高超声速进气道启动问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高超声速进气道为研究对象,采用试验与数值模拟相结合的方法,对高超声速进气道的流动机理、启动过程、启动特性和启动性能提高方法等问题开展了研究。
     通过壁面压力测量、高速纹影、壁面油流和数值模拟等多种手段,详细研究了二维和三维侧压进气道启动/不启动状态的流场结构,并对比了内收缩比和唇口角对进气道启动性能的影响。在此研究的基础上,分析总结了高超声速进气道不启动流场的主要特征和能够保持稳定的原因:内收缩段入口存在大规模流动分离并在内收缩段入口前产生溢流是进气道不启动流场的主要特征;内收缩段入口分离区通过调节自身的大小和位置维持了来流动压、内收缩段反压和溢流三者之间的动态平衡,分离区通过该平衡实现“自持”是不启动流场能够稳定存在的原因。在这部分内容中还研究了侧板构型对二维进气道启动性能的影响,发现将侧板由后掠改为前掠能有效地提高启动性能。
     采用高速纹影观察了高超声速进气道启动过程中流场的变化情况。试验结果表明进气道的自启动过程可以分为两个阶段:分离对峙阶段和状态过渡阶段。自启动过程的临界状态在流场特征上表现为大规模分离形成的分离激波入射在内收缩段入口,溢流消失。达到这一状态后,分离区的“自持”被打破并逐渐消失,进气道继而实现自启动。
     在前人对一维等熵压缩进气道启动特性研究成果的基础上给出了真实飞行条件下高超声速进气道的启动特性图,将进气道的工作状态划分为不启动区、双解区和自启动区三个区域,为高超声速进气道的设计和启动性能优化工作提供了有益的参考。
     通过自由射流试验研究了入口开启机构对进气道启动性能的影响,并分析了进气道在入口封闭、不启动和启动三个状态下整个飞行器的力学特性。研究表明入口开启机构这一变几何方式避免了加速过程中进气道启动的迟滞现象,并在接力状态下将进气道的工作状态由自启动区转入双解区的启动状态,有效地提高了进气道的启动性能。
     详细研究了边界层抽吸对进气道启动性能的影响。分别在进气道前体和不启动状态大规模分离区位置考察了多种边界层抽吸方式对进气道启动性能的改善情况:边界层剥离这种集中抽吸方式在前体边界层抽吸中效果最佳;小孔抽吸这种分散抽吸方式在分离区内进行抽吸的效率最高。结果表明,边界层抽吸是一种能够以较小流量损失为代价有效提升进气道启动性能的简单易行的方法。
     对流线追踪Busemann进气道的设计方法、巡航状态和低马赫数下的工作特性进行了初步研究,并通过壁面小孔抽吸方法辅助过压缩的构型实现了低马赫数下的启动。
The flowfield in hypersonic inlet was investigated by both experimental and numerical methods to study the starting characteristics and starting ability enhancement.
     Started and unstarted flowfields of 2D and 3D sidewall compression inlets were studied by wall static pressure measurement, schlieren, wall surface oil flow pattern and numerical simulation. It is achieved that the typical character of an unstarted flowfield is a large-scale flow separation near the entrance of internal compression, which causes much flow spillage. The separation keeps a balance among incoming flow, pressure rise caused by internal compression and spillage by adjusting its scale and position. And this balance forms a kind of self-sustainment of the separation which stabilizes the unstarted status. The influence of 2D inlet sidewall configuration on starting ability was also tested in this part.
     High speed schlieren was employed to observe the starting process of hypersonic inlets. Results show that the starting process can be divided into two parts: separation confrontment period and status transition process. The moment that separation-induced shock getting into the internal compression and spillage vanishing appears to be the critical condition of self-start.. The self-sustainment of separation is broken down when this moment occurred and then the inlet finishes the self-starting process.
     Based on the starting characteristics of one-dimensional, isentropic internal compression inlet, the starting characteristics of hypersonic inlet is achieved. The CR_(in)/Mach number diagram is divided into three distinct parts: spontaneous start region, dual solution region and cannot-start region.
     A 3D inlet with moving entrance door was tested in free-jet experiment and the result revealed that the moving entrance door could effectively improve the starting ability. The inlet avoids the starting hysteresis by blocking the entrance during acceleration. And the opening process after acceleration leads the inlet into dual solution region from spontaneous region which keeps the inlet started.
     Boundary-layer bleed was applied both on the forebody and in the separation region of unstarted flowfield. And this method is testified to be a simple but effective way to improve inlet starting ability. The results reveals that boundary-layer split on the forebody has the best effect, while the porous surface in the separation region has the highest bleed efficiency.
     The design method and starting characteristics of a streamline-traced Busemann inlet were investigated. The free-jet test result shows a very good performance at designed Mach number. But it cannot self-start at a lower Mach number unless with the help of bleed holes.
引文
[1]Curran E T,Murthy S N B.Scramjet Propulsion[M].Progress in Astronautics and Aeronautics,Vol.189.American Institute of Aeronautics and Astronautics,Inc.,2000.
    [2]Curran E T.Scramjet Engines:The First Forty Years[J].Journal of Propulsion and Power,2001,17(6):1138-1148.
    [3]Waltrup P J,White M E,Zarlingo F,Cravlin E S.History of U.S.Navy Ramjet,Scramjet,and Mixed-Cycle Propulsion Development[J].Journal of Propulsion and Power,2002,18(1):14-27.
    [4]Waltrup P J.Liquid-Fueled Supersonic Combustion Ramjets:A Research Perspective[J].Journal of Propulsion and Power,1987,3(6):515-524.
    [5]Orton G F.Air-Breathing Hypersonic Research at Boeing Phantom Works[R].AIAA 2002-5251,2002.
    [6]Kazmar R R.Hypersonic Propulsion at Pratt & Whitney-Overview[R].AIAA 2005-3256,2005.
    [7]Serre L,Falempin F.PROMETHEE:the French Military Hypersonic Propulsion Program Status in 2002[R].AIAA 2002-5246,2002.
    [8]Kobayashi S.Japanese Spaceplane Program Overview[R].AIAA 95-6002,1995.
    [9]刘陵.超音速燃烧超音速燃烧冲压发动机[M].西安:西北工业大学出版社,1993.
    [10]袁越.高超声速飞行技术研究的进展[J].中国航天,1998(7):20-23.
    [11]刘英姿.国外高超音速飞行器研制动态[J].飞航导弹,1998(7):11-16.
    [12]龙玉珍.国际性超燃冲压发动机研究进入飞行试验阶段[J].飞航导弹,1998(12):53-56.
    [13]庄逢甘,崔尔杰,张涵信.未来空间飞行器的某些发展和空气动力学的任务[C].中国第一届近代空气动力学与气动热力学会议,绵阳,2006.
    [14]Heiser W H,Pratt D T,Deley D H.Hypersonic Airbreathing Propulsion [M].American Institute of Aeronautics and Astronautics Inc,Washington,D.C.1994.
    [15]李素循.流动控制原理及有关应用[C].中国第一届近代空气动力学与气动热力学会议,绵阳,2006.
    [16]Ferri A,Libby P A,Zakkay V.Theoretical and Experimental Investigations of Supersonic Combustion[C].Precedings of the international Council of the Aeronautical Science,New York,USA,1964.
    [17]Weber R J,Mackay J S.An Analysis of Ramjet Engines Using Supersonic Combustion[R].NACA TN 4386,1958.
    [18]Beckel S A,Garrett J L,Gettinger C G.Technologies for Robust and Affordable Scramjet Propulsion[R].AIAA 2006-7980,2006.
    [19]Billig F S.Supersonic Combustion Ramjet Missile[J].Journal of Propulsion and Power,1995,11(6):1139-1146.
    [20]Andrews E H,Mackley E A.Review of NASA's Hypersonic Engine Project[R].AIAA 93-2323,1993.
    [21]Rubert K F,Lopez H J.The NASA Hypersonic Research Engine Program[R].NASATM 92-21521,1992.
    [22]Rogers R C,Capriotti D P,Guy R W.Experimental Supersonic Combustion Research at NASA Langley[R].AIAA 98-2506,1998.
    [23]占云.高超声速技术(HyTech)计划[J].飞航导弹,2003(3):43-49.
    [24]Nelson H F,Hillstorm D G..Aerodynamic Interference for Hypersonic Missiles at Low Angle of Attack[J].Journal of Spacecraft and Rockets,1998,35(6):749-754.
    [25]蔡国飙,李惠峰,徐大军.高超声速飞行器技术发展战略研究[R].国防科学技术报告,2002.
    [26]Cockrell C E Jr.,Auslender A H,Guy R W,etc.Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development[R].AIAA 2002-5188,2002.
    [27]McClinton C R,Hunt J L,Ricketts R H,etc.Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams[R].AIAA 99-4978,1999.
    [28]Hunt J L,Rausch V L.Airbreathing Hypersonic Systems Focus at NASA Langley Research Center[R].AIAA 98-1641,1998.
    [29]Rausch V L,McClinton C R,Crawford J L.Hyper-X:Flight Validation of Hypersonic Airbreathing Technology[R].ISABE 97-7024,1997.
    [30]Rausch V L,McClinton C R.Hyper-X Program Overview[R].ISABE 99-7213,1999.
    [31]McClinton C R,Rausch V L.Hyper-X Program Status[R].AIAA 2001-1910,2001.
    [32]Voland R T,Rock K E,Huebner L D,et al.Hyper-X Engine Design and Ground Test Program[R].AIAA 98-1532,1998.
    [33]Foelsche R O,Leylegian J C,Betti A A,etc.Progress on the Development of a Freeflight Atmospheric Scramjet Test Technique[R].AIAA 2005-3297,2005.
    [34]Mercier R A,Ronald T M.Hypersonic Technology(HyTech) Program Overview [R].AIAA 98-1566,1998.
    [35]Boudreau A H.Status of the U.S.Air Force HyTech Program[R].AIAA 2003-6947,2003.
    [36]Norris R B.Freejet Test of the AFRL HySET Scramjet Engine Model at Math 6.5 and 4.5 [R].AIAA 2001-3196, 2001.
    [37] McClinton C R, Rausch V L, Nguyen L T, et al. Preliminary X-43 Flight Test Results [J]. Acta Astronautica, 2005,57:266.
    [38] Bahm C, Baumann E, Martin J, etc. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results [R]. AIAA 2005-3275,2005.
    [39] Marshall L A, Bahm C, Corpening G P, Sherrill R. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight [R]. AIAA 2005-3336,2005.
    [40] Boudreau A H. Hypersonic Air-breathing Propulsion Efforts in the Air Force Research Laboratory [R]. AIAA 2005-3255,2005.
    [41] Kandebo S W. Landmark Tests Boost Scramjet's Future [J]. Aviation Week and Space Technology, 26 March 2001: 58-59.
    [42] Hughes D. Scramjet Tests Set Stage for AF Hypersonic Flights. Areospace Daily and Defense Report, 7 May 2007: 6.
    [43] Hank J M, Murphy J S, Mutzman R C. The X-51A Scramjet Engine Flight Demonstration program [R]. AIAA 2008-2540, 2008.
    [44] Walker S H. Falcon Hypersonic Technology Overview [R]. AIAA 2005-3253, 2005.
    [45] Walker S H, Tang M, Hamilton B A, etc. Falcon HTV-3X -A Reusable Hypersonic Test Bed [R]. AIAA 2008-2544,2008.
    [46] Tang M, Hamilton B A. The Quest for Hypersonic Flight with Air-breathing Propulsion [R]. AIAA 2008-2546, 2008.
    [47] Roudakov A, Schickhman Y, Semenov V, etc. Flight Testing an Axisymmetric Scramjet: Russian Recent Advances [R]. IAF 93-S.4.485,1993
    [48] Bouchez M, Roudakov A S, Kopchenov V I, Semenov V L. French-Russian Analysis of Kholod Dual-mode Ramjet Flight Experiments [R]. AIAA 2005-3320, 2005.
    [49] Roudakov A S, Semenov V L, Hicks J W. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program [R]. NASA/TP-1998-206548, 1998.
    [50] Voland R T, Auslender A H, Smart M K, etc. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test [R]. AIAA 99-4848,1999.
    [51] Roudakov A S, Semenov V L, Strokin M V, etc. The Prospects of Hypersonic Engines In-flight Testing Technology Development [R]. AIAA 2001-1807, 2001.
    [52] Kislykh V V, Kondratov A A, Semenov V L. The Program for the Complex Investigation of the Hypersonic Flight Laboratory (HFL) 'IGLA' in the PGU of TSNIIMASH [R]. AIAA 2001 -1875,2001.
    [53] Sacher P W, Zellner B. Flight Testing Objectives for Small Hypersonic Flight Test Vehicles Featuring a Ramjet Engine [R]. AIAA 95-6014,1995.
    [54]Berens T M,Bissinger N C.Forebody Precompression Performance of Hypersonic Flight Test Vehicles[R].AIAA 98-1574,1998.
    [55]Gurijanov E P,Harsha P T.AJAX:New Directions in Hypersonic Technology [R].AIAA 96-4609,1996.
    [56]Bityurin V A,Lineberry J T,Potebnia V G,etc.Assessment of Hypersonic MHD Concepts[R].AIAA 97-2393,1997.
    [57]Kuranov A L,Korabelnicov A V,Kichinskiy V V,Sheiken E G.Fundamental Techniques of the "Ajax" Concept-Modern State of Research[R].AIAA 2001-1915,2001.
    [58]Kuranov A L,Kuchinsky V V,Sheikin E G.Scramjet with MHD Control under "Ajax" Concept-Requirements for MHD Systems[R].AIAA 2001-2881,2001.
    [59]Shneider M N,Macheret S O.Modeling Plasma and MHD Effects in Hypersonic Propulsion Flowpath[R].AIAA 2005-5051,2005.
    [60]Kaminaga S,Tomioka S,Yamasaki H.Feasibility Study on MHD Energy Bypass Scramjet Engine[R].AIAA 2005-3226,2005.
    [61]Tang J,Bao W,Yu D.The Influence of Energy-bypass on the Performance of AJAX[R].AIAA 2006-1376,2006.
    [62]Boyce R R,Paull A.Scramjet Intake and Exhaust CFD Studies for the HyShot Scramjet Flight Experiment[R].AIAA 2001-1891,2001.
    [63]Paull A,Alesi H,Anderson S.The HyShot Flight Program and how it was developed[R].AIAA 2002-4939,2002.
    [64]Gardner A D,Hannemann K,Steelant J,et al.Ground Testing of the HyShot Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data[R].AIAA 2004-3345,2004.
    [65]Neuenhahn T,Olivier H,Paull A.Development of the HyShot stability demonstrator[R].AIAA 2006-2960,2006.
    [66]Walker S H,Rodgers F C,Esposita A L.Hypersonic collaborative Australia/United States experiment(HYCAUSE)[R].AIAA 2005-3254,2005.
    [67]Walker S,Rodgers F,Paull A,Van Wie D M.HyCAUSE flight test program[R].AIAA 2008-2580,2008.
    [68]Novelli W,Faphar K.A Joining ONERA-DLR Research Project for High-speed Airbreathing Propulsion[R].ISABE 99-7091,1999.
    [69]Dessornes,Scherrer,Novelli.Tests of the JAPHAR Dual Mode Ramjet Engine [R].AIAA 2001-1886,2001.
    [70]Serre L,Minard J P.French potential for semi-free jet test of an experimental dual mode ramjet in Mach 4-8 conditions[R].AIAA 2002-5448,2002.
    [71]Falempin F,Serre L.The French PROMETHEE Program Status in 2000[R].AIAA 2000-3341.2000.
    [72]Falempin F,Serre L.PROMETHEE:The French Military Hypersonic Propulsion Program[R].AIAA 2003-6950,2003.
    [73]Heitmeir F,Lederer R,Herrmann O.German Hypersonic Technology Programme Airbreathing Propulsion Activities[R].AIAA 92-5057,1992.
    [74]Kuczera H,Hauck H,Krammer P,Sacher P.The German Hypersonics Technology Programme—Status 1993 and Perspectives[R].AIAA 93-5159,1993.
    [75]Weingertner S.S(?)ENGER—The Reference Concept of the German Hypersonics Technology Program[R].AIAA 93-5161,1993.
    [76]Kania P.The German Hypersonics Technology Program —Overview[R].AIAA 95-6005,1995.
    [77]Heitmeir F J,Bissinger N C.Development and Test of an Airbreathing Propulsion System for Hypersonic Speeds[R].AIAA 95-6027,1995.
    [78]Voss N H.Ram Combustor Development within the German Hypersonics Technology Program[R].AIAA 95-6030,1995.
    [79]Koschel W W.Basic Hypersonic Propulsion Research in German Universities [R].AIAA 98-1634,1998.
    [80]Chinzei N.Progress in Scramjet Engine Tests at NAL-KRC[R].AIAA 2001-1883,2001.
    [81]Hiraiwa T,Mitani T,Kanda T,Enomoto Y.Experiments on a Scramjet Engine with Ramp-compression Inlet at Mach 8 Condition[R].AIAA 2002-4129,2002.
    [82]Kanda T,Hiraiwa T,Izumikawa M,Mitani T.Measurement of Mass Capture Ratio of Scramjet Inlet Models[R].AIAA 2003-0011,2003.
    [83]Arai T,Masuda S,Sakima F.Intake Fuel Injection and Shock Induced Combustion in a Scramjet Engine Model[R].AIAA 2003-6910,2003.
    [84]Kanda T,Kudo K.A Conceptual Study of a Combined Cycle Engine for an Aerospace Plane[R].AIAA 2002-5146,2002.
    [85]Kato K,Kanda T,Kudo K,Murakami A.Experimental Study of Combined Cycle Engine Combustor in Scramjet-Mode[R].AIAA 2005-3316,2005.
    [86]梁德旺.二元高超声速进气道设计体系及优化[C].2005年高超声速进气道技术交流(研讨)会,南京,2005..
    [87]郭荣伟.超声速进气道启动设计与实践中的若干感悟[C].2005年高超声速进气道技术交流(研讨)会,南京,2005.
    [88]FAN X,LI H,JIA D,YI S.Forced Boundary-layer Transition of Axisymmetric Inlet in Math 8 Gun Tunnel and its Numerical Verification[R],AIAA 2005-3551,2005.
    [89]陈兵,徐旭,王元光,蔡国飙.定几何混压式轴对称高超声速进气道设计及性能计算[J].航空动力学报,2005,20(3):373-379.
    [90]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究[J].推进技术, 2001,22(6):468-472.
    [91]罗世斌,罗文彩,丁猛,王振国.超燃冲压发动机二维进气道多级多目标优化设计方法[J].国防科技大学学报,2004,26(3):1-6.
    [92]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究[J].航空动力学报,2004,19(4):459-465.
    [93]宋道军,胥继斌.高超声速二维前体进气道一体化优化设计研究[J].空气动力学学报,2004,22(3):371-375.
    [94]金志光,张垄元.二维非常规压缩型面超/高超声速进气道的设计概念[J].推进技术,2004,25(3):226-229.
    [95]张堃元,萧旭东,徐辉.高超侧压式进气道参数分析及试验研究[J].推进技术,1995,16(6):20-25.
    [96]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压式进气道[J].推进技术,1998,19(1):20-24.
    [97]张堃元,马燕荣,徐辉.非均匀流等压比变后掠角高超侧压式进气道研究[J].推进技术,1999,20f3):40-44.
    [98]金志光,张堃元.高超声速侧压式进气道高焓脉冲风洞试验[J].推进技术,2005,26(4):319-323.
    [99]范晓樯,李桦,易仕和,潘沙.侧压式进气道与飞行器机体气动一体化设计及实验[J].推进技术,2004,25(6):499-502.
    [100]李桦,范晓樯.高超声速进气道数值与实验研究[C].2005年高超声速进气道技术交流(研讨)会,南京,2005.
    [101]梁剑寒,刘卫东,王振国.高超声速侧压式进气道试验研究[C].2005年高超声速进气道技术交流(研讨)会,南京,2005.
    [102]丁猛,梁剑寒,刘卫东,王振国.碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究[J].航空学报,2005,26(1):27-31.
    [103]Chen F,Chen L,Chang X.Three-dimensional sidewall-compression scramjet inlet CFD simulation and experimental comparison[R].AIAA 2003-4741,2003.
    [104]孙波,张堃元.Busemann进气道风洞实验及数值研究[J].推进技术,2006,27(1):58-60.
    [105]孙波,张堃元.Busemann进气道起动问题初步研究[J].推进技术,2006,27(2):128-131.
    [106]孙波,张堃元,金志光,王成鹏.流线追踪Busemann进气道设计参数的选择[J].推进技术,2007,28(1):55-59.
    [107]尤延铖,梁德旺,黄国平.一种新型内乘波式进气道初步研究[J].推进技术,2006,27(3):252-256.
    [108] Kothari A P, Tarpley C, McLaughlin T A, etc. Hypersonic Vehicle Design Using Inward Turning Flow Fields[R]. AIAA 96-2552, 1996.
    [109] Billig F S, Kothari A P. Streamline Tracing: Technique for Designing Hypersonic Vehicles [J]. Journal of Propulsion and Power, 2000, 16(3): 465-471.
    [110] Bulman M J, Siebenhaar A. The Rebirth of Round Hypersonic Propulsion [R]. AIAA 2006-5035, 2006.
    [111] Smart M K. Design of Three-Dimensional Hypersonic Inlet with Rectangular to Elliptical Shape Transition [R]. AIAA 98-0960,1998.
    [112] Smart M K. Experimental Testing of a Hypersonic Inlet with Rectangular-to Elliptical Shape Transition [R]. AIAA 99-0085,1999.
    [113] Smart M K, White J A. Computational Investigation of The Performance and Back-pressure Limits of a Hypersonic Inlet [R]. AIAA 2002-0508,2002.
    [114] Smart M K, Trexler C A. Mach 4 Performance of Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition [J]. Journal of Propulsion and Power, 2004, 20(2): 288-293.
    [115] Smart M K, Ruf E G. Free-jet Testing of a REST Scramjet at Off-design Conditions [R]. AIAA 2006-2955, 2006.
    [116] Malo-Molina F J, Kutschenreuter P H. Numerical Investigation of an Innovative Inward Turning Inlet [R]. AIAA 2005-4871, 2005.
    [117] Gaitonde D V, Malo-Molina F J, Croker B, etc. The Flowfield Structure in Generic Inward-turning-based Propulsion Flowpath Components [R]. AIAA 2007-5744,2007.
    [118] Billig F S, Jacobsen L S. Comparison of Planar and Axisymmetric Flowpaths for Hydrogen Fueled Space Access Vehicles [R]. AIAA 2003-4407, 2003.
    [119] Dissel A F, Kothari A P, Raghavan V, etc. Comparison of HTHL and VTHL Air-breathing and Rocket Systems for Access to Space [R]. AIAA 2004-3988, 2004.
    [120] Van Wie D M, Kwok F T, Walsh R F. Starting Characteristics of Supersonic Inlets [R]. AIAA 96-2914, 1996.
    [121] Kantrowitz A, Donaldson C. Preliminary Investigation of Supersonic Diffuser [R].NACAWRL-713, 1945.
    [122] Tahir R B, Molder S, Timofeev E V. Unsteady Starting of High Mach Number Air Inlets-ACFD Study[R]. AIAA 2003-5191, 2003.
    [123] Molder S, Timofeev E V, Tahir R B. Flow Starting in High Compression Hypersonic Air Inlets by Mass Spillage [R]. AIAA 2004-4130, 2004.
    [124] Najafiyazdi A, Tahir R, Timofeev E V, etc. Analytical and Numerical Study of Flow Starting in Supersonic Inlets by Mass Spillage[R]. AIAA 2007-5072, 2007.
    [125] Timofeev E V, Tahir R B, Molder S. On Recent Development Related to Flow Staring in Hypersonic Air Intakes[R]. AIAA 2008-2512, 2008.
    [126]Donde P,Marathe A G,Sudhakar K.Starting in Hypersonic Intake[R].AIAA 2006-4510,2006.
    [127]鲍文,常军涛,郭新刚,崔涛.超燃冲压发动机进气道不起动仿真研究[J].航空动力学报,2005,20(5):731-735.
    [128]Rodriguez C G.CFD Analysis of the CIAM/NASA Scramjet[R].AIAA 2002-4128,2002.
    [129]Wagner J L,Valdivia A,Yuceil K B,etc.An Experimental Investigation of Supersonic Inlet Unstart[R].AIAA 2007-4352,2007.
    [130]袁化成,梁德旺.高超声速进气道再启动特性分析[J].推进技术,2006,27(5):390-393.
    [131]Fluent Inc.Fluent User Guide and Document.Fluent Inc.
    [132]Huebner L D,Rock K E,Ruf E G,etc.Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction[R].AIAA 2001-1809,2001.
    [133]Smart M K.Optimazation of Two-dimensional Scramjet Inlet[J].Journal of Aircraft,1999,36(2):430.
    [134]范晓樯.高超声速进气道的设计、计算与实验研究[D].长沙:国防科技大学研究生院,2006.
    [135]Panaras A G.Review of the Physics of Swept-Shock/Boundary Layer Interactions [J].Progress of Aerospace Science,1996,32:173-244.
    [136]Trexler C A.Performance of an Inlet for an Integrated Scramjet Concept[J].Journal of Aircraft,1974,11(9):588-591.
    [137]Trexler C A,Souders S W.Design and Performance at a Local Mach Number of 6 of an Inlet for an Integrated Scramjet Concept[R].NASA TN D-7944,1975.
    [138]Vinogradov V,Stepanov V,Goldfeld M.Experimental and Numerical Investigation of Two Concepts of the Hypersonic Inlet[R].AIAA 95-2721,1995.
    [139]Tani K,Kanda T,Sunami T,etc.Geometrical Effects to Aerodynamic Performance of Scramjet Engine[R].AIAA 97-3018,1997.
    [140]Holland S D,Murphy K J.An Experimental Parametric Study of Geometric,Reynolds Number,and Ratio of Specific Heats Effects in Three-dimensional Sidewall Compression Scramjet Inlets at Mach 6[R].AIAA 93-0740,1993.
    [141]Holland S D.Experimental Investigation of Generic Three-dimensional Sidewall-compression Scramjet Inlets at Mach 6 in Tetrafluoromethane[R].NASA TM 4497,1993.
    [142]Holland S D.Mach 10 Experimental Database of a Three-dimensional Scramjet Inlet Flow field[R].NASA TM 4648,1995.
    [143]Ye F,Huque Z,Butuk N.Effect of Sidewall Leading Edge Sweep Direction on Performance of a Hypersonic 3-D Inlet[R].AIAA 2000-3600,2000.
    [144]Hudgens J A.Operating Characteristics at Mach 4 of an Inlet Having Forward-swept,Sidewall-compression Surfaces[R].AIAA 92-3101,1992.
    [145]Rodi P E,Trexler C A.The Effects of Bodyside Compression on Forward and Aft Swept Sidewall Compression Inlets at Math 4[R].AIAA 94-2708,1994.
    [146]李晓宇.高超声速飞行器一体化布局气动外形设计[D].长沙:国防科技大学研究生院,2007.
    [147]金志光.超燃冲压发动机高超侧压式进气道设计方法研究[D].南京:南京航空航天大学研究生院,2006.
    [148]Holland S D,Perkins J N.Internal Shock Interactions in Propulsion/Airframe Integrated Three-dimensional Sidewall Compression Scramjet Inlets[R].AIAA 92-3099,1992.
    [149]Hass N E,Smart M K,Paull A.Flight Data Analysis of HyShot 2[R].AIAA 2005-3354,2005.
    [150]Dunn B M.Device to Start an Overcontracted Mixed Compression Supersonic Inlet.US Patent 4307743,1981.
    [151]Emami S,Trexler C A.Experimental Investigation of Inlet-combustor Isolators for a Dual Mode Scramjet at a Mach Number of 4[R].NASA TP 3502,1995.
    [152]Neaves M D,McRae D S,Edwards J R.High Speed Inlet Unstart Calculations Using an Implicit Solution Adaptive Mesh Algorithm[R].AIAA 2001-0825,2001.
    [153]Falempin M,Glodfeld M.Design and Experimental Evaluation of a Mach 2-Mach 8 Inlet[R].AIAA 2001-1890,2001.
    [154]Falempin M,Glodfeld M.Evaluation of a Variable Geometry Inlet for Dual Mode Ramjet[R].AIAA 2002-5232,2002.
    [155]Tam C-J,Magenmaier M A.Unsteady Analysis of Scramjet Inlet Flowfields Using Numerical Simulations[R].AIAA 99-0613,1999.
    [156]Magenmaier M A,Tam C-J,Chakravarthy S.Study of Moving Start Door Flow Physics for Scramjets[R].AIAA 99-4957,1999.
    [157]明晓.流动控制原理及实验研究实例.国家自然科学基金流体力学高级讲习班[C],北京,2005.
    [158]范杰川.空气动力学发展中值得关注的一些问题[J].气动研究与实验,2003,20(1):1-16.
    [159]Mounts J S,Barber T J.Numerical Analysis of Shock-induced Separation Alleviation using Vortex Generators[R].AIAA 92-0751,1992.
    [160]McCormick D C.Shock-Boundary Layer Interaction Control with Low Profile Vortex Generators and Passive Cavity[R].AIAA 92-0064,1992.
    [161]Rozario D,Zouaoui Z.Computational Fluid Dynamics Analysis of Scramjet Inlet [R].AIAA 2007-30,2007.
    [162]Holden H A,Babinsky H.Vortex Generators near Shock/Boundary Layer Interactions[R].AIAA 2004-1242,2004.
    [163]Srinivasan K R,Roth E,Dutton J C.Aerodynamics of Recirculating Flow Control Devices for Normal Shock/Boundary Layer Interactions[R].AIAA 2004-426,2004.
    [164]Holden H A,Babinsky H.Shock/Boundary Layer Interaction Control using 3d Devices[R].AIAA 2003-447,2003.
    [165]Loth E.Smart Mesoflaps for Control of Shock Boundary Layer Interactions[R].AIAA 2000-2476,2000.
    [166]Lee Y,Hafenrichter E S.Skin Friction Measurements in Normal Shock Wave/Turbulent Boundary-layer Interaction Control with Aeroelastic Mesoflaps [R].AIAA 2002-0979,2002.
    [167]Couldrick J S,Gai S L,Holden H A,etc.Active Control of Normal Shock Wave/Turbulent Boundary Layer Interaction using "Smart" Piezoelectric Flap Actuators[R].AIAA 2004-2701,2004.
    [168]Hamed A,Shih S H,Yeuan J J.A Parametric Study of Bleed in Shock Boundary Layer Interactions[R].AIAA 93-0294,1993.
    [169]Bur R,Corbel B.Experimental Study of Transonic Interaction with Shock and Boundary-Layer Control[R].AIAA 2000-2610,2000.
    [170]Doerffer P P,Bohning R.Shock Wave-Boundary Layer Interaction Control by Wall Ventilation[J].Aerospace Science and Technology,7(2003) 171-179,2003.
    [171]Rallo R,Walsh M.An Investigation of Passive Control Methods for Shock-induced Separation at Hypersonic Speed[R].AIAA 92-2725,1992.
    [172]Hamed A,Shih S,Yeuan J J.Investigation of Shock/Turbulent Boundary-Layer Bleed Interactions[J].Journal of Propulsion and Power,1994,10(1):79-87.
    [173]Delery J M.Shock Wave/Turbulent Boundary Layer Interaction and its Control [J].Progress in Aerospace and Sciences,1985,22(4):209-280.
    [174]Tindell R H,Willis V P.Experimental Investigation of Blowing for Controlling Oblique Shock/Boundary Layer Interactions[R].AIAA 97-2642,1997.
    [175]Augustin K,Rist U,Wagner S.Active Control of a Laminar Separation Bubble [C].DRAG-NET Conference,Potsdam,2000.
    [176]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展,2005,35(2):221-234.
    [177]Zheng X,Hou A,Zhou S.Control of Unsteady Separated Flow inside Axial Compressors by Synthetic Jets[R].AIAA 2005-870,2005.
    [178]Bityurin V A,Bocharov A N,Baranov D S,etc.Experimental and Theoretical Study of MHD Interaction in Hypersonic Ionized Air over a Wedge[R].AIAA 2004-1194,2004.
    [179]Bityurin V A,Bacharov AN,Baranov D S,etc.Study of MHD Flow Control and On-board Electrical Power Generation[R].AIAA 2006-1008,2006.
    [180] Bobashev S V, Erofeev A V, Lapushkina T A, etc. On Reflection Characteristic of the Attached Shocks at Flow Decelerating in Magnetic and Electrical Fields [R]. AIAA 2006-1003,2006.
    [181] Adelgren R G, Elliott G S, Knight D D, etc. Energy Deposition in Supersonic Flows [R]. AIAA 2001-0885,2001.
    [182] Yan H, Adelgren R, Elliott G, etc. Laser Energy Deposition in Intersecting Shocks [R]. AIAA 2002-2729, 2002.
    [183] Aradag S, Yan H, Knight D. Energy Deposition in Supersonic Cavity Flow [R]. AIAA 2004-514, 2004.
    [184] Zheltovodov A A, Pimonov E A, Knght D D. Supersonic Vortex Breakdown Control by Energy Deposition [R]. AIAA 2005-1048,2005.
    [185] Gardarin B, Chanetz B, Benay R. Control of Shock Waves Interferences by Laser Energy Deposition [R]. AIAA 2007-4354, 2007.
    [186] Takeshi I, Randall L A, Schneider S P. Effect of Free Stream Noise on Roughness-induced Boundary-Layer Transition for a Scramjet Inlet [R], AIAA 2000-0284, 2000.
    [187] Berry S A, Auslender A H. Hypersonic Boundary-Layer Trip Development for Hyper-X [R]. AIAA 2000-4012, 2000
    [188] Berry S A, Nowak R J, Horvath. T J. Boundary Layer Control for Hypersonic Airbreathing Vehicles [R]. AIAA 2004-2246,2004.
    [189] Fujii K. An Experiment of Two Dimensional Roughness Effect on Hypersonic Boundary-Layer Transition [R] AIAA2005-0891,2005.
    [190] White M E, Lee R E, Thompson M W, etc. Tangential Mass Addition for Shock/Boundary-layer Interaction Control in Scramjet Inlets [J]. Journal of Propulsion, 1991,7(6): 1023-1029.
    [191] Schulte D, Henckels A, Wepler U. Reduction of Shock Induced Boundary Layer Separation in Hypersonic Inlets using Bleed [J]. Aerospace Science and Technology, 1998, No.4: 231-139.
    [192] Schulte D, Henckels A, Neubacher R. Manipulation of Shock/Boundary-layer Interactions in Hypersonic Inlets [J]. Journal of Propulsion and Power, 2001, 17(3): 585-590.
    [193] Haberle J, Gulhan A. Investigation of the Performance of a Scramjet Inlet at Mach 6 with Boundary Layer Bleed [R]. AIAA 2006-8139, 2006.
    [194] Tam C-J, Eklund D, Behdadnia R, etc. Investigation of Boundary Layer Bleed for Improving Scramjet Isolator Performance [R]. AIAA 2005-3286, 2005.
    [195] Van Wie D M, Nedungadi A. Plasma Aerodynamics Flow Control for Hypersonic Inlets [E]. AIAA 2004-4129,2004.
    [196] Kumar A, Singh D J, Trexler C A. A Numerical Study of the Effect of Reverse Sweep on a Scramjet Inlet Performance [R]. AIAA 90-2218,1990.
    [197] Molder S, Szpiro J. Busemann Inlet for Hypersonic Speeds [J]. Journal of Spacecraft and Rockets, 1996,3(8): 1303-1304.
    [198] Billig F S, Baurle R A, Tam C-J, etc. Design and Analysis of Streamline Traced Hypersonic Inlets [R]. AIAA 99-4974,1999.
    [199] O'Brien T F, Colville J R. Analytical Computation of Leading Edge Truncation Effects on Inviscid Busemann Inlet Performance [R]. AIAA 2007-26,2007.
    [200] Tam C-J, Baurle R A. Inviscid CFD Analysis of Streamline Traced Hypersonic Inlets for Off-design Conditions [R]. AIAA 2001-0675,2001.
    [201] Jacobsen L S, Tam C-J, Behdadnia R, Billig F S. Starting and Operation of a Streamline-traced Busemann Inlet at Mach 4 [R]. AIAA 2006-4508, 2006.
    [202] Tam C-J, Baurle R A, Streby G D. Numerical Analysis of Streamline-traced Hypersonic Inlets [R]. AIAA 2003-13, 2003.
    [203] Engelund W C, Holland S D, Cockrell C E, Bittner R D. Propulsion System Airframe Integration Issue and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle [R]. ISOABE 99-7215, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700