地面重型燃气轮机压气机高性能叶型优化设计及流动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来国内外流行的优化设计方法为叶型设计提供了新的思路。优化设计是将叶型的几何形状进行参数化,性能表达成随设计参数而变化的目标函数。设计过程就是根据设计目标函数,选择设计参数使性能最佳,该设计过程是一个自动化过程。本文的工作就是从这一方面着手,将优化理论引入到压气机叶型设计中,建立可用于重型燃气轮机压气机的二维气动优化设计平台。该设计平台在优化设计软件iSIGTH中集成,由自主开发的二维叶型造型程序bladeprofile、网格生成软件AutoGrid5、流场计算分析软件CFX以及后处理软件组成。在优化的过程中,非设计工况和喘振边界是设计的主要目标。所以本优化平台目标函数的选取综合考虑设计点总压损失低,工作范围宽广,喘振边界合理,较小冲角变化时损失低并且变化平稳等因素,进行变工况多目标自动优化设计,以期达到叶型综合性能的改善。
     在叶轮机械中,转捩对压气机的性能影响较大,主要因为转捩前后的层流边界层和湍流边界层在边界层内的流动结构、流速分布、壁面切应力和换热系数等均不相同,一方面转捩流动的这些特征直接影响着流体机械的动力特性,为了准确的预测流体机械的动力性能,必须明确边界层内流动状态,另一方面通过有效的控制转捩起始点、转捩区长度,可以大大地改善流动效率,提高设计水平。在地面重型燃气轮机的中间和后面级中,雷诺数和来流湍流度都较高,对转捩的起始位置和转捩的发展影响较大,鉴于此在本文的优化设计过程中,应用CFX求解器里的γ-Reθ-方程转捩模型,考虑了地面重型燃气轮机压气机气体在高雷诺数及高湍流度下转捩带来的影响,以使计算结果能够充分的反应叶轮机械内气体的实际流动,从而得到可信的结果。
     本文以某地面重型燃气轮机压气机第七级静叶中径叶型为研究对象,考虑转捩的影响,应用优化设计平台对叶型进行变工况多目标优化。优化设计后,在叶型负荷高于原型的情况下,目标函数明显降低,在变工况运行条件下,工作范围变得宽广,损失相对于原型有大幅度的降低,且具有一定的喘振裕度。
     将优化后叶型应用到半叶高直叶片上,使用CFX软件对原始叶片与优化后的叶片进行数值模拟。分别对节距平均参数叶高分布、静叶气动性能进行分析,比较不同叶高处原始叶片与优化叶片的性能。得出设计工况下优化叶片的性能也高于原始叶片。
Optimal design method which is popular at home and abroad provides a new way for the blade design. Optimization is parametric the parameters of the blade geometry, and the performance of the blade is expressed as objective function, which changes with the design parameters. Design objective function is designed to select the best design parameters for performance, which is an automated process. From this point the work establishes aerodynamic optimization design platform that is applicable to heavy-duty gas turbine compressor by introducing optimization theory to compressor blade design. The system consists of in-house program for 2D compressor blade design, AutoGrid5 for grid generating, CFX for flow field computation and analysis and in-house codes for optimization. In the optimization process, the off-design condition and the stall margin is the main objection. Therefore, low total pressure loss, wide attainable operating range, reasonable stall margin, low loss at small incidence and stable change are taken into account in the objective function. Multi-objective and mutative condition optimization is established, expecting the improvement of cascade performance.
     In turbomachinery, transition has a great influence to the performance of compressor, this mainly because the boundary layer, which divided into laminar and turbulent layer, is different in boundary layer structure, velocity distribution, wall shear stress and heat transfer coefficient. On one hand, the transition directly affect the fluid dynamic of machine, in order to accurately predict the dynamic performance of fluid machinery, we must assure the state of boundary layer flow, on the other hand, the efficiency of flow and the level of design can be improved through control the starting point of the transition, the length of the transition zone. In the mid and rear part of the ground-based heavy-duty gas turbine, the high Reynolds Number together with the high turbulence levels have a great influence on the position and the development of transient. In view of this the design process in this paper, applying the one equation model of y-Ree transient model of CFX-solver, considering the influence of transient in high Reynolds and turbulence levels, so that the results of computation can reflect the real flow of turbomachinery, and get reliable results.
     In this paper, a compressor blade of a ground-based heavy-duty gas turbine has been optimized by the design system referred above. Multi-objective and mutative condition optimization is established, and transition is especially considered in flow field analysis. After optimization, aerodynamic performance of the blade is improved, the trailing edge loss and the total pressure loss are both decreased under this profile. On off-design condition, the work range is larger, the loss is lower to the original profile, and the optimal profile have certain stall margin.
     The optimized blade profile was applied to each section of the original blade. The three-dimensional numerical simulation is carried on for the original blade profile and the optimized profile with CFX. It shows that the flow angles and static pressure ratios of different blade height are increased, so the performance of optimized blade is much better than the original blade.
引文
1 陈云永,刘波,马聪慧,高丽敏,石建成,温泉.全三维、多叶排内外涵风扇压气机叶型优化研究.航空动力学报.2008年3月第23卷第3期
    2 Kusters, B., Schreiber, H. K?ller, U., and M?nig, R.,1999, "Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines:Part Ⅱ— Experimental and Theoretical Analysis," ASME J. Turbomach.,122, this issue, pp.406-415
    3 钟兢军,王会社,王仲奇.多极压气机中可控扩散叶型研究的进展与展望第一部分可控扩散叶型的设计与发展.航空动力学报,Vol.16,No.3,2001,16(3):205-211
    4 Sasha M. Savic, Marco A. Micheli, Andreas C. Bauer, Redesign of a multistage axial compressor for a heavy duty industrial gas turbine (GT11NMC), ASME Paper, GT2005-68315,2005
    5 Rechter H., Steinert, W., and Lehmann. Comparison of Controlled Diffusion Airfoils with Conventional NACA 65 Airfoils Developed for Stator Blade Application in a Multistage Axial Compressor, ASME Paper No.84-GT-246, June 1984
    6 E. Schmidt. Computation of Supercritical Compressor and Turbine Cascade with a Design Method for Transonic Flow. Journal of Engineering for Power, Transaction of the ASME.1980,102(1):68-74
    7 DS. Dulikravich, H. Sobieczky. Shockless Design and Analysis of Transonic Cascade Shape. AIAA Journal.1982,20(11):1572-1578
    8 H. Sobieczky, N J. Yu, K. Y. Fung, A. R. Seebass. New Method for Designing Shock-free Transonic Configuration. AIAA Journal.1979,17(7):722-729
    9 F. Bauer, P. Garabedian, D. Korn. Supercritical Wine Section, Lecture Notes in Economics and Math Systems. Sprinser-Verlas, New York, Section 1.1972
    10 J. M. Anders, J. Haarmeyer. A Parametric Blade Design System. VKI LECTURE SERIE1,1999
    11 NUMECA software, FINETM/Design3D Model, Version62-3,2006
    12王正明,G. S. Dulikravich使用Navier-Stokes方程叶栅粘性反问题的数值解.工程热物理学报.1995,16(4):409-413
    13周正贵.混合遗传算法及其在叶片自动优化设计中的应用.航空学报.2002,23(6):571-574
    14周正贵.压气机叶片自动优化设计.空气动力学报.2002,17(3):305-308
    15周正贵.高亚声速压气机叶片优化设计.推进技术.2004,25(1):58-61
    16彭艳,吴国钏.有限体积法求解任意回转面叶栅叶型反问题设计的欧拉方程.南京航空航天大学学报.1999,31(1):43-46
    17姚征,刘高联.基于气动载荷与叶片厚度分布的叶栅气动设计方法.应用数学和力学.2003,24(8):785-790
    18乌晓江,姚征,陈康民.叶型气动设计的杂交型方法计算软件.上海理工大学学报.2003,25(3):213-217
    19曹志鹏,靳军,刘波,等.基于优化技术的叶型反方法改进设计.航空动力学报.2004,19(4):484-489
    20刘波,姜正礼,仲永兴.轴流压气机转子新叶型设计与试验研究.西北工业大学学报.1999,17(2):157-161
    21李军,丰镇平,沈祖达.透平跨音速叶栅正反混合问题优化设计的研究.动力工程.1998,18(1):19-23
    22肖敏,刘波,程荣辉.轴流压气机超音叶片新设计技术研究.航空动力学报.2002,17(1):83-86
    23肖敏,刘波,仲永兴.轴流压气机超音叶片叶型几何设计方法的研究.航空动力学报.2000,15(3):237-240
    24方祥军,刘思永,王屏,晏山平.超跨音对转涡轮大转折角叶片的高次多项式解析造型研究.航空动力学报.2003,18(1):76-81
    25宋立明,丰镇平,李军,刘莉.基于椭圆型方程的扭叶片造型方法的研究工程热物理学报.2004,25(9):31-34
    26戴韧.透平叶片型线BEZIER曲线构造方法的研究.中国工程热物理学会热机气动热力学学术会议.2000,论文编号:20002014
    27陈铁,刘仪,刘斌,向一敏.轴流式叶轮机械叶型的参数设计方法.西安交通大学学报.1997,31(5):52-57
    28汪光文,周正贵,胡骏.基于优化算法的压气机叶片气动设计.航空动力学报.2008年7月第23卷第7期
    29 JUNE CHUNG,LEE KI D. Shape optimization of transonic compressor blades using quasi-3D flow physics[R].ASME Paper,2000-GT-489.
    30 ERNESTO BENINI. Three-dimensional multi2objective design optimization of transonic compressor rotor [J]. Journal of Propulsion and Power,2004,20 (3):559-565.
    31 SHAHROKH SHAHPAR DR. A comparative study of optimization methods for aerodynamic of turbomachienry blades[R]. ASME Paper,2000-GT-523.
    32 AHN CHAN SOL,KIM KWANG YONG. Aerodynamic design optimization of an axial flow compressor rotor [R]. ASME Paper,2002-GT-30445.
    33 J.H.Holland, Adaptive plants optimal for payoff-only environments, in Proceeding of the Second Hawaii International Conference on System Sciences,1969
    34 J. H. Holland, Adaptation in Natural and Aritificial Systems, Ann Abor:The University of Michigan Press,1975
    35 L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence Through Simulated Evolution, New York:John Wiley,1966
    36 I. Rechenberg, Evolitionsstrategie:Optimierung Technisher Systeme nach Prinzipien der Biologischen Evolution, Stuttgart:Fromman Holzboog Verlag,1973.
    37陈国良,王煦法,庄镇泉,王东生.遗传算法以及应用.人民邮电出版社1996
    38 Oyama, A., Liou, M-S., and Obayashi, S., Transonic Axial Flow Blade Shape Optimization Using Evolutionary Algorithm and Three Dimensional Navier-Stokes Solver. AIAA Paper 2002-5642.
    39 Pierret, S., Three-Dimensional Blade Design by Means of an Artificial Neural Network and Navier-Stokes Solver. Turbomachinery Blade Design Systems Lecture Series 1999-02,1999.
    40 Oyama A, Liou M-S and Obayashi S. Transonic Axial Flow Blade ShapeOptimizatin Using Evolutionary Algorithm and Three-dimensional Navier-Stokes Solver. AIAA 2002-5642,2002
    41 Ernesto Benini. Three Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor. Journal of Propulsion and Power. Vol.20.No.3, May-June 2004.
    42陈懋章.粘性流体动力学基础.高等教育出版社,2002
    43 L. Prandtl. uber die Entstehung der Turbulenz ZAMM 11.1931:407-409
    44 J. T. Stuart. On the Non-linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows Part 1:The Basic Behavior in Plane Poiseuille Flow. Journal of Fluid Mech..1960,9:353-370
    45 A. D. D. Craik. Nonlinear Resonant Instability in Boundary Layers. Journal of Fluid Mech.,1971,50:343-413
    46 T. Herbet. Secondary-Instability of Plane Channel Flow to Sub-Harmonic Three-Dimensional Disturbances. Phys. Fluids.1983,26:871-874
    47 T. Herbet. Parabolized Stability Equations. Annu. Rev. Fluid Mech.1997, 29:245-283
    48马亮,徐坦.自由剪切流中沿流向二次失稳研究.水动力学研究与进展.2007,22(5):640-646
    49董亚妮,周恒.二维超音速边界层中三波共振和二次失稳机制的数值模拟研究.应用数学和力学.2006,27(2):127-133
    50 T. Hetsch, U. Rist. The Influence of Sweep on the Linear Stability of a Series of Swept Laminar Seperation Bubbles. European Journal of Mechanics B/Fluids. 2009,28:494-505
    51 Blackburn H M, Barkley D, Sherwin S J. Convective Instability and Transient Growth in Flow over a Backward-Facing Step. J. Fluid Mech.2008, 603:271-304
    52张永明,周恒.PSE在超声速边界层二次失稳问题中的应用.应用数学和力学.2008,29(1):1-7
    53 K. A. Stephani, D. B. Goldstein. DNS Study of Transient Disturbance Growth and Bypass Transition due to Realistic Roughness. AIAA Paper,2009-585,2009
    54 Ferrante Antonino, Pantano Carlos, Matheou George, et al. On the Effects of the Upstream Conditions on the Transition of an Inclined Jet into a Supersonic Cross-Flow. AIAA Paper,2009-1511,2009
    55 M. Stripf, A. Schulz, H. J. Bauer. Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils. ASME Paper, GT2006-90316, 2006
    56 D. C. Wilcox. A Model for Transition Flows. AIAA Paper,77-126,1977
    57 R. C. Schmidt, S. V. Patankar. Simulation Boundary Layer Transition with Low-Reynolds-Number. Turbulence Models:Part 1 An Evaluation of Prediction Characteristics. Journal of Turbomachinery.1991,113:10-17
    58 S. K. Roberts, M. I. Yaras. Modeling of Boundary-Layer Transition. ASME Paper, GT2004-53664,2004
    59 A. M. Savill. Some Recent Progress in the Turbulence Modeling of Bypass Transition. R. M. C. So, C. G. Speziale and B. E. Launder, Near-Wall Turbulent Flows, Elsevier,1993:829
    60 A. M. Savill. One-Point Closures Applied to Transition. M. Hall?ck et al., Turbulence and Transition Modeling, Kluwer,1996:233-268
    61 Y. B. Suzen, P. G. Huang, L. S. Hultgren, et al. Predictions of Separated and Transitional Boundary Layers under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation. Journal of Turbomachinery.2003, 125(3):455-464
    62 A. M. Savill. Evaluating Turbulence Model Prediction of Transition:an ERCOFTAC SIG Project. Appl. Sci. Research.1992,51:555
    63 http://transition.imse.unige.it
    64 ANSYS CFX HELP, solver:Discretisation and Solution Theory.
    65 R.B. Langtry, F.R. Menter, S.R. Likki, Y.B. Suzen, P.G. Huang, S.Volker. A Correlation based Transition Model using Local Variables Part 2-Test Cases and Industrial Applications. ASME Paper. GT2004-53454.
    66 E.R. Van Driest, C.B Blumer. Boundary Layer Transition:Freestream Turbulence and Pressure Gradient Effects. AIAA Journal,1963,1(6):1303-1306.
    67 Y. B. Suzen, P. G. Huang. Modeling of Flow Transition Using an Intermittency Transport Equation. NASA-CR-1999-209313.
    68牟淑志.基于多岛遗传算法的连续体结构拓扑优化.机械科学技术.2009,28(10):1316-1318
    69石秀华.基于多岛遗传算法的振动控制传感器优化配置.振动、测试与诊断.2008,28(1):62-64
    70 Ku"sters, B., Schreiber, H. A., Ko"ller, U., and Mo"nig, R.,1999, "Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines:Part Ⅰ—Design and Optimization" ASME J. Turbomach.,122, this issue, pp.397-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700