基于粘弹性模型的血液润滑性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工心脏、人工心肺机等人工器官的研制和使用过程中机械部件的磨损严重影响着其寿命和可靠性,良好的润滑不仅可以减小人工器官的磨损,延长其使用寿命,还可以保证病人的生命安全,提高生活质量。利用患者自身血液作为这类人工器官的润滑剂,可解决上述难题。血液是具有生理活性的流体,其组分复杂,流动性特殊,这就使得血液润滑带来优越性的同时也带来了一定的难度,加之以往对血液的研究主要集中在生理和病理等临床医学领域,将其作为机械部件的润滑剂是前人所未作过的尝试性探索研究。
     在血液流变学的基础上,探讨血液的各理化指标,结合血液的特殊流变性,利用线性粘弹性模型—Maxwell流变模型来描述血液的宏观的非牛顿流体特征和血细胞的微观粘弹性特征。在此模型的基础上,从微观和宏观两个方面对血液的润滑特性进行研究。
     本文针对血液的特殊性,分析讨论了影响血液润滑的因素—红细胞的聚集、变形、组分变化、摩擦界面的表面性能及温度变化等因素。针对血液润滑的特殊性,提出了评价血润滑性能的判定指标:(1)生物相容的指标—血栓;(2)生理限制的指标—溶血;(3)反映润滑性能的能承载能力;(4)温度限制。
     材料的表面性能决定了血细胞在摩擦界面的吸附特征及润滑过程中的表现。血细胞在材料表面的吸附会对血液的润滑性能产生影响。本文利用原子力显微镜研究了吸附在钛合金表面和云母表面的红细胞形态变化。从微观细胞力学的角度探讨在润滑过程血细胞的吸附特性和微观力学行为,在细胞力学的基础上建立了血细胞的粘附模型。基于所建立的粘附模型,从微摩擦的角度探讨血细胞的微摩擦机理,首次利用原子力显微镜研究生物细胞表面的微摩擦力及摩擦系数,从微观上研究血液的润滑提供了条件。
     针对血液粘弹性的特征,从分析血液组分出发,研究了红细胞比积的变化对血液粘弹性及润滑性能的影响,对不同红细胞比积的血液的承载能力进行了实验研究,发现红细胞的比积大小影响着血液的承载能力,红细胞比积越大,血液的承载能力越强。结合宏观摩擦实验,对原来建立的血液宏观粘弹性模型进行了修正,并在此基础上建立了红细胞比积和血液承载能力的关系模型;结合血液组分的动态变化和润滑间隙的动态变化,研究了血液润滑状态的变化,针对不同的血液润滑状态建立了血液润滑状态模型。
     推导了基于血液宏观Maxwell粘弹性模型的雷诺方程,并将此雷诺方程应用于微型轴流式血泵的仿真分析,得出了相应结论,为进一步研究血液的润滑和血泵结构的优化提供了基础。
The wearing abrasion of the research and use of artificial organ mechanical parts, Such as mechanical heart and heart-lung machine, badly affects their longevity and reliability. Favorable lubrication can not only reduce abrasion of the artificial organs, but also guarantee the patient's life safety and improve the life quality. Using the patient's blood as the friction lubricant between the movement parts is an effective way to solve the difficult problem. Blood is a physiological activity fluid, with its complex components and special fluidity,which brings advantage and disadvantage effect of the blood lubrication. Besides, researchers principally concentrated their blood researches on the clinical medicine domain formerly, such as physiology and pathology and so on. There are very few predecessors in literature who attempted to explore the blood lubricating as mechanical parts lubricant.
     Based on blood hemorheology theory, several physiological and biochemical indexes of the blood were discussed in this paper. Considered the special properties, the linear viscoelastic model of Maxwell Model was used to describe non-newtonian fluid properities of blood in macrocosmic and microcosmic viscoelastic of blood cell. Based on the Maxwell model, the lubricating properties were investigated both from macrocosmic and microcosmic aspects.
     According to special properties of blood, these factors including deformation,aggregation of blood cell, the component variation, properties of friction interfacial, temperature and so on, these affect the lubricating properties of blood were investigated. According to special lubricating properties of blood, on basis of those factors, a framework of blood lubrication evaluation indexes are proposed:(1)the biological compatibility indicators of the friction interface—thrombus;(2)the biological restrictions indicators—hemolysis;(3)the loading and bearing capacity confine which is evaluation the lubricant;(4)the temperature of the interfacial friction is confined in the range of body temperature of human.
     The adsorption characters and morpholgy of blood cell and the lubrication properties were decided by the surface properties. The adsorption of blood cell on the surface can affect the lubrication performance. The AFM, in this paper, was used to research the microcosmic morphology and mechanical characters of blood cells, which were absorded on surface Ti alloy and mica. The absorption properties and micromechanical behaviors were investigated from the aspect of micromechanics. Based on the cellar mechanics, the absorption model of blood was build too. On basis of micro-tribology, the micro-friction mechanism of blood cell's suface was discussed. For the first time,the friction force and friction coefficient of blood cell's surface were investigated, and then the principle of friction on the surface of biological cells were researched by AFM. All of these works lay the foundation for improving the blood lubrication effect and decreasing the damage for blood cell.
     From the viscoelastic characteristics of the blood to the analysis of blood components, the experimental results show that the blood cell hematocrit influences the blood mechanical loading capacity. That is, the greater hematocrit is, the stronger blood loading capacity is. Through macro-friction experiment, the original established macro viscoelastic models of the blood are amended. On the basis of these, relational models between hematocrit of the blood red cells and blood loading capacity are set up. With the dynamic change of blood components and the dynamics of lubrication gap, lubrication state change of the blood lubrication was researched. In view of the blood lubrication, under different lubrication case, different blood lubrication state models were also established.
     Based on this, Reynolds equations suitable for Maxwell equation were deduced, and then the Reynolds equations were applied to the emulation analysis in the minimal axial blood pump. The corresponding conclusions drawn will provide a basis for further studying the blood lubricating and the optimization of the blood pump structure.
引文
[1]久安.一种新的工业--人造器官工业[J].中国医疗器械信息,1998,4(4):15.
    [2]葛世荣,王成焘.人体生物摩擦学的研究现[J].状与展望.摩擦学学报,2005,25(4):186-91.
    [3]黎红,黄楠,周仲荣.生物摩擦学及表面工程的研究现状和进展[J].中国表面工程,2000,13(1):6-9.
    [4]温诗铸.我国摩擦学的现状与发展[J].机械工程学报,2004,40(11):1-6.
    [5]周仲荣.关于我国生物摩擦学研究的思考[J].机械工程学报,2004,40(5):7-10,90.
    [6]张建华,陶德华.仿生润滑技术及其应用探讨[J].润滑与密封,2004,166(6):99-100,11.
    [7]龙东平,谭建平.人工器官中的摩擦学问题[J].机械科学与技术,2008,27(2):198-204.
    [8]Walowit J,Malanoski S B,Horvath D,et al.The analysis,design and testing of a blood lubricated hydrodynamic journal beating[J].ASAIO,1997,43(5):556-559.
    [9]Malanoski S B,Belowski H,Horvath D,et al.Stable blood lubricated hydrodynamic journal bearing with magnetically suspended impeller[J].ASAIO,1998,44(5):737-740.
    [10]李冰一,蔺嫦燕.关于植入式转动血泵密封问题的研究进展[J].国外医学生物医学工程分册,1999,22(6):359-363.
    [11]龚中良,云忠,谭建平.基于血液润滑性能的研究[J].润滑与密封,2005,172(6):157-159.
    [12]龚中良,谭建平.高切稳态载荷条件下人体血液润滑模型与仿真[J].润滑与密封,2006,180(6):72-74,90.
    [13]龚中良,徐先懂,谭建平,等.人体血液机械承载能力的试验研究[J].机械科学与技术,2006,25(11):1261-1263.
    [14]龚中良,谭建平.血细胞压积对血液润滑性能影响研究[J].润滑与密封,2007,186(2):23-25.
    [15]龚中良,谭建平.血液润滑膜组分的动态变化规律研究[J].摩擦学学报,2006,26(6):505-509.
    [16]龙东平,谭建平,吴士旭.血浆润滑性能的试验研究[J].润滑与密封,2007,187(3):125-127.
    [17]葛世荣.人体生物摩擦学的基础科学问题[J].中国科学基金,2005,19(2):74-79.
    [18]秦任甲.血液流变学[M].北京:人民卫生出版社,1999年.
    [19]Copley A L.The rheology of blood[J].A Survey.J.Colloid Sci,1952,7:323-333.
    [20]秦任甲.血液流变学研究进展与问题[J].中国医学物理血液杂志,2003,20(2):65-69.
    [21]陈文杰.血液流变学[M].天津:天津科学技术出版社,1987.2.
    [22]Shankar Krishnaswamy.A cosserat-type model for the red blood cell wall[J].Int.J.Engng Sci,1996,34(8):873-899.
    [23]Ingber D E.The architechture of life[J].Scientific American,1998,278(1):30-39.
    [24]唐丽灵,王远亮,潘君,等.细胞结构的张力完整性[J].生物化学与生物物理进展,2001,28(2):160-163.
    [25]Lars Kaestner.Red blood cell ghosts and intact red blood cell as complementary models in photodynamic cell research[J].Bioelectrochemistry,2004,62:123-126.
    [26]张全有,陈维毅,吴文周.细胞骨架生物力学进展[J].力学进展,2006,36(2):274-285.
    [27]王金华,孙大公,姚伟娟,等.不同发育阶段红系造血细胞的生物力学特性和血液流变特性的变化[J].中国科学(C辑),2002,32(3):282-288.
    [28]Ph.Lavalle,B.Senger.P.Schaaf et al.Adhesion of red blood cells to solid surfaces:experimental results and modeling[J].Clinical Hemorheology,199616(1):38-42..
    [29]尹红梅,刘肖珩.白细胞与内皮细胞的粘附模型及其生物力学基础[J].山东生物医学工程,2000,19(3):50-55.
    [30]黄耀熊.细胞生物力学[J].物理,2005,34(6):433-441.
    [31]Brian Lim,Peter,Bascom A J et al.Simulation of red blood cell aggregation in shear flow[J].Biology,1997,6(34):423-441.
    [32]盛佳,曾衍钧,庄逢源.红细胞聚集的生物力学基础[J].力学进展.1999,29(1):105-111.
    [33]S.Jovtchev,I.Djenev,S.Stoeff,et al.Role of electrical and mechanical properties of red cells for their aggregation[J].Colloids and Surface A:Physicochemical and Engineering Aspects,2000,164:95-104.
    [34]李斌,张周良,刘树林.不同温度条件下红细胞变形/聚集性的改变[J].中国血液流变学杂志,2003,13(1):20-41.
    [35]Michael D.Deland.Simple Physical Constraints in Hemolysis[J].J.Theor.Biol.1995,(175):517-524.
    [36]王群芳,封志刚,茹伟民.无源磁浮叶轮血泵的溶血实验及其指标的测定[J].江苏大学学报(自然版),2002,23(2):63-65.
    [37]M.Dao,C.T.Lim,S.Suresh.Mechanics of the human red blood cell deformed by optical tweezers[J].Journal of the Mechanics and Physics of Solids,2003(51):2259-2280.
    [38]云忠,罗金文,谭建平,等.红细胞-固面撞击损伤的实验研究[J].生物医学工程研究,2006,1(25):24-27.
    [39]云忠,谭建平,徐先懂.红细胞撞击损伤机理研究及仿真分析[J].生物医学工程研究,2006,1(25):20-23,27.
    [40]云忠.血液机械损伤机理及高速螺旋血泵结构优化研究[D].中南大学博士学位论文,2007年6月.
    [41]Lipina,Lugovoi V I.Change in the viscosity of the blood and haematocrit on cooling in animals[J].Biofizika,1996,41(3):160-163.
    [42]Palenske,Nicole M,Sauuders David K.Blood viscosity and hematology of American bullfrogs(Rana catesbeiana) at low temperature[J].Journal of Thermal Biology,2003,28(4):271-277.
    [43]Nicole M.Palenske,David K,Saunders.Comparisons of blood viscosity between amphibians and mammals at 3℃ and 38℃[J].Journal of Thermal Biology 2002,27:479-484.
    [44]张建保,匡震邦.血液稳态本构方程参数的研究[J].生物物理学报.1999,15(1):172-176.
    [45]Luo X Y,Kuang Z B.A study on the constitutive equation of blood[J].J.Biomech Eng,1992,25:929-934.
    [46]Walburn F J,Schneck D J.A constitutive equation for whole human blood[J].Biorheology,1976,13:201-211.
    [47]Quemada D.Towards a unified model of elasto-thixtropy of bio-fluids[J].Biorhrology,1984,21:423-436.
    [48]Quemada D.A Nonlinear Maxwell model of bio-fluids:application to normal blood[J].Biorhrology,1993,30:253-265.
    [49]Thurston G B.Rheological parameter for the viscosity,viscoelasticity and thixtrioy of blood[J].Biorheology,1979,16:149-162.
    [50]W.L.Siauw,E.Y.K.Ng,J.Mazumdar.Unsteady stenosis flow prediction:a comparative study of non-Newtonian models with operator splitting scheme[J].Medical Engineering & Physics,2000,22:265-277.
    [51]K.Rohlf,G.Tenti.The role of the Womersley number in pulsatile blood flow a theoretical study of the Casson model[J].Journal of Biomechanics,2001(34):141-148.
    [52]Jie.Chen,Xi-Yun Lu.Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch[J].Journal of Biomechanics,2004,(37):1899-1911.
    [53]柳兆荣,吕岚,陈泳.血管局部扩张对血液流动的影响[J].水动力学研究与进展,2001,16(4):412-421.
    [54]陈书宇,安悦.颅内压血液动力学模型的稳定性研究[J].辽宁师范大学学报(自然科学版),2003,26(4):413-415.
    [55]A.克乌玛,C.L.范西尼,等.考虑到渗透效应的一种血液流动的计算方法[J].应用数学和力学,2005,26(1):58-66.
    [56]Phillips W.M,Brighton J.A,Pierce W.S.Artificial heart evaluation using flow visualization techniques[J].Amer Soc Artif Inter Organs Transaction,1972,18:194.
    [57]H.L.Agrawal,B.Anwaruddin.Peristaltic flow of blood in a branch[J].Ranchi Univ.Math.1984,15:111.
    [58]Secomb T.W,Hsu,R.Models for blood flow in capillaries:effects of wall irregularity and glycocalyx[J].American Society of Mechanical Engineers.Bioengineer-ing Division(Publication) BED,1997,(35):369-370.
    [59]Baldwin J.T,et al.Mean flow velocity patterns within a ventricular assist device[J].Amer Soc Artif Inter Organs Transactions,1989,35:429.
    [60]Kh.S.Mekheimer.Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels[J].Applied Mathematics and Computation,2004,153:763-777.
    [61]Bludszuweit C.Three dimensional numerical prediction of stress loading of blood pariticles in a centrifugal pump[J].Artificial Organs,1995,19(7):590-596.
    [62]张宝宁,张扬军,吴玉林,等.应用CFD对人工血泵流场进行数值仿真[J].中国生物医学工程学报C,2002,21(1):41-45.
    [63]潘仕荣.新型推板式左心辅助血泵的流场试验[J].生物医学工程学杂志,1998,15(1):34-37.
    [64]卢永要,崔振铎,杨贤金,等.各种材料在人工心脏瓣膜中的应用[J].金属热处理,2004,29(4),23-26.
    [65]庄菲.日本国生物医学材料[J].中国医疗器械,2005,29(3):234.
    [66]ISO10993-4:Biological evaluateon of medical devices-Part 4:Selection of tests for interaction with blood[S].
    [67]GB/T16886.4-2003 医学器械生物学评价第一部分:试验选择指南[S].
    [68]魏文,程为庄.血液相容性及表面改性研究[J].高分子通报,2004,5,39-43.
    [69]孟洁.生物材料与血液相互作用过程的研究进展[J].生物医学工程学杂志,2005,5(21):387-390.
    [70]易树,尹光福.生物材料表面界面性能与其血液相容性的关系[J].中国口腔种植学杂志,2003,2(8):83-88.
    [71]杨明京,周成飞,乐以伦.生物材料血液相容性的表面能量观[J].生物医学工程学杂志,1990,1(7):59-69.
    [72]李伯刚,那娟娟,尹光福,等.生物碳素材料表面血小板黏附的实验研究[J].生物医学工程学杂志,2004,1(21):12-15.
    [73]那娟娟,李伯刚,尹光福,等.生物碳素材料表面界面性能与血液相容性关系研究[J].四川化工,2004,2(7):1-4.
    [74]黄楠,杨萍,冷永祥,等.热解碳人工心脏瓣膜材料表面改性研究[J].生物医学工程学杂志,1999,2(16):127-131.
    [75]张建荣.新型壳聚糖衍生物抗凝血材料[D].天津大学大大硕士学位论文,2004年1月.
    [76]Wisbeg A,Cregson PJ,Pater LM.Effect of surface treatment on the dissolution of titanium-base implant materials[J].J Biomater,1991,12:470-473.
    [77]Sunny MC,Sherma C P.Titanium -Protein interaction:change with oxide layer thickness[J].J.Biomater,1991,4(8):401-402.
    [78]Ph.Lavalle,B.Senger.P.Schaaf etd.Adhesion of red blood cells to solid surfaces:experimental results and modeling[J].Clinical Hemorheology,1996,1(16):38-42.
    [79]Huang Nan.Research on the fatigue behavior of titanium based biomaterial coated with titanium nitride film by beam enhanced deposition[J].Surface &Coating Technology,1996,88:127-131.
    [80]吴熹,陈凡,马旺扣,等.新一代人工心脏瓣膜材料血液相容性的试验研究[J].江苏医药,2001,3(27):175-177.
    [81]Secomb T.W,Hsu,R.Models for blood flow in capillaries:effects of wall irregularity and glycocalyx[J].American Society of Mechanical Engineers,Bioengineer-ing Division(Publication) BED,1997(35):369-370.
    [82]Duchame,Robert,Kapadia,et al.Mathematical model of the flow of blood cells in fine capillaries[J].Journal of Biomechanics,1991,5(24):209-306.
    [83]A.W.El-Kareh,T.W.Secomb.A model for red blood motion in bifurcating microvessels[J].International Journal of Multiphase Flow,2000,26:1545-1564.
    [84]李冰一,蔺嫦燕,姜以岭.三种叶片式血泵的体外溶血试验研究[J].北京生物医学工程,2001,3(20):212-214.
    [85]王群芳,封志刚,茹伟民.无源磁浮叶轮血泵的溶血实验及其指标的测定[J].江苏大学学报(自然版),2002,23(2):63-65.
    [86]云忠,谭建平,徐先懂.螺旋叶片血泵血液流动性能分析[J].机械,2006,6(33):4-6.
    [87]云忠,谭建平,龚中良.轴流血泵叶轮结构仿真优化设计[J].机械,2006,7(33):4-6.
    [88]Yan ZY,Niu XL,Liu JG.New mathematical model for the thrombelasto graph.Proceedings of the fifth Japan-USA-Singapore-China conference on biomechanics[C].Migagi,Japan,1998,88-89.
    [89]牛新乐,严宗毅.血栓弹力图的新数学模型及其应用[J].生物物理学报,2000,16(2):334-339.
    [90]李元杰,陈宜平,林树渊,等.血栓成因的动力学模型[J].华中理工大学学报,1999,24(5):106-108.
    [91]班兴敏,张延芳.动脉血栓形成过程的血流动力学有限元分析[J].医用生物力学,2001,16(1):44-47.
    [92]蒋松,王成焘,程西云,等.人工关节滑液的摩擦学性能及摩擦化学研究[J].摩擦学学报,2004,24(6):527-530.
    [93]梁小平,Anne Neville不同润滑液下的Al_2O_3增强Y-TZP陶瓷/316不锈钢生物摩擦学特性[J].润滑与密封,2007,187(3):67-69.
    [94]李久青,顾正秋.透明质酸对人工关节材料的润滑作用[J].北京科技大学学报,2000,22(4):343-346.
    [95]虞路清,李久青,鲁毅强,等.添加Lα-DPPC和γ-球蛋白对透明质酸润滑性的影响[J].北京科技大学学报,2001,23(2):118-122.
    [96]潘育松,熊党生.人工关节润滑系统研究进展[J].润滑与密封,2006,6(6):168-171,182.
    [97]熊党生,葛世荣.超高分子量聚乙烯/Al_2O_3生物摩擦学特性的研究[J].摩擦学学报,2000,20(4):256-259.
    [98]陶祖莱,生物流体力学[M].北京:科学出版社,1984年.
    [99]www.shengwugu.com.cn
    [100]郄禄文.细胞聚集的微观力学分析[J].河北大学学报,2000,20(2):127-129.
    [101]龚中良.微型植入式血泵血液自润滑机理研究[D].中南大学博士学位论文,2006年12月.
    [102]张安兄,吕德龙,钟伟,等.生物材料的血液相容性[J].上海生物医学工程,2004,25(3):53-58.
    [103]GB/T 3142-82.润滑剂承载能力测定法(四球法)[S].
    [104]白春礼.纳米科学与技术的发展与展望[J].科学通报,1996,41(增刊):4-9.
    [105](德)M.谢尔格,(乌)S.戈尔博著,李健,杨膺,顾卡丽,等译.微/纳米生物摩擦学:大自然的选择[M].北京:机械工业出版社,2004年1月.
    [106]朱杰.原子力显微镜在分子细胞生物学研究中的应用[J].现代物理知识2006,18(1):36-37.
    [107]张平城,成英俊,方晔,等.原子力显微镜及其在细胞生物学中的应用[J].动物学研究,1993,14(增刊):58-66.
    [108]W.Gulbinski,D.Pailharey,T.Suszko et al.Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films[J].Surface Science,2001,475(10):149-158.
    [109]施春陵,蒋建清.原子力显微镜(AFM)在材料性能分析中的应用[J].江苏冶金,2005,33(1):7-9.
    [110]CSPM4000扫描探针显微镜系统用户手册V1.001[M].北京:2006年本原公司出版.
    [111]DufreneYF:Application of atomic force microscopy to microbial surfaces:from reconstituted cell surface layers to living cells[J].Micron,2001,32:153-165.
    [112]齐浩,刘颖,庄乐南,等.细胞的原子力显微镜最佳成像条件研究[J].光子学报,2007,36(1):138-143.
    [113]赵涛.胶原蛋白自组装行为及细胞形态的AFM研究[D].暨南大学硕士学位论文,2003年5月.
    [114]ZhangYY,ShengST,ShaoZF.Imaging biological structures with the cryo atomiv force microscope livingcells[J].Biophys,1996,71:2168-2176.
    [115]樊学军.细胞力学[J].力学进展,1995,25(2):197-208.
    [116]张景,曾衍钧.细胞粘附的生物力学研究进展[J].力学进展,1999,29(4):576-582.
    [117]Robert,Kapadia,et al.Mathematical model of the flow of blood cells in fine capillaries[J].Journal of Biomechanics,1992,3(25):201-209.
    [118]Evans E A.Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells[J].Biophys,1980,30:265-284.
    [119]Nobuo Ohmae.Humidity effects on tribology of advanced carbon materials[J].Tribology International,2006,39:1497-1502.
    [120]Jan K M Chien S.Role of surface electric charge in red blood cell interactions[J].J Gen Physical,1973,61:638-654.
    [121]蔡峨.粘弹性力学基础[M].北京:北京航空航天大学出版社,1989年1月.
    [122]鲍海飞,李昕欣,张波,等.基于原子力显微镜的微纳结构力学测试系统[J].机械强度,2007,29(2):223-227.
    [123]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998年4月.
    [124]温诗铸,黄平.摩擦学原理(第二版)[M].北京:清华大学出版社,2002年.
    [125]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995年7月.
    [126]GB/T308-2002.滚动轴承钢球[S].
    [127]雒建斌,温诗铸,黄平.弹流润滑与薄膜润滑转化关系的研究[J].摩擦学学报,1999,19(1):72-77.
    [128]雒建斌,沈明武,史兵,等.薄膜润滑与润滑状态图[J].机械工程学报,2000,36(7):5-10.
    [129]You.Yi.How Powerful is our Heart?[J].物理教学,2003,25(8):31-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700