宽光谱与时域宽调谐光纤激光器研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器以其效率高、结构紧凑、光束质量好等优点在科学研究和工业生产中得到广泛应用,这些应用包括:光纤频率梳、微加工、光纤传感等。光纤激光器时域与频域光谱特性是表征光纤激光器性能的重要属性,与光纤激光器的具体应用相关,因此,深入研究光纤激光器输出的时频特性无论从学术还是工业应用上都有重要意义。本论文的工作主要围绕频域宽光谱、时域宽调谐光纤激光器及应用展开研究,主要研究了光纤激光器中超平坦宽光谱和时域宽调谐方波脉冲的获取技术及其相关特性,应用波长程控宽调谐光纤激光器实现电网光纤光栅温度传感等。
     具体研究内容如下:
     1.实验研究了非线性偏振旋转(NPR)锁模的全光纤正常色散腔和反常色散腔中宽光谱的输出特性:在正常色散腔内获得了42nm宽度的矩形光谱输出:在反射色散腔内实现了光谱3dB带宽102nm宽光谱内噪声脉冲锁模激光器。
     2.利用内噪声脉冲光纤激光器为泵浦源泵浦高非线性光纤产生超平坦超连续光谱,获得了1000—1750nnn的全光纤平坦超连续光谱输出,理论构建内噪声脉冲产生超连续光谱模型,模拟结果显示内噪声脉冲能很好平滑超连续光谱。
     3.研制了基于NPR锁模的全光纤时域宽调谐方波脉冲光纤激光器,利用高非线性光纤获得了时域从10—1716ns范围内的调谐方波脉冲输出,调谐范围超过1700ns,调谐能力达到5.1ns/mW;构建了NPR光纤激光器理论模型,解释了方波脉冲的形成过程,模拟了非线性系数对方波脉冲调谐范围和峰值功率的影响。
     4.设计实现了可编程控制的宽调谐掺铒光纤激光器,波长调谐范围超过51nm (1516.8-1568.3nm),调谐步长最小可达0.01nm,可通过编程控制波长调谐。将该激光器与光纤光栅组成的准分布式温度传感系统,应用于电网系统中,初步实现了对16路共48个点的实时温度监测。本论文的主要创新点:
     1.提出并实现了时域宽调谐方波脉冲锁模光纤激光器。脉冲宽度调谐范围超过1700ns (10-1716ns),调谐能力达到5.1ns/mW。实验结果和理论模型显示非线性系数对方波脉冲的调谐范围起着重要的作用,高非线性系数能有效提高方波脉冲的时域调谐范围;
     2.基于广义非线性薛定谔方程构建了内噪声脉冲产生超连续光谱理论模型,模拟结果显示内噪声脉冲能有效平滑超连续光谱;实验利用宽光谱内噪声锁模脉冲注入高非线性光纤,获得了1000—1750nm的全光纤平坦超连续光谱输出,其中短波光谱强度起伏在2dB以内的光谱宽度超过420nm。
     3.将可编程控制的波长宽调谐掺铒光纤激光器,应用于光纤光栅温度传感系统中,初步实现了对16路共48个点的实时温度监测。
Fiber lasers have been applied in scientific research and industrial production such as optical frequency comb, micro-machining, optical sensors and so on. Time domain and frequency domain is the important properties of the fiber laser, related to the specific application of the fiber lasers. Therefore, the study of the characteristics is great significance in terms of the academic and industrial applications. In this thesis, the analysis and applications of broadband spectrum、ultra-wide tunable temporal square-wave pulse is the major works, including the flat broadband spectrum and square-wave pulse fiber laser with temporal ultra-wide tuning range, the widely tunable fiber laser application for fiber Bragg grating (FBG) sensor system.
     The major works of this thesis are as follows:
     1. Normal dispersion and anomalous dispersion passively mode-locked broadband spectrum fiber laser is experimentally studied based on nonlinear polarization rotation (NPR) technology. In normal dispersion the generated mode-locked optical spectrum is rectangular shaper with42nm; in anomalous dispersion the noise-like mode-locked pulse is generated with3dB width of102nm.
     2. A flat supercontinuum is generated with noise-like pulse pumping in highly nonlinear fiber (HNLF). A flat and broad spectrum extending from1000nm to beyond1750nm is obtained. Theoretical analysis based on the generalized nonlinear Schrodinger equation is presented, which qualitatively agrees with the experimental result. The results show that noise-like pulses of a passively mode-locked erbium-doped fiber have potential for generating broad and ultra-flat supercontinuum.
     3. An ultra-wide tunable square-wave pulse fiber laser is proposed and demonstrated. The square-wave pulsewidth can be tuned in an ultra-wide range of more than1700ns (10-1716ns) by simply increasing the pump power. The pulsewidth tuning is5.1ns/mW. Experimental results and theoretical model show that the fiber nonlinearity plays an important role in the tuning range and peak power of the output pulsewidth.
     4. A programmable wavelength widely tunable Er-doped fiber laser is demonstrated. The tunable range can cover above51nm (1516.8-1568.3nm) controlled by software and tunable step is up0.01nm. The laser and fiber Bragg grating (FBG) make up quasi-distributed temperature sensing system, which is applied in power system to achieve real-time temperature of16fibers channels, a total of48monitoring points.
     The innovative work and results in this thesis are as follows:
     1. An ultra-wide tunable square-wave pulse fiber laser is proposed and demonstrated. The square-wave pulsewidth can be tuned in an ultra-wide range of more than1700ns (10-1716ns) by simply increasing the pump power. The pulsewidth tuning is5.1ns/mW. Experimental results and theoretical model show that the fiber nonlinearity plays an important role in the tuning range of the output pulsewidth. The high nonlinearity helps to increase the tuning range of the pulsewidth.
     2. Theoretical analysis based on the generalized nonlinear Schrodinger equation (GNLSE) is presented, which shows noise-like pulses of a passively mode-locked erbium-doped fiber have potential for generating broad and ultra-flat supercontinuum. Experimentally, a flat supercontinuum extending from1000nm to beyond1750nm is generated with noise-like pulse pumping in highly nonlinear fiber (HNLF). Especially, in the blue side of the generated spectrum, the intensity fluctuation is within2dB in420nm (from1020nm to1440nm).
     3. A programmable wavelength widely tunable Er-doped fiber laser is demonstrated, which is applied to fiber Bragg grating (FBG) sensor system to achieve real-time temperature of16fibers channels, a total of48monitoring points.
引文
1. Snitzer, E., OPTICAL MASER ACTION OF ND+3 IN A BARIUM CROWN GLASS. Physical Review Letters,1961.7(12):p.444-&.
    2. Koester, C.J. and E. Snitzer, AMPLIFICATION IN FIBER LASER. Applied Optics, 1964.3(10):p.1182-&.
    3. Kao, K.C. and G.A. Hockham, DIELECTRIC-FIBRE SURFACE WAVEGUIDES FOR OPTICAL FREQUENCIES. Proceedings of the Institution of Electrical Engineers-London, 1966.113(7):p.1151-&.
    4. Kapron, F.P., D.B. Keck, and R.D. Maurer, RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES. Applied Physics Letters,1970.17(10):p.423-&.
    5. Stone, J. and C.A. Burrus, NEODYMIUM-DOPED SILICA LASERS IN END-PUMPED FIBER GEOMETRY. Applied Physics Letters,1973.23(7):p.388-389.
    6. Simpson, J., Fabrication of rare-earth doped glass fibers. Proceedings of the SPIE-The International Society for Optical Engineering,1990.1171.
    7. Urquhart, P., REVIEW OF RARE-EARTH DOPED FIBER LASERS AND AMPLIFIERS. lee Proceedings-J Optoelectronics,1988.135(6):p.385-402.
    8. Mears, R.J., et al., LOW-NOISE ERBIUM-DOPED FIBER AMPLIFIER OPERATING AT 1.54-MU-M. Electronics Letters,1987.23(19):p.1026-1028.
    9. Desurvire, E., J.R. Simpson, and P.C. Becker, HIGH-GAIN ERBIUM-DOPED TRAVELING-WAVE FIBER AMPLIFIER. Optics Letters,1987.12(11):p.888-890.
    10. Shimizu, M., H. Suda, and M. Horiguchi, HIGH-EFFICIENCY ND-DOPED FIBER LASERS USING DIRECT-COATED DIELECTRIC MIRRORS. Electronics Letters,1987. 23(15):p.768-769.
    11. Liu, K., et al.,10MW SUPERFLUORESCENT SINGLE-MODE FIBER SOURCE AT 1060-NM. Electronics Letters,1987.23(24):p.1320-1321.
    12.明海,张国平,and谢建平,光电子技术.中国科学技术大学出版社,1997.
    13.郭玉彬and霍佳雨,光纤激光器及其应用.科学出版社,2007.
    14. Mears, R.J., et al., NEODYMIUM-DOPED SILICA SINGLE-MODE FIBER LASERS. Electronics Letters,1985.21(17):p.738-740.
    15. Mears, R.J., et al., LOW-THRESHOLD TUNABLE-CW AND Q-SWITCHED FIBER LASER OPERATING AT 1.55 MU-M. Electronics Letters,1986.22(3):p.159-160.
    16. Reekie, L., et al., DIODE-LASER-PUMPED OPERATION OF AN ER3+-DOPED SINGLE-MODE FIBER LASER. Electronics Letters,1987.23(20):p.1076-1078.
    17. Hanna, D.C., et al., EFFICIENT OPERATION OF AN YB-SENSITIZED ER FIBER LASER PUMPED IN 0.8-MU-M REGION. Electronics Letters,1988.24(17):p.1068-1069.
    18. Hanna, D.C., et al., CONTINUOUS-WAVE OSCILLATION OF A MONOMODE YTTERBIUM-DOPED FIBER LASER. Electronics Letters,1988.24(17):p.1111-1113.
    19. Hanna, D.C., et al., EFFICIENT AND TUNABLE OPERATION OF A TM-DOPED FIBER LASER. Optics Communications,1990.75(3-4):p.283-286.
    20. Hanna, D.C., et al., CONTINUOUS-WAVE OSCILLATION OF A MONOMODE THULIUM-DOPED FIBER LASER. Electronics Letters,1988.24(19):p.1222-1223.
    ,21. Nakazawa, M., Y. Kimura, and K. Suzuki, EFFICIENT ER-3+-DOPED OPTICAL FIBER AMPLIFIER PUMPED BY A 1.48-MU-M INGAASP LASER DIODE. Applied Physics Letters,1989.54(4):p.295-297.
    22. Digonnet, M.J.F., Rare-earth-doped fiber lasers and amplifiers.2001.
    23. Richardson, D.J., J. Nilsson, and W.A. Clarkson, High power fiber lasers:current status and future perspectives. Journal of the Optical Society of America B-Optical Physics,2010. 27(11):p. B63-B92.
    24. Ball, G.A., W.W. Morey, and W.H. Glenn, STANDING-WAVE MONOMODE ERBIUM FIBER LASER. Ieee Photonics Technology Letters,1991.3(7):p.613-615.
    25. Ball, G.A. and W.W. Morey, CONTINUOUSLY TUNABLE SINGLE-MODE ERBIUM FIBER LASER. Optics Letters,1992.17(6):p.420-422.
    26. Ball, G.A. and W.W. Morey, COMPRESSION-TUNED SINGLE-FREQUENCY BRAGG GRATING FIBER LASER. Optics Letters,1994.19(23):p.1979-1981.
    27. Loh, W.H. and R.I. Laming,1.55-MU-M PHASE-SHIFTED DISTRIBUTED-FEEDBACK FIBER LASER. Electronics Letters,1995.31(17):p. 1440-1442.
    28. Hubner, J., P. Varming, and M. Kristensen, Five wavelength DFB fibre laser source for WDM systems. Electronics Letters,1997.33(2):p.139-140.
    29. Goh, C.S., et al., Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. Ieee Photonics Technology Letters,2002.14(5):p.663-665.
    30. Horak, P., et al., Pump-noise-induced linewidth contributions in distributed feedback fiber lasers. Ieee Photonics Technology Letters,2006.18(9-12):p.998-1000.
    31. Sun, J., et al., Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation. Ieee Photonics Technology Letters, 2006.18(21-24):p.2587-2589.
    32. Matsas, V.J., T.P. Newson, and M.N. Zervas, SELF-STARTING PASSIVELY MODE-LOCKED FIBER RING LASER EXPLOITING NONLINEAR POLARIZATION SWITCHING. Optics Communications,1992.92(1-3):p.61-66.
    33. Tamura, K., et al.,77-FS PULSE GENERATION FROM A STRETCHED-PULSE MODE-LOCKED ALL-FIBER RING LASER. Optics Letters,1993.18(13):p.1080-1082.
    34. Tamura, K., H.A. Haus, and E.P. Ippen, SELF-STARTING ADDITIVE PULSE MODE-LOCKED ERBIUM FIBER RING LASER. Electronics Letters,1992.28(24):p. 2226-2228.
    35. Haus, H.A., et al., STRETCHED-PULSE ADDITIVE-PULSE MODE-LOCKING IN FIBER RING LASERS-THEORY AND EXPERIMENT. Ieee Journal of Quantum Electronics,1995.31(3):p.591-598.
    36. Buckley, J.R., et al., Femtosecond fiber lasers with pulse energies above 10 nJ. Optics Letters,2005.30(14):p.1888-1890.
    37. Nielsen, C.K. and S.R. Keiding, All-fiber mode-locked fiber laser. Optics Letters,2007. 32(11):p.1474-1476.
    38. Usechak, N., Mode-Locked Fiber Lasers and their Applications.2002.
    39. Zhou, X., et al., Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator. Optics Express,2008.16(10):p.7055-7059.
    40. Agrawal, G.P., nonlinear fiber optics,4th edition.2006.
    41. Fermann, M.E., et al., NONLINEAR AMPLIFYING LOOP MIRROR. Optics Letters, 1990.15(13):p.752-754.
    42. Richardson, D.J., et al., SELF-STARTING, PASSIVELY MODELOCKED ERBIUM FIBER RING LASER BASED ON THE AMPLIFYING SAGNAC SWITCH. Electronics Letters,1991.27(6):p.542-544.
    43. Grudinin, A.B., D.J. Richardson, and D.N. Payne, ENERGY QUANTIZATION IN FIGURE 8 FIBER LASER. Electronics Letters,1992.28(1):p.67-68.
    44. Guy, M.J., D.U. Noske, and J.R. Taylor, GENERATION OF FEMTOSECOND SOLITON PULSES BY PASSIVE-MODE LOCKING OF AN YTTERBIUM ERBIUM FIGURE-OF-8 FIBER LASER. Optics Letters,1993.18(17):p.1447-1449.
    45. Seong, N.H. and D.Y. Kim, Experimental observation of stable bound solitons in a figure-eight fiber laser. Optics Letters,2002.27(15):p.1321-1323.
    46. Tsun, T.O., M.K. Islam, and P.L. Chu, High-energy femtosecond figure-eight fiber laser. Optics Communications,1997.141(1-2):p.65-68.
    47. Nicholson, J.W., S. Ramachandran, and S. Ghalmi, A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber. Optics Express,2007.15(11):p.6623-6628.
    48. Nakazawa, M., E. Yoshida, and Y. Kimura, GENERATION OF 98FS OPTICAL PULSES DIRECTLY FROM AN ERBIUM-DOPED FIBER RING LASER AT 1.57-MU-M. Electronics Letters,1993.29(1):p.63-65.
    49. Doran, N.J. and D. Wood, NONLINEAR-OPTICAL LOOP MIRROR. Optics Letters, 1988.13(1):p.56-58.
    50. Seong, N.H. and D.Y. Kim, A new figure-eight fiber laser based on a dispersion-imbalanced nonlinear optical loop mirror with lumped dispersive elements. Ieee Photonics Technology Letters,2002.14(4):p.459-461.
    51. Meng, Z., G. Stewart, and G. Whitenett, Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber. Journal of Lightwave Technology,2006.24(5):p.2179-2183.
    52. Barnsley, P., et al., FIBER FOX-SMITH RESONATORS-APPLICATION TO SINGLE-LONGITUDINAL-MODE OPERATION OF FIBER LASERS. Journal of the Optical Society of America a-Optics Image Science and Vision,1988.5(8):p.1339-1346.
    53. E. Snitzer, et al., Double clad, offset core Nd fiber laser.1988.
    54. Liu, A., et al., Rectangular double-clad fibre laser with two-end-bundled pump. Electronics Letters,1996.32(18):p.1673-1674.
    55. Grubb, S., Double-cladoptical fiber with improved inner claddinggeometry. US Patent 6, 2000.157(763).
    56. Zellmer, H., et al., HIGH-POWER CW NEODYMIUM-DOPED FIBER LASER OPERATING AT 9.2 W WITH HIGH BEAM QUALITY. Optics Letters,1995.20(6):p. 578-580.
    57. Dominic, V., et al.,110W fibre laser. Electronics Letters,1999.35(14):p.1158-1160.
    58. Ueda, K., H. Sekiguchi, and H. Kan,1 kW CW output from fiber-embedded disk lasers. Postdeadline Papers. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Conference Edition (IEEE Cat. No.02CH37337),2002.
    59. Platonov, N.S., et al.,135 W CW fiber laser with perfect single mode output. Postdeadline Papers. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Conference Edition (IEEE Cat. No.02CH37337),2002.
    60. Jeong, Y, et al., Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power. Electronics Letters,2004.40(8):p.470-472.
    61. Jeong, Y, et al., Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics Express,2004.12(25):p.6088-6092.
    62. E.Stiles, New developments in IPG fiber laser technology. in Proceedings of the 5th International Workshop on Fiber Lasers,2009.
    63. Dong, L., et al., Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. Optics Express,2009.17(11):p.8962-8969.
    64. Malinowski, A., et al., Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing> 25-W average power. Optics Letters,2004.29(17):p.2073-2075.
    65. Limpert, J., et al., High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment. Ieee Journal of Selected Topics in Quantum Electronics,2009.15(1):p.159-169.
    66. Alvarez-Chavez, J.A., et al., High-energy, high-power ytterbium-doped Q-switched fiber laser. Optics Letters,2000.25(1):p.37-39.
    67. Piper, A., et al., High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser. Electronics Letters,2004.40(15):p.928-929.
    68. Takara, H., et al., GENERATION OF HIGHLY STABLE 20 GHZ TRANSFORM-LIMITED OPTICAL PULSES FROM ACTIVELY MODE-LOCKED ER3+-DOPED FIBER LASERS WITH AN ALL-POLARIZATION MAINTAINING RING CAVITY. Electronics Letters,1992.28(22):p.2095-2096.
    .69. Pfeiffer, T. and G. Veith,40 GHZ PULSE GENERATION USING A WIDELY TUNABLE ALL-POLARIZATION PRESERVING ERBIUM FIBER RING LASER. Electronics Letters,1993.29(21):p.1849-1850.
    70. Yoshida, E., N. Shimizu, and M. Nakazawa, A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm. Ieee Photonics Technology Letters,1999.11(12):p.1587-1589.
    71. Zirngibl, M., et al.,1.2PS PULSES FROM PASSIVELY MODE-LOCKED LASER DIODE PUMPED ER-DOPED FIBER RING LASER. Electronics Letters,1991.27(19):p. 1734-1735.
    72. Loh, W.H., et al., DIODE-PUMPED SELF-STARTING PASSIVELY MODELOCKED NEODYMIUM-DOPED FIBER LASER. Electronics Letters,1993.29(9):p.808-810.
    73. Desouza, E.A., et al., SATURABLE ABSORBER MODELOCKED POLARIZATION-MAINTAINING ERBIUM-DOPED FIBER LASER. Electronics Letters, 1993.29(5):p.447-449.
    74. Set, S.Y., et al., Laser mode locking using a saturable absorber incorporating carbon nanotubes. Journal of Lightwave Technology,2004.22(1):p.51-56.
    75. Yamashita, S., et al.,5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes. Ieee Photonics Technology Letters,2005.17(4):p.750-752.
    76. Zhou, S.A., D.G. Ouzounov, and F.W. Wise, Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz. Optics Letters,2006.31(8):p. 1041-1043.
    77. Schroder, J., et al., Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Optics Letters,2006.31(23):p.3489-3491.
    78. Collings, B.C., K. Bergman, and W.H. Knox, Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters,1998.23(2):p.123-125.
    79. Kaplan, A.M., G.P. Agrawal, and D.N. Maywar, Optical Square-Wave Clock Generation Based on an All-Optical Flip-Flop. Ieee Photonics Technology Letters,2010.22(7):p. 489-491.
    80. Peng, X., et al., Generation of programmable temporal pulse shape and applications in micromachining, in Solid State Lasers Xviii:Technology and Devices, W.A. Clarkson, N. Hodgson, and R.K. Shori, Editors.2009.
    81. Ozgoren, K., et al.,83 W,3.1 MHz, square-shaped,1 ns-pulsed all-fiber-integrated laser for micromachining. Optics Express,2011.19(18):p.17647-17652.
    82. Schmieder, D., P.L. Swart, and A. Booysen, Figure-eight fibre lasers with NALM loops consisting of highly nonlinear dispersion shifted fibres for dense wavelength division multiplexing. Africon 2007,2007.
    83. Wu, X., et al., Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. Optics Express,2009.17(7):p.5580-5584.
    84. Li, X., et al., long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letters,2010.35(19):p. 3249-3251.
    85. Zhao, L.M., et al., Nanosecond square pulse generation in fiber lasers with normal dispersion. Optics Communications,2007.272(2):p.431-434.
    86. Chen, G., et al., Simulation of nanosecond square pulse fiber laser based on nonlinear amplifying loop mirror. Chinese Optics Letters,2011.9(9).
    87. Chen, G.-L., et al., Nanosecond Square Pulse Fiber Laser based on the Nonlinear Amplifying Loop Mirror. Chinese Physics Letters,2011.28(12).
    88. Chernikov, S.V., J.R. Taylor, and R. Kashyap, COUPLED-CAVITY ERBIUM FIBER LASERS INCORPORATING FIBER GRATING REFLECTORS. Optics Letters,1993. 18(23):p.2023-2025.
    89. Li, L., et al., Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power. Applied Physics Letters,2006.88(16).
    90. Reekie, L., et al., TUNABLE SINGLE-MODE FIBER LASERS. Journal of Lightwave Technology,1986.4(7):p.956-960.
    91. Hanna, D.C., et al., AN YTTERBIUM-DOPED MONOMODE FIBER LASER BROADLY TUNABLE OPERATION FROM 1.010 MU-M TO 1.162 MU-M AND 3-LEVEL OPERATION AT 974NM. Journal of Modern Optics,1990.37(4):p.517-525.
    92. Sahu, J.K., et al., Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range. Electronics Letters,2001.37(18):p.1116-1117.
    93. Bellemare, A., et al., A broadly tunable erbium-doped fiber ring laser:experimentation and modeling. Ieee Journal of Selected Topics in Quantum Electronics,2001.7(1):p.22-29.
    94. Ibsen, M., et al., Broad-band continuously tunable all-fiber DFB lasers. Ieee Photonics Technology Letters,2002.14(1):p.21-23.
    95. Morgner, U., et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Optics Letters,1999.24(6):p.411-413.
    96. Cundiff, S.T. and J. Ye, Colloquium:Femtosecond optical frequency combs. Reviews of Modern Physics,2003.75(1):p.325-342.
    97. Horowitz, M., Y. Barad, and Y. Silberberg, Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Optics Letters,1997.22(11):p.799-801.
    98. Takushima, Y., et al.,87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser. Electronics Letters,2005.41(7):p.399-400.
    99. Zhao, L.M. and D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Applied Physics B-Lasers and Optics,2006. 83(4):p.553-557.
    100. Dudley, J.M., G. Genty, and S. Coen, Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics,2006.78(4):p.1135-1184.
    101. Genty, G., S. Coen, and J.M. Dudley, Fiber supercontinuum sources (Invited). Journal of the Optical Society of America B-Optical Physics,2007.24(8):p.1771-1785.
    102.Alfano, R.R. and S.L. Shapiro, EMISSION IN REGION 4000 TO 7000 A VIA 4-PHOTON COUPLING IN GLASS. Physical Review Letters,1970.24(11):p.584-&.
    103.Lin, C. and R.H. Stolen, NEW NANOSECOND CONTINUUM FOR EXCITED-STATE SPECTROSCOPY. Applied Physics Letters,1976.28(4):p.216-218.
    104.Birks, T.A., W.J. Wadsworth, and P.S. Russell, Supercontinuum generation in tapered fibers. Optics Letters,2000.25(19):p.1415-1417.
    105.Domachuk, P., et al., Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Optics Express,2008.16(10):p. 7161-7168.
    106.Nicholson, J.W., et al., All-fiber, octave-spanning supercontinuum. Optics Letters,2003. 28(8):p.643-645.
    107.Nishizawa, N. and J. Takayanagi, Octave spanning high-quality supercontinuum generation in all-fiber system. Journal of the Optical Society of America B-Optical Physics, 2007.24:p.1786-1792.
    108.Husakou, A.V. and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters,2001.87(20).
    109. Herrmann, J., et al., Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Physical Review Letters,2002.88(17).
    110.Udem, T., R. Holzwarth, and T.W. Hansch, Optical frequency metrology. Nature,2002. 416(6877):p.233-237.
    111. Holzwarth, R., et al., Optical frequency synthesizer for precision spectroscopy. Physical Review Letters,2000.85(11):p.2264-2267.
    112. Jones, D.J., et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science,2000.288(5466):p.635-639.
    113. Matos, L., et al., Direct frequency comb generation from an octave-spanning, prismless Ti:sapphire laser. Optics Letters,2004.29(14):p.1683-1685.
    114. Washburn, B.R., et al., Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Optics Letters,2004.29(3):p.250-252.
    115. Peng, J.L., et al., Highly stable, frequency-controlled mode-locked erbium fiber laser comb. Applied Physics B-Lasers and Optics,2007.86(1):p.49-53.
    116.Newbury, N.R. and W.C. Swann, Low-noise fiber-laser frequency combs (Invited). Journal of the Optical Society of America B-Optical Physics,2007.24(8):p.1756-1770.
    117. Cuadrado-Laborde, C., et al., Mode locking of an all-fiber laser by acousto-optic superlattice modulation. Optics Letters,2009.34(7):p.1111-1113.
    1. Dudley, J.M., G. Genty, and S. Coen, Supercontinuum generation in photonic crystal .fiber. Reviews of Modern Physics,2006.78(4):p.1135-1184.
    2. Agrawal, G.P., nonlinear fiber optics,4th edition.2006.
    3. Blow, K.J. and D. Wood, THEORETICAL DESCRIPTION OF TRANSIENT STIMULATED RAMAN-SCATTERING IN OPTICAL FIBERS. Ieee Journal of Quantum Electronics,1989.25(12):p.2665-2673.
    4. Chernikov, S.V. and P.V. Mamyshev, FEMTOSECOND SOLITON PROPAGATION IN FIBERS WITH SLOWLY DECREASING DISPERSION. Journal of the Optical Society of America B-Optical Physics,1991.8(8):p.1633-1641.
    5. Fisher, R.A. and W.K. Bischel, NUMERICAL STUDIES OF INTERPLAY BETWEEN SELF-PHASE MODULATION AND DISPERSION FOR INTENSE PLANE-WAVE LASER PULSES. Journal of Applied Physics,1975.46(11):p.4921-4934.
    6. Mamyshev, P.V. and S.V. Chernikov, ULTRA SHORT-PULSE PROPAGATION IN OPTICAL FIBERS. Optics Letters,1990.15(19):p.1076-1078.
    7. Fleck, J.A., J.R. Morris, and M.D. Feit, TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY LASER-BEAMS THROUGH ATMOSPHERE. Applied Physics,1976. 10(2):p.129-160.
    8. Sisakyan, I.N. and A.B. Shvartsburg, Nonlinear dynamics of picosecond pulses in fiber-optic waveguides (review). Soviet Journal of Quantum Electronics,1984.14(9).
    9. Ruehl, A., et al., Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. Optics Express,2008.16(5):p.3130-3135.
    10. Wise, F.W., A. Chong, and W.H. Renninger, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser & Photonics Reviews,2008.2(1-2): p.58-73.
    11. Chong, A., W.H. Renninger, and F.W. Wise, All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Optics Letters,2007.32(16):p.2408-2410.
    12. Zhao, L.M. and D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Applied Physics B-Lasers and Optics,2006. 83(4):p.553-557.
    13. Dajun, L., et al., Effect of birefringence on the bandwidth of noise-like pulse in an erbium-doped fiber laser. Journal of Modern Optics,2009.56(4).
    14. Hori, T., et al., Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse. J. Opt. Soc.Am.B,2004.21(11):p.1969-1980.
    15. Skryabin, D.V. and A.V. Gorbach, Colloquium:Looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics,2010.82(2):p.1287-1299.
    16. Akhmediev, N. and M. Karlsson, CHERENKOV RADIATION EMITTED BY SOLITONS IN OPTICAL FIBERS. Physical Review A,1995.51(3):p.2602-2607.
    17. Mitschke, F.M. and L.F. Mollenauer, DISCOVERY OF THE SOLITON SELF-FREQUENCY SHIFT. Optics Letters,1986.11(10):p.659-661.
    18. Husakou, A.V. and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters,2001.87(20).
    1. Matsas, V.J., et al., Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electronics Letters,1992.28(15):p.1391-1393.
    2. Tang, D.Y., et al., Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A,2005.72(4).
    3. Liu, X.M. and D. Mao, Compact all-fiber high-energy fiber laser with sub-300-fs duration. Optics Express,2010.18(9):p.8847-8852.
    4. Wise, F.W., A. Chong, and W.H. Renninger, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser & Photonics Reviews,2008.2(1-2):p.58-73.
    5. Ruehl, A., et al.,0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses. Optics Express,2005.13(16):p.6305-6309.
    6. Horowitz, M., Y. Barad, and Y. Silberberg, Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Optics Letters,1997.22(11):p.799-801.
    7. Takushima, Y., et al.,87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser. Electronics Letters,2005.41(7):p.399-400.
    8. Zhao, L.M. and D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Applied Physics B-Lasers and Optics,2006.83(4): p.553-557.
    9. Zhao, L.M., D.Y. Tang, and J. Wu, Gain-guided soliton in a positive group-dispersion fiber laser. Optics Letters,2006.31(12):p.1788-1790.
    10. Zhao, L.M., et al., Generation of multiple gain-guided solitons in a fiber laser. Optics Letters, 2007.32(11):p.1581-1583.
    11. Zhao, L.M., et al., Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser. Optics Letters,2007.32(13):p.1806-1808.
    12. Gao, W.-Q., et al., Multiple-pulse operation in passively mode-locked fibre laser with positive dispersion cavity. Chinese Physics Letters,2007.24(5):p.1267-1269.
    13. Salhi, M., H. Leblond, and F. Sanchez, Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear polarization rotation. Physical Review A,2003.67(1).
    14. Komarov, A., H. Leblond, and F. Sanchez, Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation. Physical Review A, 2005.72(6).
    15. Usechak, N., Mode-Locked Fiber Lasers and their Applications.2002.
    16. Sanchez, F., et al., Models for passively mode-locked fiber lasers. Fiber and Integrated Optics,2008.27(5):p.370-391.
    17. Peng, J.L., et al., Highly stable, frequency-controlled mode-locked erbium fiber laser comb. Applied Physics B-Lasers and Optics,2007.86(1):p.49-53.
    18. Kuri, T., et al., Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems. leee Photonics Technology Letters,2005.17(6):p. 1274-1276.
    19. Kaminski, C.F., et al., Supercontinuum radiation for applications in chemical sensing and microscopy. Applied Physics B-Lasers and Optics,2008.92(3):p.367-378.
    20. Dudley, J.M., G. Genty, and S. Coen, Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics,2006.78(4):p.1135-1184.
    21. Skryabin, D.V. and A.V. Gorbach, Colloquium:Looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics,2010.82(2):p.1287-1299.
    22. Domachuk, P., et al., Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Optics Express,2008.16(10):p. 7161-7168.
    23. Xia, C, et al., Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. Optics Express,2007.15(3):p.865-871.
    24. Guanshi, Q., et al., Supercontinuum generation spanning over three octaves from UV to 3.85 /i mu/m in a fluoride fiber. Optics Letters,2009:p.2015-17.
    25. Nicholson, J.W., et al., All-fiber, octave-spanning supercontinuum. Optics Letters,2003. 28(8):p.643-645.
    26. Boucon, A., et al., Low-threshold all-fiber 1000 nm supercontinuum source based on highly non-linear fiber. Optics Communications,2008.281(15-16):p.4095-4098.
    27. Kivisto, S., R. Herda, and O.G. Okhotnikov, All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating. Optics Express,2008.16(1):p.265-270.
    28. Kibler, B., J.M. Dudley, and S. Coen, Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber:influence of the frequency-dependent effective mode area. Applied Physics B-Lasers and Optics,2005.81(2-3):p.337-342.
    29. Blow, K.J. and D. Wood, THEORETICAL DESCRIPTION OF TRANSIENT STIMULATED RAMAN-SCATTERING IN OPTICAL FIBERS. leee Journal of Quantum Electronics,1989.25(12): p.2665-2673.
    30. Husakou, A.V. and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters,2001.87(20).
    1. 明海,纪.隋.李.李.王.林.谢.,时域延时多脉冲叠加平滑过程的分析.
    2. Mark D. Skeldon, S.T.B., Samuel A. Letzring, Implementation of pulse shaping on the OMEGA laser system Proc. SPIE 1627,246 (1992); http://dx.doi.org/10.1117/12.60170.
    3. 纪帆,调制滤波引起脉冲起伏研究.
    4. Philippe Kramer, P.E., and Claude Rouyer Megajoule optical pulse generation system. Proc. SPIE 3047,587 (1997); http://dx.doi.org/10.1117/12.294348.
    5. Ngo, N.Q. and L.N. Binh, New approach for the design of an optical square pulse generator. Applied Optics,2007.46(17):p.3546-3560.
    6. Richardson, D.J., et al., SELF-STARTING, PASSIVELY MODELOCKED ERBIUM FIBER RING LASER BASED ON THE AMPLIFYING SAGNAC SWITCH. Electronics Letters,1991.27(6):p.542-544.
    7. Matsas, V.J., T.P. Newson, and M.N. Zervas, SELF-STARTING PASSIVELY MODE-LOCKED FIBER RING LASER EXPLOITING NONLINEAR POLARIZATION SWITCHING. Optics Communications,1992.92(1-3):p.61-66.
    8. Schmieder, D., P.L. Swart, and A. Booysen, Figure-eight fibre lasers with NALM loops consisting of highly nonlinear dispersion shifted fibres for dense wavelength division multiplexing. Africon 2007,2007.
    9. Wu, X., et al., Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. Optics Express,2009.17(7):p.5580-5584.
    10. Li, X., et al., long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letters,2010.35(19):p. 3249-3251.
    11. Zhao, L.M., et al., Nanosecond square pulse generation in fiber lasers with normal dispersion. Optics Communications,2007.272(2):p.431-434.
    12. Chen, G., et al., Simulation of nanosecond square pulse fiber laser based on nonlinear amplifying loop mirror. Chinese Optics Letters,2011.9(9).
    13. Chen, G.-L., et al., Nanosecond Square Pulse Fiber Laser based on the Nonlinear Amplifying Loop Mirror. Chinese Physics Letters,2011.28(12).
    14.陈国梁,新型被动锁模光纤激光器研究.2011.
    15. Li, Y.H., et al., Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser. Ieee Photonics Technology Letters, 1998.10(9):p.1250-1252.
    16. huan, z., A novel method for square pulse generation using nonlinear amplifying loop mirror.
    17.郑欢,高功率激光器前端系统啁啾脉冲堆积技术的研究.2009:p.62.
    1. Hill, K.O., et al., BRAGG GRATINGS FABRICATED IN MONOMODE PHOTOSENSITIVE OPTICAL FIBER BY UV EXPOSURE THROUGH A PHASE MASK. Applied Physics Letters,1993.62(10):p.1035-1037.
    2. Erdogan, T., Fiber grating spectra. Journal of Lightwave Technology,1997.15(8): p.1277-1294.
    3. Rao, Y.J., In-fibre Bragg grating sensors. Measurement Science & Technology, 1997.8(4):p.355-375.
    4. Kersey, A.D., et al., Fiber grating sensors. Journal of Lightwave Technology, 1997.15(8):p.1442-1463.
    5. Lee, B., Review of the present status of optical fiber sensors. Optical Fiber Technology,2003.9(2):p.57-79.
    6. W.W. Morey, G.M., and W.H. Glenn, Fiber optic bragg grating sensors. SPIE, 1989.1169.
    7. Lobo Ribeiro, A.B., et al., Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme. Appl. Opt.,1997.36(4):p.934-939.
    8. Chan, P.K.C., W. Jin, and M.S. Demokan, FMCW multiplexing of fiber Bragg grating sensors. leee Journal of Selected Topics in Quantum Electronics,2000.6(5): p.756-763.
    9. Shao, L.Y., et al., High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser. leee Photonics Technology Letters,2007.19:p. 1598-1600.
    10. Hill, D.J., et al., DFB fibre-laser sensor developments.17th International Conference on Optical Fibre Sensors, Pts 1 and 2,2005.5855:p.904-907.
    11. Jackson, D.A., et al., SIMPLE MULTIPLEXING SCHEME FOR A FIBEROPTIC GRATING SENSOR NETWORK. Optics Letters,1993.18(14):p.1192-1194.
    12.李志全,et al.,分布式光纤光栅传感网络的复用解调技术.2005.
    13. Zhihui, F., et al., Widely tunable compact erbium-doped fiber ring laser for fiber-optic sensing applications. Optics and Laser Technology,2009:p.392-6.
    14. Friebele, E.J., Fiber Bragg grating strain sensors:present and future applications in smart structures. OPN Optics & Photonics News,1998.9(8).
    15. s. Magne, J.B., Health monitoring of the Saint-Jean bridge of Bordeaux, France using fiber Bragg grating extensometers. SPIE,2003.5050.
    16. Hu, Y., et al., Multiplexing Bragg gratings using combined wavelength and spatial division techniques with digital resolution enhancement. Electronics Letters, 1997.33(23):p.1973-1975.
    17. Davis, M.A. and A.D. Kersey, MATCHED-FILTER INTERROGATION TECHNIQUE FOR FIBER BRAGG GRATING ARRAYS. Electronics Letters,1995. 31(10):p.822-823.
    18. Song, M.H., S.Z. Yin, and P.B. Ruffin, Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer. Applied Optics,2000.39(7):p.1106-1111.
    19. Yun, S.H., D.J. Richardson, and B.Y. Kim, Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Optics Letters,1998.23(11):p.843-845.
    20. Kersey, A.D., T.A. Berkoff, and W.W. Morey, MULTIPLEXED FIBER BRAGG GRATING STRAIN-SENSOR SYSTEM WITH A FIBER FABRY-PEROT WAVELENGTH FILTER. Optics Letters,1993.18(16):p.1370-1372.
    21.余有龙,基于可调F-P滤波器的光纤光栅传感器阵列查询技术.中国激光,2000.27(12).
    22.王晓娜,et al.,基于扫描光纤激光器的光纤传感解调仪研究.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700