daw M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 1986 33(12): 7983-7991
    [7] Meakin P. Effects of particle drift on diffusion-limited aggregation. Phys. Rev. B, 1983 28(9):5221-5224
    [8] Bruschi P., Cagnoni P. and Nannini A. Temperature-dependent Monte Carlo simulations of thin metal film growth and percolation. Phys. Rev. B 1997 55(12):7955-7963
    [9] J.Wu, B.G.Liu and Z.Y.Zhang et al. Reaction limited aggregation in surfactant-mediated epitaxy. Phys.Rev.B, 2000 61(19):13212-13222
    [10] R.F.Xiao. Computer simulation of surface growth. J. Cryst. Growth, 1997 174(1):531-538
    [11]魏合林,刘祖黎,姚凯伦,超薄膜生长的Monte-Carlo研究.物理学报.2000, 49(4):791-796
    [12]陈敏,魏合林,刘祖黎.沉积粒子能量对薄膜早期生长过程的影响.物理学报, 2001 50(12):2446-2451
    [13] H.C.Huang, T.Diaz de la Rubia and G.H.Gilmer. An atomistic simulator for thinfilm deposition in three dimensions. J. Appl. Phys., 1998 84(7):3636-3649
    [14] G.H.Gilmer,H.C.Huang and T.Diaz de la Rubia et al. Lattice Monte Carlo models of thin film deposition.Thin Solid Film, 2000 365(2):189-200
    [15] Z L Liu, X. F. Zhang et al. Modeling of an obliquely deposited thin film in three dimensions by kinetic Monte Carlo method. Chinese Physics. 2004 13(12):2115-2120
    [16] Z L Liu, L Yu et al. Kinetic Monte Carlo simulation of deposition of energetic copper atoms on a Cu(001) substrate. J. Phys. D: Appl. Phys. 2005 38 4202-4209
    [17] Frank F C, van der Merwe 1949 Proc. R. Soc.(London) 198 205
    [18] Jacobsen J, Nielsen L P, Besenbacher F et al. Atomic-Scale Determination of Misfit Dislocation Loops at Metal-Metal Interfaces. Phys. Rev. Lett. 1995 75 489
    [19] Cunther C, Vrijmoeth J, Hwang R Q et al. Strain Relaxation in Hexagonally Close-Packed Metal-Metal Interfaces. Phys. Rev. Lett. 1995 74(5): 754-757
    [20] Hamilton J C, Foiles S M Misfit Dislocation Structure for Close-Packed Metal-Metal Interfaces. Phys. Rev. Lett. 1995 75(5): 882-885
    [21] Brune H, Rder H,Boragno C et al. Strain relief at hexagonal-close-packed interfaces Phys. Rev. B 1994 49(4): 2997-3000
    [22] Witten T A, Sander L M 1981 Phys. Rev. Lett. 47(19): 1400-1403
    [23]王恩哥.物理学进展.薄膜生长中的表面动力学.(I), 2003 23(1):1-61
    [24]王恩哥.物理学进展.薄膜生长中的表面动力学.(II), 2003 23(2):145-191
    [25]孟旸,张庆瑜.物理学报, 2005, 54(12):5804-5810
    [26] S.S.P.Parkin, N.More and K. P.Roche. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett., 1990 64:2403-2307
    [27] S.S.P.Parkin and B.R.York. Influence of deposition temperature on giant magnetoresistance of Fe/Cr multilayers. Appl. Phys. Lett., 1993 62:1842-1844
    [28] S.S.P.Parkin. Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu]N multilayers. Appl. Phys. Lett., 1992 60:512-514
    [29] O.Redon, J.Piere and B.Rodmacq et al. Proc. ICMFS 94, Dusseldorf
    [30] S.S.P.Parkin. Z.G..Li and David.J.Smith. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers. Appl. Phys. Lett., 1991 58:2710-2712
    [31] Schneider C M, Bressler P, Schuster P and Kirschner J 1990 Phys. Rev. Lett. 64(9):1059-1062
    [32] Hong L, B. P. Tonner. Structure and growth mode of metasble fcc cobalt ultrathin films on Cu(001) as determined by angle-resolved X-ray photoemission scattering. Surf. Sci., 1990 141-152
    [33] J. Fassbender, R. Allenspach and U. Durig Surf. Sci., 1997 L742-L748
    [34] U. May, J. Fassbender and G. Guntherodt Surf. Sci., 1997 992-996
    [35] Radu A. Miron and Kristen A. Fichthorn. The Step and Slide method for finding saddle points on multidimensional potential surfaces. J. Chem. Phys. 2001 115(19): 8742-8747
    [36] R. Pentcheva and M. Scheffler. Initial adsorption of Co on Cu(001): A first-principles investigation. Phys. Rev. B 2002 65(15): 155418
    [37] R. Pentcheva, K. A. Fichthorn and M. Scheffler et al. Non-Arrhenius Behavior of the Island Density in Metal Heteroepitaxy: Co on Cu(001). Phys. Rev. Lett. 2003 90(7) 076101
    [38] R. A. Miron and K. A. Fichthorn. Heteoepotaxial growth of Co/Cu(001): An accelerated molecular dynamics simulation study. Phys. Rev. B 2005 72(3) 035415
    [39]赵瑾.电沉积Cu/Co纳米多层膜及其巨磁电阻性能的研究(硕士论文).天津大学,2003.1
    [40] B.S.Swartzentraber et al. Direct determination of step and kink energies on vicinal Si(001). Phys. Rev. Lett. 1990 65(15):1913-1916
    [41] W.Li, G.Vidali and O.Biham. Scaling of island growth in Pb overlayers on Cu(001) Phys. Rev. B 1993 48(11):8336-8344
    [42] R.Q.Hwang, J.Schroder and C.Gunther et al. Fractal growth of two-dimensional islands: Au on Ru(0001). Phys. Rev. Lett.1991 67(23):3279-3282
    [43] Cheng-I Weng, Chi-Chuan Hwang, et al. Molecular dynamics simulation of thin film growth on giant magnetoresistance corrugated structures. Phys. Rev. B 200265(19):195420
    [44] G.Ehrlich and F.G.Hudda. J. Chem. Phys. 1966 44(12):1039
    [45] R.L.Schwoebel and E.J.Shipsey. J. Appl. Phys. 1966 37(24):3682
    [46] Vrijmoeth J., H.A Van Der Vegt and Meyer J.A. et al. Surfactant-Induced Layer-by-Layer Growth of Ag on Ag(111): Origins and Side Effects. Phys. Rev. Lett.1994 72(24):3843-3846
    [47] Markov I. Kinetics of surfactant-mediated epitaxial growth. Phys. Rev. B 1994 50(15):11271-11274
    [48] Harris S. Kinetics of interlayer transport prior to nucleation. Phys. Rev. B 1995 52(23):16793-16795
    [49] Van J. E. Nostrand, Chey S. J. and Hasan M. A. et al. Surface Morphology during Multilayer Epitaxial Growth of Ge(001). Phys.Rev.Lett 1995 74(7):1127-1130
    [50] A.Sakai and T.Tatsumi. Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices. Appl. Phys. Lett. 1994 64(1):52-55
    [51] N.Ikarashi, A.Oshiyama and A.Sakai et al. Role of Ge surface segregation in Si/Ge interfacial ordering: Interface formation on a monohydride surface. Phys. Rev. B, 1995 51(20):14786-14789
    [52] L. Abelmann, C. Lodder. Oblique evaporation and surface diffusion. Thin Solid Films, 1997 305(1-2):1-21
    [53] Wouters S, Kadlec S, Quaeyhaegens C, Stals LM. 1997 Surf Coat Technol, 92:56
    [54] Haberland H, Insepov Z, Moseler M. 1995, Phys. Rev. B, 51:11061
    [55] Haberland H, Mall M, Moseler M, Qiang Y, Reiners Th, Thurner Y. 1994, J Vac. Sci. Technol. A, 12:2925
    [56] G. Tahir, C. Jianwei, Q. Yue, Z. Yanhua, et al. Computational materials chemistry at the nanoscale. Journal of Nanoparticle Research. 1999 1:51-69
    [57]金家骏.分子化学反应动态学[M] .上海:上海交通大学出版社, 1988.12:102-145
    [58] H. Hanchen, G. H. Gilmer. Multi-lattice Monte Carlo model of thin films. J. Computer-Aided Materials Design. 1999 6:117-127
    [59] H. Hanchen, G. H. Grorge. Atomistic simulation of texture competition during thin film deposition. J. Computer-Aided Materials Design. 2001 7:203-216
    [60] Harrison N. M. First principles simulation of surfaces and interfaces. Computer Physics Communications. 2001 137:59-73
    [61] P. Meakin. Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys. Rev. Lett. 1983 51:1119-1122
    [62] J. Salik. Monter Carlo study of reversible growth of clusters on a surface. Phys. Rev. B 1985 32:1824-1836
    [63] P. Bruschi, P. Cagnoni and A. Nannini. Temperature-dependent Monte Carlo simulations of thin metal film growth and percolation. Phys. Rev. B 1997 55:7955-7963
    [64] A. F. Voter. Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100). Phys. Rev B 1986 34:6819-6826
    [65] Q. Hou, M. Hou. L.Bardotti, et al. Deposition of AuN cluster on Au(111) surfaces.Ⅰ. Atomic-scale modeling. Phys. Rev. B 2000 62(4):2825-2834
    [66] M. Grujicic, S. G. Lai. Atomistic simulation of chemical vapor deposition of (111)-oriented diamond film using akinetic Monte Carlo method. J. Mater. Sci. 1999 34:7-20
    [67] John A, Moriarty. Atomistic simulation of thermodynamic and mechanical properties of metals. J. Computer-Aided Materials Design. 1998 5:109-129
    [68] Laasonen K, Pasquarello A, Car Roberto, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotential. Phys. Rev. B 1993 47:10142-10153
    [69] Wang L and Clancy P. Surf. Sci. 2001 473 25.
    [70] G. Boisvert and L. J. Lewis. Self-diffusion of adatoms, dimers, and vacancies on Cu(100). Phys. Rev. B 1997 56(12):7643-7655
    [71] V. S. Stepanyuk et al. Strain and adatom motion on mesoscopic islands. Phys. Rev. B 2001 63(15):153406
    [72] Breeman M, Barkema G T, Langelaar M H and Boerma D. O., Thin Solid Films, 1996 272(2):195-207.
    [73] Cleri F and Rosato V. Tight-binding potentials for transition metals and alloys. Phys. Rev. B 1993 48(1) 22-33
    [74] Levanov N A, Stepanyuk V S, Hergert W, et al. Energetics of Co adatoms on the Cu(001) surface. Phys. Rev. B 2000 61(3): 2230-2233
    [75] B.Drittler, M. Weinert, R. Zeller, et al. First-principles calculation of impurity-solution energies in Cu and Ni. Phys. Rev. B 1989 39(2): 930-939
    [76] T. Hoshino, W. Schweika, R. Zeller, et al. Impurity-impurity interactions in Cu, Ni, Ag, and Pd. Phys. Rev. B 1993 47 5106-5117
    [77] R. A. Miron and K. A. Fichrhorn heteroepitaxial growth of Co/Cu(001): An accelerated molecular dynamics simulation study. Phys. Rev. B 2005 72 035415
    [78] Kools J C S Effect of energetic particle bombardment during sputter deposition on the properties of exchange-biased spin-valve multilayers. J. Appl. Phys.1995 77 2993
    [79] Clarke A, Jennings G, Willis R F, Rous P J and Pendry J B Surf. Sci. 1987 187 327
    [80] Weber W, Bischof A, Allenspach R, et al. Structural relaxation and magnetic anisotropy in Co/Cu(001) films. Phys. Rev. B 1996 54(6): 4075-4079
    [81] Huang F, Kief M T, Mankey G J, et al. Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 1994 49 3962
    [82] Wang L and Clancy P. Kinetic Monte Carlo simulation of the growth of polycrystalline Cu films. Surf. Sci. 2001 473 25
    [83] U. May ,J. Fassbender and G. Guntherodt RHEED investigations on the“pseudomorphic”growth of cobalt on Cu(001). Surf. Sci. 1997 377-379 992-996
    [84] X. W. Zhou and H. N. G. Wadley Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy. J. Appl. Phys. 1998 84 2301-2315
    [85] U. Ramsperger, A. Vaterlaus, P. Pfaffli, et al. Growth of Co on a stepped and on a flat Cu(001) surface. Phys. Rev. Lett. 1996 53 8001-8006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700