基于数学模型的血流,药物以及细胞内外信号传输特性的定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体内各个系统,小至细胞,大至器官,都在通过不断地自我调节以缓冲外界扰动对内平衡的影响。当这种自我调节机制减弱时,就无法维持生命系统的正常功能,从而导致疾病的产生。因此,对生物系统调节机制的研究有助于我们深入地理解各种生理现象,从而推动新型疾病诊断技术和治疗方式的发展,改善人们的生活质量。
     由于生物系统的复杂性以及检测技术的局限性等原因,实验手段通常只能考察系统中部分因素的关系。为了能够系统深入地揭示生物系统的调节机理,本博士论文运用多孔介质内的传热分析,基于优化方法的医疗图像分析及复杂生物网络的系统建模方法对生物组织内的血流调节、药物输运和细胞内外信号传导等问题进行了定量分析,以期为优化心血管疾病诊断、靶向药物输运以及新药筛选技术提供理论依据。主要研究内容包括以下几个方面:
     1.基于手部传热分析的血流动态变化评价。
     首先从断层医学图像序列出发,提出了三维有限元网格模型的重构方法,构建了具有真实外形的手部三维有限元网格模型。然后,基于Darcy定律和Pennes生物传热理论构建了血流传热模型,用于考察反应性充血过程中指尖温度响应的定量特性。结果表明,指尖温度在无过载充血的情况下需要超过200秒才能恢复到稳定水平,而在强过载充血的情况下,仅需50秒。同时,强弱反应性充血中温度峰值相差0.3℃,足以通过民用红外热像仪分辨出来。因此,结合温度反弹量,恢复时间以及其他诸如稳定温度等基准量,就能有效地衡量血管壁调节能力,从而对心血管疾病做出风险预测。
     2.脉冲高强度聚焦超声照射下药物输运特性的定量分析。
     通过核磁共振成像技术记录了不同脉冲高强度聚焦超声(p-HIFU)照射前后新西兰大白兔大腿肌肉组织内药物浓度的动态变化。基于这些实验数据和Toft&Kermode模型,发展了优化算法得到了肌肉组织内的药物渗透率,药物清除率以及细胞外空隙分数。通过对这些组织药物输运参数的统计分析,定量地考察了不同p-HIFU能量沉积对药物传输特性的影响和作用机理。结果显示,p-HIFU引起的肌肉组织内的初期水肿与后期药物输运能力的增强存在着紧密的联系。更重要的是,p-HIFU在引起组织内药物渗透性增强的同时还能有效地扩大细胞外空隙和降低药物的清除率,这种综合作用能够为药物与组织提供充分的接触作用,使得组织累计接触的药物量可以增加到3-4倍。通过合理地控制p-HIFU照射,最终能够达到在减少组织烧伤的情况下最大化组织内药物输运增强的效果。
     3.免疫系统细胞间相互作用网络的数学建模。
     根据SOD1基因突变引起的肌萎缩性脊髓侧索硬化症(ALS)中免疫系统的作用,建立了ALS中免疫细胞与运动神经元相互作用的系统模型。该模型采用常微分方程来描述各个细胞通过调节因子相互作用所引起的动态变化。进一步,基于SOD1转基因小鼠的载体实验数据,采用优化算法确定了数学模型中的待定参数。优化后的数学模型能够恰当地再现疾病发展过程中的初始期、稳定期和恶化期。然后,通过对几种潜在治疗方案的测试发现,抑制1型辅助性T细胞能够有效地减缓疾病的发展,从而改善患者的生活质量。这揭示了1型辅助性T细胞的快速增长在疾病后期快速恶化过程中的主导作用。
     4.细胞内蛋白质信号通路模型的数学建模。
     提出了系统考察致活酶抑制剂综合效果(对癌细胞的抑制作用和肝细胞的副作用)的算法。基于该算法,我们根据在线共享的实验数据建立了PC9癌细胞和人类原代肝细胞内的蛋白质信号通路模型,描述了作为细胞内信号传递载体的各蛋白质磷酸化水平对外部干扰的动态响应。然后通过该模型对27种致活酶抑制剂综合治疗效果的测试,筛选出克里唑蒂尼作为抑制PC9癌细胞而且避免损伤肝细胞的最佳药物。进一步,基于该算法开发了在线的致活酶抑制剂综合治疗效果预测工具KIEP,以便于研究人员使用该工具预测药效。
Human body is a very complex self-regulating system. Each componet at different levels, such as cells or organs, is involved in achieving homeostasis to allow survival and functioning of biological system against challenges from varying conditions. Decline of this self-regulating capability will induce many diseases. Investigation of the regulatory mechanisms of biological systems can give us a deep insight into different physiological phenomena, which will benefit for the development of new disease diagnostic techniques and treatment methods to improve people's quality of life and health.
     Due to complexity of biological systems and limitations of current experimental techniques, experimental methods can only focus on limited factors of the biological system. In order to understand regulatory mechanisms of biological systems systematically and deeply, this doctoral thesis used heat transfer analysis, optimization methods and bio-system modelling to investigate blood flow regulation, drug delivery and intra/extracellular signal transmission, which was expected to benefit for the improvement of cardiovascular disease diagnostic, targeted drug delivery and drug screening. The main contents are listed as following:
     1. Analysis of heat transfer in hand for evaluation of blood flow dynamics.
     First, an algorithm for3D mesh model reconstruction based on medical image sequences to generate the finite element mesh of a hand with real shape was presented. Then, based on Darcy's law and Pennes bio-heat transfer theory, a mathematical model of blood perfusion and heat transfer in biolgical tissue was established to investigate quantitative features of fingertip temperature response to reactive hyperemia. The results indicate that, for fingertip temperature recovery, it took more than200s without overload of blood reperfusion while only50s with high overload of blood reperfusion. Meanwhile, the difference between the peak temperature with low and high overload of blood perfusion is about0.3℃, which is signaficant enough for thermal infrared imager to distinguish. As a result, comprehensive assessment of time lapse to reach peak temperature, peak temperature and other datum quantity, such as steady state temperature, can reflect the regulatory ability of the vessel wall more effectively, which will finally generate the accurate prediction of cardiovascular disease risk.
     2. Quantitative assessment of pulsed high intensity focused ultrasound influence on drug delivery in muscle.
     Dynamic contrast-enhanced T1-weighted magnetic resonance imaging was used to record the dynamics of contrast concentration in the rabbits thigh muscle before and after different levels of pulsed high intensity focused ultrasound (p-HIFU) irradiation. According to these data, Toft&Kermode pharmacokinetic model was optimized to obtain the tissue permeability, drug clearance and extracellular volume fraction. Based on statistical analysis of these tissue parameters, we quantitatively investigated the influence and mechanism of p-HIFU on drug delivery. The results indicate that irradiation induced edema is highly related to the later stage enhancement of drug delivery in muscle. And p-HIFU induced permeability enhancement always accompanies with decreased drug clearance rate and increased extracellular volume. Such kind of comprehensive effects can provide sufficient contact between with tissue and drug, which increases the cumulative exposure amount of tissue to drug3-4times. By adjusting irradiation parameters of p-HIFU, an optimal therapeutic effect, which maximizes drug delivery enhancement while burns the tissue less, can be achieved.
     3. Mathematical modeling of cell-cell interactions network in immune system.
     A mathematical model of interactions between immune cells and motorneurons in SOD1mutation induced amyotrophic lateral sclerosis (ALS) was developed. Dynamics of various cells and regulatory factors in this model was described by ordinary differential equations. Experimental data of transgenic mice were used for training the mathematical model to determine the unknown parameters. The optimized model can felicitously represent three typical stages in ALS:initialization, stabilization and deterioration. Then several potential therapies was tested and the results reveal that suppression of T helper1cells can improve the life quality of patients effectively, which demonstrates the dominant role of T helper1cell in exacerbating the disease at the later stage.
     4. Intracellular signaling pathway model based assesment of pharmacodynamic effects.
     We proposed an algorithm to systematically investigate the study the comprehensive effects of kinase inhibitors (supressive effect on cancer cells and side effect on liver cells). Based on this algorithm, online shared experimental data were used to establish a mathematical model intergrating the signaling pathways of PC9cells and human primary hepatocytes, which described phosphorylation levels of different intracellular signaling protein response to perturbations were described by ordinary differential equations. Then comprehensive effects of27kinase inhibiors were predicted and crizotinib was finally screened out with an optimal concentration which can suppress PC9cancer cell expansion effectively while avoiding severe damage to primary human hepatocytes. Furthermore, based on our algorithm, an online tool with user friendly interface called KIEP was developed for researchers to predict the comprehensive effects of a kinase inhibitor.
引文
[I]KOJlC M, FILIPOVIC N, STOJANOVIC B, et al. Computer Modeling in Bioengineering:Theoretical Background, Examples and Software [M]. Wiley,2008.
    [2]ENDY D. Foundations for engineering biology [J]. Nature,2005,438(7067):449-53.
    [3]GEVA T. Introduction:Magnetic resonance imaging [J]. Pediatr Cardiol,2000,21(1): 3-4.
    [4]PAAKKONEN V, TJADERHANE L. High-throughput Gene and Protein Expression Analysis in Pulp Biologic Research:Review [J]. J Endodont,2010,36(2):179-89.
    [5]POISEUILLE J. Recherches expe'rimentales sur le mouvement des liquides dans les tubes de tre's-petits diame'tres [J]. CR Acad Sci (Paris),1840,11(1041-9.
    [6]FICK A. Uber diffusion [J]. Annalen der Physik,1855,170(1):59-86.
    [7]HELMHOLTZ H. Handbuch der Physiologischen Optik [M]. Leipzig, Denmark: Leopold Voss,1867.
    [8]GALVANI L, VOLTA A. Account of some discoveries made by Mr. Galvani, of Bologna; with experiments and observations on them [J]. Philosophical Transactions of the Royal Society of London,1793,83(10-44.
    [9]STEWART G. Researches on the circulation time and on the influences which affect it [J]. The Journal of physiology,1897,22(159-83.
    [10]KROGH A. The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue [J]. The Journal of physiology, 1919,52(409-15.
    [11]WIGGERS C. The harmonic analysis of intraventricular pressure curves [J]. American Journal of Physiology,1928,86(435-49.
    [12]BAILEY J E. Mathematical modeling and analysis in biochemical engineering:past accomplishments and future opportunities [J]. Biotechnology progress,1998,14(1):8-20.
    [13]WHO. Global status report on noncommunicable disaeses 2010 [M]. Geneva.2011.
    [14]WHO. Global atlas on cardiovascular disease prevention and control [M]. Geneva. 2011.
    [15]MATHERS C D, LONCAR D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. Plos Med,2006,3(11):
    [16]WILSON P W F, D'AGOSTINO R B, LEVY D, et al. Prediction of coronary heart disease using risk factor categories [J]. Circulation,1998,97(18):1837-47.
    [17]ROSSI R, NUZZO A, ORIGLIANI G, et al. Prognostic role of flow-mediated dilation and cardiac risk factors in post-menopausal women [J]. J Am Coll Cardiol,2008,51(10): 997-1002.
    [18]PATVARDHAN E A, HEFFERNAN K S, RUAN J M, et al. Assessment of Vascular Endothelial Function With Peripheral Arterial Tonometry Information at Your Fingertips? [J]. Cardiol Rev,2010,18(1):20-8.
    [19]DHINDSA M, SOMMERLAD S M, DEVAN A E, et al. Interrelationships among noninvasive measures of postischemic macro-and microvascular reactivity [J]. J Appl Physiol,2008,105(2):427-32.
    [20]MFNSON C T, GREEN D J. Measures of vascular reactivity:prognostic crystal ball or Pandora's box? [J]. J Appl Physiol,2008,105(2):398-9.
    [21]RAITAKARI O T, CELERMAJER D S. Flow-mediated dilatation [J]. Brit J Clin Pharmaco,2000,50(5):397-404.
    [22]BUDOFF M, AHMADI N, KLEIS S, et al. Digital (Fingertip) Thermal Monitoring of Vascular Function:A Novel, Noninvasive, Nonimaging Test to Improve Traditional Cardiovascular Risk Assessment and Monitoring of Response to Treatments [M]//NAGHAVI M. Asymptomatic Atherosclerosis. Humana Press.2011:247-63.
    [23]SALLOUM M, GHADDAR N, GHALI K. A new transient bioheat model of the human body and its integration to clothing models [J]. Int J Therm Sci,2007,46(4):371-84.
    [24]AVOLIO A P. Multi-Branched Model of the Human Arterial System [J]. Med Biol Eng Comput,1980,18(6):709-18.
    [25]LEY O, DESHPANDE C, PRAPAMCHAM B, et al. Lumped parameter thermal model for the study of vascular reactivity in the fingertip [J]. J Biomech Eng-T Asme,2008, 130(3):
    [26]LEY O, DESHPANDE C V. Comparison of two mathematical models for the study of vascular reactivity [J]. Comput Biol Med,2009,39(7):579-89.
    [27]AKHTAR M W, KLEIS S J, METCALFE R W, et al. Sensitivity of Digital Thermal Monitoring Parameters to Reactive Hyperemia [J]. J Biomech Eng-T Asme,2010,132(5):
    [28]ROETZEL W, XUAN Y M. Transient response of the human limb to an external stimulus [J]. Int J Heat Mass Tran,1998,41(1):229-39.
    [29]REYNOLDS H M, SMITH N P, HUNTER P J. Construction of an anatomically accurate geometric model of the forearm and hand musculo-skeletal system [J]. Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-7,2004,26(1829-32.
    [30]FUKUDA S, SAKAI N, SHIMAWAKI S. Numerical simulation of mechanical deformation of three-dimensional human fingertip model constructed from CT data [M]. The 16th JSME conference on frontiers in bioengineering;. Kusatsu, Japan.2005.
    [31]CEBRAL J R, LOHNER R. From medical images to anatomically accurate finite element grids [J]. Int J Numer Meth Eng,2001,51(8):985-1008.
    [32]HE Y, LIU H, HIMENO R, et al. Numerical and Experimental Study on the Relationship between Blood Circulation and Peripheral Temperature [J]. J Mech Med Biol, 2005,5(1):39-53.
    [33]HE Y, HIMENO R, LIU H, et al. Finite element numerical analysis of blood flow and temperature distribution in three-dimensional image-based finger model [J]. Int J Numer Method H,2008,18(7-8):932-53.
    [34]HE Y, LIU H, HIMENO R. A one-dimensional thermo-fluld model of blood circulation in the human upper limb [J]. Int J Heat Mass Tran,2004,47(12-13):2735-45.
    [35]MULLER R H, KECK C M. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles [J]. J Biotechnol,2004, 113(1-3):151-70.
    [36]BERTRAND N, LEROUX J C. The journey of a drug-carrier in the body:An anatomo-physiological perspective [J]. J Control Release,2012,161(2):152-63.
    [37]TORCHILIN V P. Passive and active drug targeting:drug delivery to tumors as an example [J]. Handbook of experimental pharmacology,2010,197):3-53.
    [38]VEISEH O, GUNN J W, ZHANG M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging [J]. Advanced drug delivery reviews,2010,62(3): 284-304.
    [39]BEDUNEAU A, SAULNIER P, HINDRE F, et al. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab'fragments [J]. Biomaterials,2007,28(33):4978-90.
    [40]DECKERT P M. Current constructs and targets in clinical development for antibody-based cancer therapy [J]. Current drug targets,2009,10(2):158-75.
    [41]ABADI D, ZDERIC V. Ultrasound-mediated nail drug delivery system [J]. Journal of ultrasound in medicine:official journal of the American Institute of Ultrasound in Medicine, 2011,30(12):1723-30.
    [42]FELLINGER K, SCHMIDT J. Klinik and therapies des chromischen gelenkreumatismus [J]. Maudrich Vienna,1954,549-52.
    [43]YUH E L, SHULMAN S G, MEHTA S A, et al. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound:Study in a murine model [J]. Radiology,2005, 234(2):431-7.
    [44]DITTMAR K M, XIE J W, HUNTER F, et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model:Initial experience [J]. Radiology,2005,235(2):541-6.
    [45]FRENKEL V, ETHERINGTON A, GREENE M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer-tumor model:Investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure [J]. Acad Radiol,2006,13(4):469-79.
    [46]KHAIBULLINA A, JANG B S, SUN H, et al. Pulsed high-intensity focused ultrasound enhances uptake of radiolabeled monoclonal antibody to human epidermoid tumor in nude mice [J]. J Nucl Med,2008,49(2):295-302.
    [47]FRENKEL V, OBEROI J, STONE M J, et al. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model [J]. Radiology,2006,239(1):86-93.
    [48]STONE M J, FRENKEL V, DROMI S, et al. Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study [J]. Thromb Res,2007,121(2):193-202.
    [49]SHEIKOV N, MCDANNOLD N, VYKHODTSEVA N, et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles [J]. Ultrasound Med Biol,2004,30(7):979-89.
    [50]O'NEILL B E, VO H, ANGSTADT M, et al. Pulsed High Intensity Focused Ultrasound Mediated Nanoparticle Delivery:Mechanisms and Efficacy in Murine Muscle [J]. Ultrasound Med Biol,2009,35(3):416-24.
    [51]WATSON K D, LAI C Y, QIN S, et al. Ultrasound Increases Nanoparticle.Delivery by Reducing Intratumoral Pressure and Increasing Transport in Epithelial and Epithelial-Mesenchymal Transition Tumors [J]. Cancer Res,2012,72(6):1485-93.
    [52]DAVIDOV E, HOLLAND J, MARPLE E, et al. Advancing drug discovery through systems biology [J]. Drug discovery today,2003,8(4):175-83.
    [53]BUTCHER E C, BERG E L, KUNKEL E J. Systems biology in drug discovery [J]. Nat Biotechnol,2004,22(10):1253-9.
    [54]BEARD D A, BASSINGTHWAIGHTE J B, GREENE A S. Computational modeling of physiological systems [J]. Physiol Genomics,2005,23(1):1-3.
    [55]GROSS F, METZNER G, BEHN U. Mathematical modeling of allergy and specific immunotherapy:Th1-Th2-Treg interactions [J]. J Theor Biol,2011,269(1):70-8.
    [56]BOCHAROV G, ZUST R, CERVANTES-BARRAGAN L, et al. A Systems Immunology Approach to Plasmacytoid Dendritic Cell Function in Cytopathic Virus Infections [J]. Plos Pathog,2010,6(7):
    [57]MARINO S, EL-KEBIR M, KIRSCHNER D. A hybrid multi-compartment model of granuloma formation and T cell priming in Tuberculosis [J]. J Theor Biol,2011,280(1): 50-62.
    [58]WOOLF P J, PRUDHOMME W, DAHERON L, et al. Bayesian analysis of signaling networks governing embryonic stem cell fate decisions [J]. Bioinformatics,2005,21(6): 741-53.
    [59]HEINRICH R, NEEL B G, RAPOPORT T A. Mathematical models of protein kinase signal transduction [J]. Mol Cell,2002,9(5):957-70.
    [60]MORRIS M K, SAEZ-RODRIGUEZ J, CLARKE D C, et al. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic:Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli [J]. Plos Comput Biol,2011,7(3):
    [61]OMENN G S. Grand challenges and great opportunities in science, technology, and public policy [J]. Science,2006,314(5806):1696-704.
    [62]CHENG Y Z. Mean Shift, Mode Seeking, and Clustering [J]. Ieee T Pattern Anal,1995, 17(8):790-9.
    [63]COMANICIU D, MEER P. Mean shift:A robust approach toward feature space analysis [J]. Ieee T Pattern Anal,2002,24(5):603-19.
    [64]FUKUNAGA K, HOSTETLER L D. Estimation of Gradient of a Density-Function, with Applications in Pattern-Recognition [J]. Ieee T Inform Theory,1975,21(1):32-40.
    [65]CANNY J. A Computational Approach to Edge-Detection [J]. Ieee T Pattern Anal,1986, 8(6):679-98.
    [66]MU L Z, SHAO H W, HE Y, et al. Construction of Anatomically Accurate Finite Element Models of the Human Hand and a Rat Kidney [J]. J Mech Med Biol,2011,11(5): 1141-64.
    [67]SHARP J M, SIMMONS C T. The compleat Darcy:New lessons learned from the first English translation of Les Fontaines publiques de la Ville de Dijon [J]. Ground Water,2005, 43(3):457-60.
    [68]WISSLER E H. Pennes'1948 paper revisited [J]. J Appl Physiol,1998,85(1):35-41.
    [69]ZHANG H D, HE Y, WANG X, et al. Dynamic infrared imaging for analysis of fingertip temperature after cold water stimulation and neurothermal modeling study [J]. Comput Biol Med,2010,40(7):650-6.
    [70]PODTAEV S, MOROZOV M, FRICK P. Wavelet-based correlations of skin temperature and blood flow oscillations [J]. Cardiovasc Eng,2008,8(3):185-9.
    [71]HENDEE W R, MORGAN C J. Magnetic-Resonance Imaging.1. Physical Principles [J]. Western J Med,1984,141(4):491-500.
    [72]TSUKAMOTO N, KUMAGAI H, SAITOH K, et al. Computer-aided volumetric evaluation method for gray matter in the brain and the spinal cord by Tl-weighted inversion recovery MRI [J]. Int Congr Ser,2001,1230(1109-.
    [73]BEYERS R J, SMITH R S, XU Y Q, et al. T2-weighted MRI of post-infarct myocardial edema in mice [J]. Magnet Reson Med,2012,67(1):201-9.
    [74]ISHIHARA Y, CALDERON A, WATANABE H, et al. Precise and Fast Temperature Mapping Using Water Proton Chemical-Shift [J]. Magnet Reson Med,1995,34(6):814-23.
    [75]SAPARETO S A, DEWEY W C. Thermal dose determination in cancer therapy [J]. International journal of radiation oncology, biology, physics,1984,10(6):787-800.
    [76]ARMITAGE P, BEHRENBRUCH C, BRADY M, et al. Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast [J]. Med Image Anal,2005,9(4):315-29.
    [77]GOWLAND P, MANSFIELD P, BULLOCK P, et al. Dynamic Studies of Gadolinium Uptake in Brain-Tumors Using Inversion-Recovery Echo-Planar Imaging [J]. Magnet Reson Med,1992,26(2):241-58.
    [78]SASAKI M, SHIBATA E, KANBARA Y, et al. Enhancement effects and relaxivities of gadolinium-DTPA at 1.5 versus 3 Tesla:a phantom study [J]. Magnetic resonance in medical sciences:MRMS:an official journal of Japan Society of Magnetic Resonance in Medicine,2005,4(3):145-9.
    [79]WANG H Z, RIEDERER S J, LEE J N. Optimizing the Precision in T1 Relaxation Estimation Using Limited Flip Angles [J]. Magnet Reson Med,1987,5(5):399-416.
    [80]ST LAWRENCE K S, LEE T Y. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain:Ⅰ. Theoretical derivation [J]. J Cerebr Blood F Met, 1998,18(12):1365-77.
    [81]TOFTS P S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging [J]. Jmri-J Magn Reson Im,1997,7(1):91-101.
    [82]POWELL M J D. On search directions for minimization algorithms [J]. Math Program, 1973,4(1):193-201.
    [83]MURPHY K, TRAVERS P, WALPORT M, et al. Janeway's immunobiology [M].8th ed. New York:Garland Science,2012.
    [84]BOILLEE S, VANDE VELDE C, CLEVELAND D W. ALS:A disease of motor neurons and their nonneuronal neighbors [J]. Neuron,2006,52(1):39-59.
    [85]HAVERKAMP L J, APPEL V, APPEL S H. Natural-History of Amyotrophic-Lateral-Sclerosis in a Database Population-Validation of a Scoring System and a Model for Survival Prediction [J]. Brain,1995,118(707-19.
    [86]APPEL V, STEWART S S, SMITH G, et al. A Rating-Scale for Amyotrophic-Lateral-Sclerosis-Description and Preliminary Experience [J]. Ann Neurol, 1987,22(3):328-33.
    [87]ROSEN D R, SIDDIQUE T, PATTERSON D, et al. Mutations in Cu/Zn Superoxide-Dismutase Gene Are Associated with Familial Amyotrophic-Lateral-Sclerosis [J]. Nature,1993,362(6415):59-62.
    [88]DENG H X, HENTATI A, TAINER J A, et al. Amyotrophic-Lateral-Sclerosis and Structural Defects in Cu,Zn Superoxide-Dismutase [J]. Science,1993,261(5124):1047-51.
    [89]ZHAO W H, BEERS D R, HENKEL J S, et al. Extracellular Mutant SOD1 Induces Microglial-Mediated Motoneuron Injury [J]. Glia,2010,58(2):231-43.
    [90]HARRAZ M M, MARDEN J J, ZHOU W H, et al. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model [J]. J Clin Invest, 2008,118(2):659-70.
    [91]ENGELHARDT J I, TAJTI J, APPEL S H. Lymphocytic Infiltrates in the Spinal-Cord in Amyotrophic-Lateral-Sclerosis [J]. Arch Neurol-Chicago,1993,50(1):30-6.
    [92]HENKEL J S, ENGELHARDT J I, SIKLOS L, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue [J]. Ann Neurol,2004,55(2):221-35.
    [93]SAIJO K, GLASS C K. Microglial cell origin and phenotypes in health and disease [J]. Nat Rev Immunol,2011,11(11):775-87.
    [94]HENKEL J S, BEERS D R, ZHAO W H, et al. Microglia in ALS:The Good, The Bad, and The Resting [J]. J Neuroimmune Pharm,2009,4(4):389-98.
    [95]MOSSER D M, EDWARDS J P. Exploring the full spectrum of macrophage activation [J]. Nat Rev Immunol,2008,8(12):958-69.
    [96]GORDON S, MARTINEZ F O. Alternative Activation of Macrophages:Mechanism and Functions [J]. Immunity,2010,32(5):593-604.
    [97]APPEL S H, BEERS D R, HENKEL J S. T cell-microglial dialogue in Parkinson's disease and amyotrophic lateral sclerosis:are we listening? [J]. Trends Immunol,2010, 31(1):7-17.
    [98]BANERJEE R, MOSLEY R L, REYNOLDS A D, et al. Adaptive Immune Neuroprotection in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice [J]. Plos One,2008, 3(7):
    [99]BEERS D R, HENKEL J S, ZHAO W H, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis [J]. Brain,2011,134(1293-314.
    [100]KNUDSON A G. Mutation and Cancer-Statistical Study of Retinoblastoma [J]. Proceedings of the National Academy of Sciences of the United States of America,1971, 68(4):820-&.
    [101]ZHU J F, YAMANE H, PAUL W E. Differentiation of Effector CD4 T Cell Populations [J]. Annu Rev Immunol,2010,28(445-89.
    [102]TAGA K, TOSATO G.11-10 Inhibits Human T-Cell Proliferation and 11-2 Production [J]. J Immunol,1992,148(4):1143-8.
    [103]NOWAKOWSKI R S. Stable neuron numbers from cradle to grave [J]. Proceedings of the National Academy of Sciences of the United States of America,2006, 103(33):12219-20.
    [104]TANIGUCHI Y, CHOI P J, LI G W, et al. Quantifying E-coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells [J]. Science,2010, 329(5991):533-8.
    [105]SRINIVAS M, PATNAIK L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms [J]. Ieee T Syst Man Cyb,1994,24(4):656-67.
    [106]DIEHL S, RINCON M. The two faces of IL-6 on Thl/Th2 differentiation [J]. Mol Immunol,2002,39(9):531-6.
    [107]KIMURA A, KISHIMOTO T. IL-6:Regulator of Treg/Th17 balance [J]. Eur J Immunol,2010,40(7):1830-5.
    [108]MILLS C D, KINCAID K, ALT J M, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm [J]. J Immunol,2000,164(12):6166-73.
    [109]MIR M, ASENSIO V J, TOLOSA L, et al. Tumor Necrosis Factor Alpha and Interferon Gamma Cooperatively Induce Oxidative Stress and Motoneuron Death in Rat Spinal Cord Embryonic Explants [J]. Neuroscience,2009,162(4):959-71.
    [110]ZHANG J, YANG P L, GRAY N S. Targeting cancer with small molecule kinase inhibitors [J]. Nature reviews Cancer,2009,9(1):28-39.
    [111]NELSON P T, BALDWIN D A, SCEARCE L M, et al. Microarray-based, high-throughput gene expression profiling of microRNAs [J]. Nat Methods,2004,1(2): 155-61.
    [112]HUNT I. From gene to protein:a review of new and enabling technologies for multi-parallel protein expression [J]. Protein Expres Purif,2005,40(1):1-22.
    [113]ZHU J, LARMAN H B, GAO G, et al. Protein interaction discovery using parallel analysis of translated ORFs (PLATO) [J]. Nat Biotechnol,2013,31(4):331-4.
    [114]SAEZ-RODRIGUEZ J, GOLDSIPE A, MUHLICH J, et al. Flexible informatics for linking experimental data to mathematical models via DataRail [J]. Bioinformatics,2008, 24(6):840-7.
    [115]HENDRIKS B S, ESPELIN C W. DataPflex:a MATLAB-based tool for the manipulation and visualization of multidimensional datasets [J]. Bioinformatics,2010,26(3): 432-3.
    [116]FABIAN M A, BIGGS W H,3RD, TREIBER D K, et al. A small molecule-kinase interaction map for clinical kinase inhibitors [J]. Nat Biotechnol,2005,23(3):329-36.
    [117]PATRICELLI M P, SZARDENINGS A K, LIYANAGE M, et al. Functional interrogation of the kinome using nucleotide acyl phosphates [J]. Biochemistry-Us,2007, 46(2):350-8.
    [118]SAEZ-RODRIGUEZ J, ALEXOPOULOS L G, ZHANG M S, et al. Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models [J]. Cancer Res,2011,71(16):5400-11.
    [119]KANEHISA M, GOTO S. KEGG:kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res,2000,28(1):27-30.
    [120]KANEHISA M, GOTO S, SATO Y, et al. KEGG for integration and interpretation of large-scale molecular data sets [J]. Nucleic Acids Res,2012,40(Database issue): D109-14.
    [121]KNOX C, LAW V, JEWISON T, et al. DrugBank 3.0:a comprehensive resource for 'Omics' research on drugs [J]. Nucleic Acids Res,2011,39(D1035-D41.
    [122]WALTER S A, CUTLER R E, JR., MARTINEZ R, et al. Stkl 0, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue [J]. J Biol Chem, 2003,278(20):18221-8.
    [123]ELLINGER-ZIEGELBAUER H, KARASUYAMA H, YAMADA E, et al. Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the G2/M transition in somatic cells [J]. Genes to cells:devoted to molecular & cellular mechanisms, 2000,5(6):491-8.
    [124]LATT S A, STETTEN G, JUERGENS L A, et al. Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence [J]. The journal of histochemistry and cytochemistry:official journal of the Histochemistry Society,1975, 23(7):493-505.
    [125]SALIC A, MITCHISON T J. A chemical method for fast and sensitive detection of DNA synthesis in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(7):2415-20.
    [126]JACOBBERGER J W, FRISA P S, SRAMKOSKI R M, et al. A new biomarker for mitotic cells [J]. Cytometry Part A:the journal of the International Society for Analytical Cytology,2008,73(1):5-15.
    [127]KATAYAMA K, FUJITA N, TSURUO T. Akt/protein kinase B-dependent phosphorylation and inactivation of WEElHu promote cell cycle progression at G(2)/M transition [J]. Mol Cell Biol,2005,25(13):5725-37.
    [128]THORNTON T M, RINCON M. Non-classical p38 map kinase functions:cell cycle checkpoints and survival [J]. International journal of biological sciences,2009,5(1): 44-51.
    [129]XING J, SPITZ M R, LU C, et al. Deficient G2-M and S checkpoints are associated with increased lung cancer risk:a case-control analysis [J]. Cancer epidemiology, biomarkers & prevention:a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology,2007,16(7):1517-22.
    [130]GUTENKUNST R N, WATERFALL J J, CASEY F P, et al. Universally sloppy parameter sensitivities in systems biology models [J]. Plos Comput Biol,2007,3(10): 1871-78.
    [131]MOROHASHI M, WINN A E, BORISUK M T, et al. Robustness as a measure of plausibility in models of biochemical networks [J]. J Theor Biol,2002,216(1):19-30.
    [132]MUMOLI N, CEI M, COSIMI A. Drug-related hepatotoxicity [J]. The New England journal of medicine,2006,354(20):2191-3; author reply-3.
    [133]GRENDELL J H, MCQUAID K R, FRIEDMAN S L. Current diagnosis & treatment in gastroenterology [M].2nd ed. New York:Lang Medical Books/McGraw-Hill, 2003.
    [134]OU S H, BARTLETT C H, MINO-KENUDSON M, et al. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer:a success story to usher in the second decade of molecular targeted therapy in oncology [J]. The oncologist,2012,17(11): 1351-75.
    [135]BLISS C I. The Toxicity of Poisons Applied Jointly [J]. Annals of Applied Biology, 1939,26(585-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700