用户名: 密码: 验证码:
3D C/SiC在复杂耦合环境中的损伤机理与寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航空发动机热端服役环境为应用背景建立环境试验模拟平台,对3DC/SiC在复杂耦合条件下的环境性能进行系统测试。然后基于试验过程中3DC/SiC的伸长、电阻变化等损伤过程信息和试验后复合材料在弯曲和拉伸试验中的载荷-位移曲线、微结构照片等损伤终态信息,研究3D C/SiC在航空发动机等效模拟环境、风洞模拟环境和热震模拟环境中的损伤过程、损伤模式、损伤机理及其影响因素。在此基础上建立3D C/SiC应力氧化损伤模型,并实现寿命预测。
     基于相似理论,采用分步模拟、逐步逼近的方法建立了航空发动机热结构材料环境性能试验模拟平台。该试验模拟平台由等效模拟系统和风洞模拟系统两部分组成,实现了对燃气温度、燃气流速、氧分压、水分压和熔盐分压等热物理化学环境以及蠕变、疲劳和热震疲劳等复杂应力环境的耦合模拟,并可以在线监测材料长度、电阻等多种过程演变信息,可以有效地模拟C/SiC在航空发动机热端环境中的失效机理,具有科学、简易和低成本等优点。
     研究了3D C/SiC在等效模拟环境中的应力氧化损伤过程及其机理,并分析了热物理化学环境参数、复杂应力参数对应力氧化损伤的影响。研究表明,3DC/SiC的应力损伤过程具有继承性和周期性。提出3D C/SiC分区承载、分区损伤的应力损伤模式,该模式不受应力类型影响,承载区域的大小取决于受力历史中的最大值。氧气是导致3D C/SiC损伤的主要原因,水蒸气和硫酸钠熔盐蒸气加速3D C/SiC的氧化损伤,应力参数影响复合材料损伤的速率。3D C/SiC界面层较薄时,适当的界面损伤提高复合材料强度。
     研究了3D C/SiC在航空发动机风洞模拟环境中的损伤过程及其机理,并分析了燃气温度、界面层厚度、纤维预制体结构和纤维类型对复合材料应力损伤的影响。研究表明,3D C/SiC的氧化机理随归一化应力不同而不同:归一化应力大于0.4时,氧化由C相反应控制;归一化应力小于0.4且大于0.25时,氧化主要由气体通过裂纹的扩散控制;归一化应力小于0.25时,氧化主要由气体通过尺寸小于裂纹的制备缺陷的扩散控制。3D C/SiC的强度下降速率随纤维预制体的编织角的增大而增大,随纤维抗氧化性能的提高而减小。燃气流速对3D C/SiC应力氧化损伤的加速与复合材料的氧化机理有关。氧化由气体扩散控制时,加速作用很剧烈;氧化由C相反应控制时,加速作用也很显著。
     研究了界面层较薄的3D C/SiC在热震模拟环境中的氧化损伤机理,并探讨了应力氧化对该复合材料热震损伤的影响。研究表明,700-1200℃热震时界面层较薄的3D C/SiC存在损伤饱和现象,且在热震60次后出现。热震是导致复合材料损伤的主要原因,应力氧化加速热震过程中的界面损伤。热震加速界面层较薄3D C/SiC复合材料的应力氧化损伤,加速程度取决于复合材料界面结合强度。
     基于3D C/SiC在等效模拟环境、风洞模拟环境和热震模拟环境中相似的损伤模式,建立了包括已承载区域、承载区域和未承载区域的统一的分区域应力氧化模型。基于分区域应力氧化模型,推导出了3D C/SiC在等效模拟环境中的寿命预测公式。该公式不仅与环境温度、环境总压、氧分压和应力有关系,还与材料的纤维特性、预制体结构和试样尺寸有关。另外还基于分区域应力氧化模型,推导出了3D C/SiC在风洞模拟环境中的寿命预测公式。该公式不仅包含了燃气流速、燃气组分、氧分压以及应力对复合材料寿命的影响,还包含了材料的纤维特性、预制体结构和试样尺寸等结构参数对复合材料寿命的影响,而温度、应力、总压及氧分压等的影响则通过裂纹宽度引入到公式中。计算表明预测公式在适用范围内具有较好的预测精度,预测结果与试验结果具有相同数量级。
For the applications in high temperature aero-engine environments, the stressed oxidation of 3D C/SiC composite was investigated in simulating environments following four steps. Firstly, an experimental system simulating high temperature aero-engine environments was set up. Secondly, the degradation process, modes and mechanisms of 3D C/SiC composite were investigated by the change of length and electric resistance recorded during the stressed oxidation test, by the load-displacement curves recorded during tensile and bend test, and by the microstructural observation. Thirdly, the degradation model of stressed oxidation was suggested. Based on the model, the life prediction was achieved finally.
     An experimental testing system simulating environments of aero-engines was developed by a multiple-step approximated method on basis of similarity theory to simulate the hot section environments of aero-engines. The system included two subsystems: equivalent experiment simulation subsystem and wind tunnel experiment simulation subsystem. Using the simulating system, the materials were tested in the environments with various atmospheres, gas velocity, loads and temperatures or thermal shock parameters. The partial pressure of oxygen, water vapor and molten salt vapor were offered and controlled. Creep, low frequency fatigue and the interaction of them were conducted by a hydraulic servo frame. The evolution of material properties such as length and electric resistance were recorded during the testing. The degradation process of C/SiC composite in high temperature aero-engine environments was recurred effectively by the system.
     The degradation process of 3D C/SiC was studied in the equivalent experiment simulation subsystem, the degradation mechanisms and the effects of atmospheres and loads were discussed. The continuity and periodicity of the degradation process because of the capability of the composite in remembering the damage were found. The degradation mode of divisional load-bearing and divisional damage is suggested for the first time. The divisional area depended not on the kinds of load but on the max value of load history. Oxygen and water vapor were the major factors to induce the degradation of 3D C/SiC, Sodium sulfate vapor accelerated the degradation by facilitating the oxidation of SiC which resulted in the increase of interface strength. The interface strength affected not only the strength and the toughness of the composite, but also the degradation process. When the interface strength was higher than the appropriate value, the strength of 3D C/SiC will be improved because of the slight degradation of interface. The effect of kinds of load on the degradation speed of 3D C/SiC is carried out by changing the number and distribute of cracks.
     The degradation process of 3D C/SiC was studied in the wind tunnel, the degradation mechanisms and the effect of temperature, interlayer thickness, structures of fiber preform and kinds of fiber were discussed. It was found that the stressed oxidation mechanisms change with the stress. The oxidation was controlled by the reaction of C/O_2 when the normalization peak strength was higher than 0.4; the oxidation controlled by the gas diffusion through cracks when the normalization peak strength was between 0.25 and 0.4; the oxidation controlled by the gas diffusion through the defects which came from the fabrication and smaller than the cracks when the normalization peak strength less than 0.25. The degradation speed of 3D C/SiC increased with the increasing braiding angle of fiber preforms and decreasing with the increasing oxidation resistance of fibers. The effect of gas velocity on the degradation of 3D C/SiC depended on the oxidation mechanism of the composite. The degradation acceleration of gas velocity was violent when the oxidation was controlled by gas diffusion. The effect of gas flowing velocity was obvious when the oxidation was controlled by the reaction of C/O_2.
     The degradation process of 3D C/SiC was studied in thermal shock environment, the degradation mechanisms and the effect of load were discussed. The damage saturation occurred after the composite with less interlayer thickness shocked between 600℃and 1200℃for 60 times. The major factor resulting in degradation of the composite was thermal shock, the degradation was accelerated by the oxidation. The oxidation of the composite was accelerated by the load, however, the thermal shock resistance of the composite was improved by the degradation. The acceleration of thermal shock on the degradation of the composite with less interlayer thickness depended on the interface strength.
     An uniform stressed oxidation degradation model was established on the basis of the similar degradation mode of 3D C/SiC composite in equivalent simulation environments, wind tunnel simulation environments and thermal shock simulation environments. The life prediction equation for equivalent environments was deduced based on the uniform model, in which the parameters included temperature, atmosphere pressure, partial pressure of oxygen, kinds of load, normalization peak strength, properties of fiber, braiding angle of fiber preform and thickness of sample, et al.. The life prediction of wind tunnel environments was also established on the basis of the uniform model, in which the parameters included gas flowing velocity, gas components, partial pressure of oxygen, load, properties of fiber, braiding angle of fiber preform and thickness of sample, et al.. The effect of temperature, load, atmosphere pressure and partial pressure of oxygen were also introduced to the equation by the width of crack. It was proved by the experimental results that the prediction accuracy of the proposed equation was good in the researched environments.
引文
1.樊庆和.未来战斗机发动机技术研制进展.航空兵器,2002,2:40-43
    2.瞿立生.新一代战斗机发动机计划.国际航空,2000,1:34-35
    3.刘大响.高性能航空发动机的发展对材料技术的要求.燃气涡轮试验与研究,1998,11(3):1-5
    4.傅恒志.未来航空发动机材料面临的挑战与发展趋势.航空材料学报,1998,18(4):52-61
    5.李志广.国外第四代歼击机发动机的特点和我们应如何发展的意见.航空发动机,1996(3):1
    6.张和善.复合材料与未来航空发动机.航空制造工程,1995,9:6-8
    7.韩雅芳.航空发动机用高温材料的应用与发展.世界科技研究与发展,1999,20(6):67-71
    8.徐强,张幸红,韩杰才等.先进高温材料的研究现状和展望.固体火箭技术,2002,25(3):51-55
    9. MV Nathal, SR Levine. Development of Alternative Engine Materials. In: Anfolovich SD, et al., Superalloys, TMS, 1992:329-347
    10. RW Cahn, et al. High temperature structural materials. London: Chapman & Hall, 1996:51-65
    11. MM Thomas. Cast Superalloys and Superalloy's Application in Aero-engines. In:Sino-America Syrup. on Advanced Superalloys and processing, 1998, Beijing
    12. h Alan, Rosenstein. Overview of research on aerospace metallic structural materials. Materials science and engineering A, 1991, 143:31-41
    13. DM Shah. MoSi_2 and other Silicides as High Temperature Materials. Ibid, 409-422
    14.谭剑波,林德春.超高温材料-陶瓷及陶瓷基复合材料.固体火箭技术,1990,1:104-112
    15.陈国良,林均品.有序金属间化合物结构材料物理金属学基础.北京:冶金工业出版社,1999:1-5.
    16.陈国良.金属间化合物结构材料研究现状与发展.材料导报,2000,14(9):1-5
    17.巩林如,译.美国国家航空航天飞机(NASP)的材料技术面临挑战.GF80092:75-79
    18.马祥.航空航天用新型耐高温材料的研制现状及其发展趋势,Z20509:1-12
    19.屈乃琴.先进复合材料的研究现状与应用.纤维复合材料.1995,3:44-54
    20.李贺军,罗瑞盈,杨峥.碳/碳复合材料在航空领域的应用研究现状.材料工程,1997,8:8-10
    21.朱小旗.抗氧化碳/碳复合材料的制备性能及机理研究.博士学位论文,西北工业大学,1995
    22.周洋,袁广江,徐荣九等.高温结构陶瓷基复合材料的研究现状与展望.硅酸盐通报,2001.4:31-36
    23. El HoCY, SK Rahaiby. Assessment of the status of ceramic matrix composites technology in the United States and abroad.Ceram.Eng.Sci.Proc., 1992, 13(7/8):3
    24.史可顺.高温陶瓷复合材料的进展.硅酸盐学报,1993,21(1):774
    25.徐江海.陶瓷基复合材料的进展及应用.宇航材料工艺,1991,4:517
    26. NM Tallan. Airforce high temperature materials program. Ceram. Eng. Sci. Proc., 1991, 12(7/8):947
    27.曹永福.陶瓷基复合材料的研究进展.昆明理工大学学报,1997,22(2):59-75
    28.何新波,杨辉,张长瑞等.连续纤维增强陶瓷基复合材料概述.材料科学与工程,2002,20(2):273-279
    29. S James, Perry. Moving Ahead to the IHPTET era. Global Gas Turbine News, 1990, 11.
    30. Bill Sweetman. IHPTET Spawns Engines for 21st Century. Interavia, 1989, 11.
    31. TE Schmid. Ceramic composites for Advanced Gas Turbine Engines. In:Superalloys Anfolovich SD, et al., TMS, 401-408
    32.徐海江.陶瓷基复合材料的高温应用.飞航导弹,1998,6:57-61
    33. Hisaichi Ohnabe, et al. Potential application of ceramic matrix composites to aero engine compsnents.Composites:Part A. 1999, 30:489-496
    34.王永寿.陶瓷基复合材料在航空发动机上的应用研究.飞航导弹,2002,10:55-59
    35.甘永学.纤维增强陶瓷基复合材料的研究及其在航空航天领域的应用.宇航材料工艺,1994,5:1-5
    36.张建艺.陶瓷基复合材料在喷管上的应用.宇航材料工艺,2000,4:14-16
    37. RB Schulz, JD Ray. Transportation, energy, and ceramics. Ceram. Eng. Sci. Proc., 1991, 12(7/8):9475
    38.杜善义,韩杰才,李文芳等.陶瓷基复合材料的发展及在航空宇航器上的应用前景.宇航材料工艺,1991,5:16
    39. NC Brian, WZ Frank. Advances in ceramic by continuous fibers. Ceramics, composites and intergrowths, 666-673
    40.陈炳贻.具有陶瓷基复合材料火焰筒的航空发动机燃烧室的设计和试验.航空科学技术,2003,6:30-33
    41.方昌德.美国航空推进系统关键技术.燃气涡轮试验与研究,2001,14(3):1-6
    42. S Beyer, S Schmidt, G Cahuzac, et al.. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion System Applications. AIAA2004-4019
    43. Clement Bouquet, Alain Lacombe, Brett Hauber, et al.. Ceramic Matrix Composites Cooled Panel Development for Advanced Propulsion Systems. AIAA2004-1998
    44. Ulrich Trabandt, Horst Koehler, Manfred Schmid. Deployable CMC Hot Structure Decelerator for Aerobrake. AIAA 2003-2169
    45. G.D LaChapelle, ME Noe, WG Edmondson, et al.. CMC Materials Applications to Gas Turbine Hot Section Components. AIAA98-3266
    46. Hiroshi Kaya. The application of ceramic-matrix composites to the automotive ceramic gas turbine. Composites Science and Technology, 1999, 59:861-872
    47.美国空军技术学院编著.中国航空信息中心研究部译.国防关键技术.北京:中国航空信息中心.1994:5
    48.曹英斌,张长瑞,陈朝辉等.Cf/SiC陶瓷基复合材料发展状况.宇航材料工艺,1999,5:10-14
    49. S Goujard, et al..The oxidation behaviour of two and three dimensional C/SiC thermostructural materials protected by chemical vapour deposition polylayers coatings. Journal of Materials Science, 1994,29(20):6212-6220
    
    50. R Naslain. CVI composites. In: Warren R ed. Ceramic Matrix composites. London: Chapmen and Hall, 1992: 199-243
    51. TM Besmann, BW Sheldon, RA Lowden. Vapor-phase fabriction and properties of continuous-filament ceramic composites. Science, 1991, 253:1104-1109
    52. Ulrich Papenburg, Michael Peyerler, Wilhelm Pfrang, et al. Carbon Fiber- Reinforced Silicon Carbide(C/SiC) Technology. BDM/IABG and Dornier Satellite Systems (DSS)
    53. F Lamouroux, G Camus, J Thebault. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: I, Experimental Approach. Journal of the American Ceramic Society, 1994, 27(8): 2049-2057
    54. F Lamouroux, R Naslain, JM Jouin. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: II, Theoretical Approach. Journal of the American Ceramic Society, 1994, 77(8): 2058-2068
    55. F Lamouroux, X Bourrat, R Naslain, et al. Structure/Oxidation Behavior Relationship in the Carbonaceous Constituents of 2D-C/PyC/SiC Composites. Carbon, 1993, 31(8): 1273-1288
    56. F Lamouroux, G Camus. Oxidation effects on the Mechanical Properties of 2D woven C/SiC Composites. Journal of the European Ceramic Society, 1994, 14(2): 177-188
    57. R Naslain, A Guette, F Rebillat, et al. Oxidation Mechanisms and Kinetics of SiC-Matrix Composites and Their Constituents. Journal of Materials Science, 2004, 39(24): 7303-7316
    58. L Filipuzzi, G Camus, R Naslain, et al. Oxidation mechanisms and kinetics of 1D-SiC/C/SiC Composite Materials: I, An Experimental Approach. Journal of the American Ceramic Society, 1994, 77(2): 459-466
    59. L Filipuzzi, R Naslain. Oxidation mechanisms and kinetics of lD-SiC/C/SiC Composite Materials: II, Modelling. Journal of the American Ceramic Society, 1994, 77(2): 467-480
    60. XW Yin, LF Cheng, LT Zhang, et al. Oxidation Behaviour of Three-dimensional Woven C/SiC Composites. Mater. Sci. Tech., 2001, 17:727-730
    61. XW Yin, LF Cheng, LT Zhang, et al. Oxidation Behavior of 3D C/SiC Composites in Two Oxidizing Environments. Compos. Sci. Technol., 2001, 61: 977-980
    62. LF Cheng, YD Xu, LT Zhang, et al. Oxidation and Defect Control of CVD SiC Coating on Three-dimensional C/SiC Composites. Carbon, 2002, 40(12): 2229-2234
    63. LF Cheng, LT Zhang, XW Yin, et al..Oxidation behavior of Three-Dimensional SiC/SiC composites in air and Combustion Environment. Composites, Part A, 2000, 31(9): 1015-1020
    64. 殷小玮 3D C/SiC复合材料的环境氧化行为.博士学位论文,西北工业大学,2001
    65. LF Cheng, Y D Xu, LT Zhang, et al. Oxidation behavior of Three-Dimensional C/SiC composites in air and Combustion Gas Environment. Carbon, 2000, 38: 2103-2108
    66. LF Cheng, YD Xu, LT Zhang, et al.. Effect of Carbon Interlayer on Oxidation behavior of C/SiC composites with a Coating from Room Temperature to 1500℃. Materials Science and Engineering A, 2001, 300(1-2): 219-225
    67. LF Cheng, YD Xu, LT Zhang, et al.. Effect of Glass sealing on the Oxidation behavior of Three-Dimensional C/SiC composites in Air. Carbon, 2001, 39(8): 1127-1133
    68. N'S Jacobson. Corrosion of Silicon-Based Ceramics in Combustion Environments. Journal of the American Ceramic Society, 1993, 76(1): 3-28
    69. EJ Opila. Water Vapor Effects on High-Temperature Oxidation and Volatilization of Ceramics. In: Special Topic Issue: High-Temperature Water Vapor Effects. Journal of the American Ceramic Society, 2003, 86(8): 1237
    70. NS Jacobson, EJ Opila, KN Lee. Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites. Current Opinion in Solid State and Materials Science, 2001, 5: 301-309
    71. QN Nguyen, EJ Opila, RC Robinson. Oxidation of Ultra High Temperature Ceramics in Water Vapor. NASA/TM-2004-212923
    72. RC Robinson. SiC Recession Due to SiO_2 Scale Volatility under Combustor Conditions. NASA Contractor report 2023 31
    73. EJ Opila. Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure. Journal of the American Ceramic Society, 1998, 82(3): 625-636
    74. CE Ramberg, WL Worrell. Oxygen Transport in Silica at High Temperatures: Implications of Oxidation Kinetics. Journal of the American Ceramic Society, 2001, 84(11): 2607-2616
    75. DS Fox, EJ Opila, RE Hann. Paralinear Oxidation of CVD SiC in Simulated Fuel-Rich Combustion. Journal of the American Ceramic Society, 2000, 83(7): 1761-1767
    76. RC Robinson, JL Smialek. SiC Recession Caused by SiO_2 Scale Volatility under Combustion Conditions: I, Experimental Result and Empirical Model. Journal of the American Ceramic Society, 1999, 82(7): 1817-1825
    77. EJ Opila, JL Smialek, RC Robinson, et al. SiC Recession Caused by SiO_2 Scale Volatility under Combustion Conditions: II, Themodynamics and Gaseous-Diffusion Model. Journal of the American Ceramic Society, 1999, 82(7): 1826-1834
    78. JL Smialek, EJ Opila, NS Jacobson, et al.. SiC and Si_3N_4 Recession Due to SiO_2 Scale Volatility under Combustor Conditions. NASA/TP-1999-208696
    79. PF Tortorelli, KL More. Effects of High Water-Vapor Pressure on Oxidation of Silicon Carbide at 1200℃. Journal of the American Ceramic Society, 2003, 86(8): 1249-1255
    80. KL More, PF Tortorelli, MK Ferber, et al. Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressure. Journal of the American Ceramic Society, 2000, 83(1): 211-213
    81. KL More, PF Tortorelli, N Miriyala, et al.. High-temperature Stability of SiC-based Composites in High-Water-Vapor-Pressure Environments. Journal of the American Ceramic Society, 2003, 86(8): 1272-81
    82. EJ Opila. Oxidation and Volatilization of Silica Formers in Water Vapor. Journal of the American Ceramic Society, 2003, 86(8): 1238-48
    83. DS Fox, EJ Opila, QN Nguyen, et al.. Paraiinear Oxidation of Silicon Nitride in a Water-Vapor/Oxygen Environment. Journal of the American Ceramic Society, 2003, 86(8): 1256-1261
    84. XW Yin, LF Cheng, LT Zhang, et al.. Oxidation Behaviors of C/SiC in the Oxidizing Environments Containing Water Vapor. Materials Science and Engineering A, 2003, 348:47-53
    85.殷小玮.3D C/SiC复合材料的环境氧化行为.博士学位论文,西北工业大学,2001
    86. F Sibieude, J Rodriguez, MT Clavaguera-mora. Thin Solid Films, 1991, 204:217
    87. T Narushima, JRY Lin, Y Iguchi, et al.. J.Am.Ceram.Soc., 1993, 76:1047
    88. CD Fung, JJ Kopanski. Appl. Phys.Lett., 1984, 45:757
    89. T Narushima, T Goto, Y Iguchi, et al.. J.Am.Ceram.Soc., 1990, 73:3580
    90. NS Jacobson, JL Smialek, DS Fox. Molten Salt Corrosion of SiC and Si_3N_4.NA SA-TM-101346
    91. Jl Federer. Corrosion of SiC Ceramics by Na_2SO_4. Adv. Ceram. mater., 1988, 1:56-61
    92. NS Jacobson, JL Smialek. Hot Corrosion of Sintered α-SiC at 1000℃. J.Am.Ceram.Soc., 1985, 68(8):432-39
    93. DM Mieskowski, TE Mitchell, AH Heuer. Bubble formation in oxide scales on SiC. Commu. Am.Ceram. Soc., 1984, C-17
    94. NS Jacobson. Corrosion of Silicon-Based Ceramics in Combustion Environments. J.Am.Ceram.Soc., 1993, 76(1): 1-26
    95. JL Smialek, NS Jacobson. Mechanism of Strength Degradation for Hot Corrosion of α-SiC. J.Am.Ceram.Soc., 1986, 69(10):741-52
    96. RC Robinson, JL Smialek. SiC Recession Caused by SiO_2 scale Volatility under Combustion Condition: Ⅰ, Experimental Results and Empirical Model. J.Am.Ceram.Soc., 1999, 82(7):1817-25
    97. EJ Opila, JL Smialek, RC Robinson, et al.. SiC Recession Caused by SiO_2 scale Volatility under Combustion Condition: Ⅱ, Thermodynamics and Gaseous-Diffusion Model. J.Am.Ceram.Soc., 1999, 82(7): 1826-34
    98. NS Jacobson, JL Smialek. Corrosion Pitting off SiC by Molten Salts. J.Electrochem.Soc., 1986, 133(12)2615-21
    99. GB Davies, TM Holmes, OJ Gregory. Hot Corrosion Behavior of Coated Covalent Ceramics, Adv. Ceram. Mater., 1988, 3(6):542-47
    100. Masafumi Maeda, Alex Mclean, Hidehiro Kuwatori, et al.. Solubilities of Carbon Dioxide in Sodium Silicate Melts. Metallurgical transactions B, 1985, 16B: 561-566
    101. NS Jacobson. Kinetics and Mechanism of Corrosion of SiC by Molten Salts. J.Am.Ceram.Soc., 1986, 69(1):74-82
    102.栾新刚.高温腐蚀环境SiC-C/SiC的性能演变规律与损伤机理.硕士学位论文,西北工业大学,2002
    103. XG Luan, LF Cheng, XW Yin. Corrosion of a SiC-C/PyC/SiC Composite by Sodium Sulfate Vapor at High Temperatures. Sci. Eng. Compos. Mater, 2002, 10(2): 157-162
    104. XG Luan, LF Cheng. Corrosion of a SiC-C/SiC Composite in Environments with Na_2SO_4 Vapor and Oxygen. Sci. Eng. Compos. Mater., 2002, 10(4): 261-266
    105. MC Halbig, DN Brewer, AJ Eckel, et al.. Stressed Oxidation of C-SiC Composites. NA SA/TM-1997-107457
    106. MC Halbig, DN Brewer, AJ Eckel. Degradation of Continuous Fiber Ceramic Matrix Composites Under Constant-Loaded Conitions.NASA/TM-2000-209681
    107. MC Halbig, AJ Eckel. Oxidation of Continuous Carbon Fibers Within a Silicon Carbide Matrix Under Stressed and Unstressed Conditions. NASA/TM-2000- 2100224
    108. MC Halbig, AJ Eckel, JD Cawley. Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites. TM- 1999-208911
    109. MC Halbig, DN Brewer, AJ Eckel, et al.. Stressed Oxidation of C/SiC Composites, Ceramic Engineering & Science Proceedings, 1997, 18(3):547-554, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials and Structures-A, Cocoa Beach, Florida, January 12-16, 1997.
    110. MJ Verrilli, EJ Opila, A Calomino, et al.. Effect of Environment on Stress-Rupture Behavior of a C/SiC Composite. Journal of the American Ceramic Society, 2004, 87(8): 1536-1542
    111. XW Yin, LF Cheng, LT Zhang, et al..Thermal Shock Behavior of 3-dimensional C/SiC Composite. Carbon, 2002, 40:905-910
    112. H Mei, LF Cheng, LT Zhang, et al.. Effect of Temperature Gradients and Stress Levels on Damage of C/SiC Composites in Oxidizing Atmosphere. Materials Science and Engineering A, 2006, 430:314-319
    113. H Mei, LF Cheng, LT Zhang. Damage Mechanisms of C/SiC Composites Subjected to Constant Load and Thermal Cycling in Oxidizing Atmosphere. Scripta Materialia, 2006, 54:163-168
    114. H Mei, LF Cheng. DamageAnalysis of 2D C/SiC Composites Subjected to Thermal Cycling in Oxidizing Environments by Mechanical and Electrical Characterization. Materials Letters, 2005, 59:3246-3251
    115. H Mei, LF Cheng, LT Zhang, et al.. Behavior of Two-dimensional C/SiC Composites Subjected to Thermal Cycling in Controlled Environments. Carbon, 2006, 44:121-127
    116. AJ Echer, JD Cawley, TA Parthasarathy. Oxidation Kinetics of a Continuous Carbon Phase in a Nonreactive Matrix. J. Am. Ceram. Soc., 1995, 78(4):972-80
    117. MC Halbig, D Cawley. Modeling the Environmental Effects on Carbon Fibers in a Ceramic Matrix at Oxidizing Conditions. NASA/TM-2000-210223
    118. MC Halbig, D Cawley. Modeling the Oxidation Kinetics of Continuous Carbon Fibers in a Ceramic Matrix. NASA/TM-2000-209651
    119. MC Halbig.The Oxidation Kinetics of Continuous Carbon Fibers in a Cracked Ceramic Matrix Composite. NASA/TM-2001-210520
    120. SR Levine, MC Halbig, EJ Opila, et al.. Ceramic Matrix Composites (CMC) Life Prediction Method Development. NASA/TM-2000-210052
    121. SR Levine, MC Halbig, EJ Opila, et al.. Ceramic Matrix Composites (CMC) Life Prediction Development-2003. NASA/TM-2003-212493
    122.魏玺.3D C/SiC复合材料氧化机理分析及氧化动力学模拟.硕士学位论文,西北工业大 学,2004
    123.相华,成来飞,魏玺等.基于因素分析法的C/SiC复合材料氧化动力学模拟.硅酸盐学报,2004.11:18-23+29
    124. RM Sullivan. A Model for the Oxidation of C/SiC Composite Structures. NA SA/TM-2003-212720
    125. DJ Thomas. Probabilistic Residual Strength Model for Stress Rupture of SiC/SiC Composites to be published in ASME Journal of Engineering for Gas Turbines and Power
    126. SF Duffy, LA Janosik, AA. Wereszczak, et al.. Chapter 25: Life Prediction of Structural Components in Ceramic Gas Turbine Component Development and Characterization, Volume 1 edited by Mark van Roode, Mattison K. Ferber, David W. Richerson, published by ASME Press, 2003.
    127. MJ Verrilli, A Calomino, DJ Thomas. Stress/Life Behavior of a C/SiC Composite in a Low Partial Pressure of Oxygen Environment Part Ⅰ: Static Strength and Stress Rupture Database. Ceramic Engineering and Science Proceedings, 2002, 23(3): 435-442
    128. A Calomino, MJ Verrilli, DJ Thomas. Stress/Life Behavior of a C/SiC Composite in a Low Partial Pressure of Oxygen Environment Part Ⅱ: Stress Rupture Life and Residual Strength Relationship. Ceramic Engineering and Science Proceedings, 2002, 23(3):443-451
    129. DJ Thomas, MJ Verrilli, A Calomino. Stress/Life Behavior of a C/SiC Composite in a Low Partial Pressure of Oxygen Environment Part Ⅲ: Life Prediction Using Probabilistic Residual Strength Rupture Model. Ceramic Engineering and Science Proceedings, 2002, 23(3): 453-460
    130. DJ Thomas. Design and Analysis of UHTC Leading Edge Attachment. NASA/CR 2002-211505
    131. F Lamouroux, S Bertrand, R Pailler, et al.. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Composites Science and Technology, 1999, (59): 1073-1085
    132. C Vix-Guterl, C Grotzinger, J Dentzer, et al.. Reactivity of a C/SiC composite in water vapour, Journal of the European Ceramic Society, 2001, (21): 315-323
    133.杜双明,乔生儒,纪岗昌等.3D-C/SiC复合材料拉-拉疲劳模量和电阻的变化.宇航材料工艺,2002,(5):38-44
    1.成来飞,徐永东,张立同等.碳基和陶瓷基复合材料高温失效机制的因素分析法.哈工大学报,2002,34 sup(12):117-121
    2. LF Cheng, YD Xu, LT Zhang, et al..Factorization Method for Failure Mechanism Analysis of C/C and C/SiC Composites, Science and Engineering of Composite Material, 2002, 10(1): 45-49
    3. LF Cheng, YD Xu, LT Zhang, et al.. Corrosion of a 3D-C/SiC Composite in Salt Vapor Environments, Carbon, 2002, 40(6):877-882
    4.成来飞,徐永东,张立同等.一种腐蚀介质致密加热方法.中国,国防发明专利,2004
    1. KM Prewo, JJ Brennan and GK Layden. Fiber reinforced glasses and glass-ceramics for high performance applications. Amer. Ceram. Soc. Bull., 1986; 65(2): 305-313
    2. K Nakano, K Sasaki, H Saka, et al.. SiC-and Si3N4-matrix composites according to the hot-processing route. Ceram. Trans., 1995; 58:215-229
    3. C Grenet, L Plunkett, JB Veyret, et al.. Carbon fiber-reinforced silicon nitride composites by slurry infiltration. Ceram. Trans. 1995; 58: 125-130
    4. DP Kim, CG Cofer and J Economy. Fabrication and properties of ceramic composites with a boron nitride matrix. J. Amer. Ceram. Soc., 1995; 78(6): 1546-1552
    5. K Sato, T Suzuki, O Funayama, et al.. Preparation of carbon fiber reinforced composite by impregnation with perthydropolysilazane followed by pressureless firing. Ceram. Eng. Sci. Proc. 1992; 13:614-621
    6.李顺林主编.复合材料进展.航空工业出版社,1994:11-16
    7. R Naslain. CVI composites. In: Warren R ed. Ceramic Matrix Composites. London: Chapman and Hall, 1992: 199-243
    8. YD Xu, LF cheng, LT zhang, et al.. Effects of chemical vapor infiltration atmosphere on the mechanical properties and microstructure of carbon fibers. Journal of European Ceramic Society, 2001, 21:809-816
    9. LF Cheng, YD Xu, LT Zhang, et al.. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃. Materials Science and Engineering A, 2001, 300: 219-225
    10.栾新刚.高温腐蚀环境SiC-C/SiC的性能演变规律与损伤机理.硕士学位论文,西北工业大学,2002
    1. MC Halbig, DN Brewer, AJ Eckel, et al.. Stressed Oxidation of C-SiC Composites. NASA/TM-1997-107457
    2. MC Halbig, DN Brewer, AJ Eckel. Degradation of Continuous Fiber Ceramic Matrix Composites Under Constant-Loaded Conitions. NASA/TM-2000-209681
    3. MC Halbig, AJ Eckel. Oxidation of Continuous Carbon Fibers Within a Silicon Carbide Matrix Under Stressed and Unstressed Conditions. NASA/TM-2000-2100224
    4. MC Halbig, AJ Eckel, JD Cawley. Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites. TM-1999-208911
    5. MC Halbig, DN Brewer, AJ Eckel, et al.. Stressed Oxidation of C/SiC Composites, Ceramic Engineering & Science Proceedings, 1997, 18(3):547-554, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials and Structures-A, Cocoa Beach, Florida, January 12-16, 1997.
    6. MJ Verrilli, EJ Opila, A Calomino, et al.. Effect of Environment on Stress-Rupture Behavior of a C/SiC Composite. Journal of the American Ceramic Society, 2004, 87(8): 1536-1542
    7. A Dalmaz, P Reynaud, D Rouby, et al.. Cyclic Fatigue Behaviour at Room Temperature and at High Temperature under Inert Atmosphere of a C/SiC Multilayer Composite. In: High Temperature Ceramic Matrix Composites Ⅲ, Key Engineering Materials, 1999, 164(1): 325-328
    8. Mingde Wang, Campbell Laird.Tension-Tension Fatigue of a Cross-woven C/Sic Composite. Materials Science and Engineering A, 1997:230:171-182
    9. S Pasquier, J Lamon, R Naslain. Tensile Static Fatigue of 2D SiC/SiC Composites with Multilayered (PyC-SiC)(n) Interphases at High Temperatures in Oxidizing Atmosphere. Composites Part A-Applied Science and Manufacturing, 1998, 29 (9-10): 1157-1164
    10. JM Staehlera, S Mallb, LP Zawadab. Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature. Composites Science and Technology, 2003, 63:2121-2131
    11. Shankar Mall, John Mark Engesser. Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Composites Science and Technology, 2006, 66:863-874
    12.乔生儒,杜双明,纪岗昌等.3D C/SiC复合材料的损伤机理.机械强度,2004,6(3):307-312
    13. P Reynaud, A Dalmaz, C Tallaron, et al.. Apparent Stiffening of Ceramic- Matrix Composites Induced by Cyclic Fatigue. Journal of the European ceramic society, 1998, 18 (13): 1827-1833
    14.曾庆丰.C/SiC复合材料优化设计.博士学位论文,西北工业大学,2004
    15.张钧.三维碳/碳化硅复合材料基体裂纹演化规律.硕士学位论文,西北工业大学,2003
    16.张钧,徐永东,张立同等.3D CSiC复合材料基体裂纹间距分布规律.航空材料学报,2003,23(3):11-14
    17.魏玺.3DC/SiC复合材料氧化机理分析及氧化动力学模拟.硕士学位论文,西北工业大学,2004
    18. LF Cheng, YD Xu, LT Zhang, et al. Effect of Heat Treatment on The Thermal Expansion of 2D and 3D C/SiC Composites from Room Temperature to 1400℃. Carbon. 2002, 411:1645-1687
    19.张青,成来飞,张立同等.界面相对3DC/SiC复合材料热膨胀性能的影响.航空学报, 2004,25(5):508-512
    20.张青,成来飞,张立同等.高温处理对3DC/SiC复合材料热膨胀性能的影响.复合材料学报,2004,21(4):124-128
    21. F Lamouroux, X Bourrat, R. Nasalain. Structure/Oxidation Behavior relationship in the Carbonaceous Constituents of 2D-C/PyC/SiC Composites. Carbon, 1993, 31 (8): 1273-1288
    22. V Pareek, DA Shores. Oxidation of Silicon Carbide in Environments Containing Potassium Salt Vapor. J. Am. Ceram. Soc., 1991, 74(3): 556-63
    23. F Lamouroux, G Camus. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: Ⅱ, Theoretical Approach. J.Am.Ceram.Soc. 1994, 77(8):2058-64
    24. Z Zheng, RE Tressler, KE Spear. Oxidation of Single-Crystal Silicon Carbide. J. Electrochem, Soc., 1990, 137(9): 2812-16
    25. E Fitzer, E Ebi. Kinetics Studies on the Oxidation of Single-Crystal Silicon Carbide. In: Silicon Carbide, Edited by RC Marshall, JW Faust, CE Ryan, University of South Carolina Press. Columbia. SC. 1973:320-28
    26. NS Jacobson. Corrosion of Silicon-Based Ceramics in Combustion Environments. Journal of the American Ceramic Society, 1993, 76(1): 3-28
    27. EJ Opila. Water Vapor Effects on High-Temperature Oxidation and Volatilization of Ceramics. In: Special Topic Issue: High-Temperature Water Vapor Effects. Journal of the American Ceramic Society, 2003, 86(8): 1237
    28. NS Jacobson, EJ Opila, KN Lee. Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites. Current Opinion in Solid State and Materials Science, 2001, 5:301-309
    29. QN Nguyen, EJ Opila, RC Robinson. Oxidation of Ultra High Temperature Ceramics in Water Vapor. NASA/TM-2004-212923
    30. RC Robinson. SiC Recession Due to SiO2 Scale Volatility under Combustor Conditions. NASA Contractor report 202331
    31. EJ Opila. Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure. Journal of the American Ceramic Society, 1998, 82(3): 625-636
    32. CE Ramberg, WL Worrell. Oxygen Transport in Silica at High Temperatures: Implications of Oxidation Kinetics. Journal of the American Ceramic Society, 2001, 84(11): 2607-2616
    33. DS Fox, EJ Opila, RE Hann. Paralinear Oxidation of CVD SiC in Simulated Fuel-Rich Combustion. Journal of the American Ceramic Society, 2000, 83(7): 1761-1767
    34. RC Robinson, JL Smialek. SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: Ⅰ, Experimental Result and Empirical Model. Journal of the American Ceramic Society, 1999, 82(7): 1817-1825
    35. EJ Opila, JL Smialek, RC Robinson, et al.. SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: Ⅱ, Themodynamics and Gaseous-Diffusion Model. Journal of the American Ceramic Society, 1999, 82(7): 1826-1834
    36. JL Smialek, EJ Opila, NS Jacobson, et al.. SiC and Si3N4 Recession Due to SiO2 Scale Volatility under Combustor Conditions. NASA/TP-1999-208696
    37. PF Tortorelli, KL More. Effects of High Water-Vapor Pressure on Oxidation of Silicon Carbide at 1200℃. Journal of the American Ceramic Society, 2003, 86(8): 1249-1255
    38. KL More, PF Tortorelli, MK Ferber, et al.. Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressure. Journal of the American Ceramic Society, 2000, 83(1): 211-213
    39. KL More, PF Tortorelli, N Miriyala, et al.. High-temperature stability of SiC-based composites in High-Water-Vapor-Pressure Environments. Journal of the American Ceramic Society, 2003, 86(8): 1272-81
    40. EJ Opila. Oxidation and volatilization of Silica Formers in Water Vapor. Journal of the American Ceramic Society, 2003, 86(8): 1238-48
    41. DS Fox, EJ Opila, QN Nguyen, et al.. Paralinear Oxidation of Silicon Nitride in a Water-Vapor/Oxygen Environment. Journal of the American Ceramic Society, 2003, 86(8): 1256-1261
    42.殷小玮.3DC/SiC复合材料的环境氧化行为.博士学位论文,西北工业大学,2001
    43.李建章.航空发动机热端部件模拟环境下3DC/SiC的微结构演变与失效机制.博士学位论文,西北工业大学,2007
    44. DM Mieskowski, TE Mitchell, AH Heuer. Bubble formation in oxide scales on SiC. Commu. Am. Ceram. Soc., 1984, C-17
    45. NS Jacobson. Corrosion of Silicon-Based Ceramics in Combustion Environments. J.Am.Ceram.Soc., 1993, 76(1):1-26
    46. RC Robinson, JL Smialek. SiC Recession Caused by SiO2 scale Volatility under Combustion Condition: Ⅰ, Experimental Results and Empirical Model. J.Am.Ceram. Soc., 1999, 82(7): 1817-25
    47. EJ Opila, JL Smialek, RC Robinson, et al.. SiC Recession Caused by SiO2 scale Volatility under Combustion. Condition: Ⅱ, Thermodynamics and Gaseous-Diffusion Model. J.Am.Ceram.Soc., 1999, 82(7): 1826-34
    48. Masafumi Maeda, Alex Mclean, Hidehiro Kuwatori, et al.. Solubilities of Carbon Dioxide in Sodium Silicate Melts. Metallurgical transactions B, 1985, 16B: 561-566
    49. XG Luan,. LF Cheng, SR Qiao, et al.. Effects of High Temperature Pretreatments on High Temperature Fracture Behavior of SiC-C/SiC. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 482-486
    50.成来飞,徐永东,张立同等.3DC/SiC复合材料在复杂环境试验中性能演变的两重性.稀有金属材料与工程,2006,35(4)4:521-527
    51. F Lamouroux, G Camus, J Thebault. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: Ⅰ, Experimental Approach. Journal of the American Ceramic Society, 1994, 27(8): 2049-2057
    52. F Lamouroux, X Bourrat, R Naslain, et al.. Structure/Oxidation Behavior Relationship in the Carbonaceous Constituents of 2D-C/PyC/SiC Composites. Carbon, 1993, 31(8): 1273-1288
    1. XW Yin, LF Cheng, LT Zhang, et al.. Oxidation Behavior of 3D C/SiC Composites in Two Oxidizing Environments. Compos. Sci. Technol., 2001, 61:977-980
    2. LF Cheng, LT Zhang, XW Yin, et al..Oxidation behavior of Three-Dimensional Si3D C/SiC composites in air and Combustion Environment. Composites, Part A, 2000, 31(9): 1015-1020
    3. XG Luan, LF Cheng, YD Xu, et al..Stressed Oxidation Behaviors of SiC Matrix Composites in Combustion Environments. Material letters, in press
    4.Bennett CO and Myers JE编著,张统潮,陈岚生 译,动量、热量和质量传递(第三版),北京:化学工业出版社,1988:302-306
    5.成来飞,徐永东,张立同等.3DC/SiC复合材料在复杂环境试验中性能演变的两重性.稀有金属材料与工程,2006,35(4)4:521-527
    1. XW Yin, LF Cheng, LT Zhang, et al..Thermal Shock Behavior of 3-dimensional C/SiC Composite. Carbon, 2002, 40:905-910
    2.周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1997,445-447
    3.乔生儒,杜双明,纪岗昌等.3D C/SiC复合材料的损伤机理.机械强度,2004,6(3):307-312
    4.李建章.航空发动机热端部件模拟环境下3DC/SiC的微结构演变与失效机制.博士学位论文,西北工业大学,2007
    5. LF Cheng, YD Xu, LT Zhang, et al. Effect of Heat Treatment on The Thermal Expansion of 2D and 3D C/SiC Composites from Room Temperature to 1400℃. Carbon. 2002, 411:1645-1687
    6.张青,成来飞,张立同等.界面相对3DC/SiC复合材料热膨胀性能的影响.航空学报,2004,25(5):508-512
    7.张青,成来飞,张立同等.高温处理对3DC/SiC复合材料热膨胀性能的影响.复合材料学报,2004,21(4):124-128
    1.栾新刚,成来飞,张立同等.低周疲劳应力对SiC-C/SiC复合材料的高温腐蚀机理的影响.复合材料学报,2004,21(3):44-48
    2. XG Luan, LF Cheng, LT Zhang. Life Prediction of 3D woven C/SiC Composites at High Temperatures with Low Frequency Cyclic Stresses. Journal of Composite Materials, 2005, 39 (13): 1195-1202
    3.栾新刚.高温腐蚀环境SiC-C/SiC的性能演变规律与损伤机理.硕士学位论文,西北工业大学,2002
    4. XG Luan, LF Cheng, XW Yin. Corrosion of a SiC-C/PyC/SiC Composite by Sodium Sulfate Vapor at High Temperatures. Sci. Eng. Compos. Mater, 2002, 10(2): 157-162
    5. XG Luan, LF Cheng. Corrosion of a SiC-C/SiC Composite in Environments with Na2SO4 Vapor and Oxygen. Sci. Eng. Compos. Mater., 2002, 10(4): 261-266
    6.刘再新,刘福长,鲍国华.空气动力学.北京:航空工业出版社,1993:77-85
    7.陈晋南.传递过程原理.北京,化工工业出版社,2004:298
    8.AL Lydersen.清华大学化学与化学工程系传递组译.使用工程传质学.上海:上海科 学技术文献出版社,1987
    9.李汝辉.传质学基础.北京:北京航空学院出版社,1987
    10. LF Cheng, YD Xu, LT Zhang, et al. Effect of Heat Treatment on The Thermal Expansion of 2D and 3D C/SiC Composites from Room Temperature to 1400℃. Carbon. 2002, 411:1645-1687
    11.张青,成来飞,张立同等.界面相对3DC/SiC复合材料热膨胀性能的影响.航空学报,2004,25(5):508-512
    12.张青,成来飞,张立同等.高温处理对3DC/SiC复合材料热膨胀性能的影响.复合材料学报,2004,21(4):124-128
    13.袁一,戎顺熙,石炎福泽,RB伯德,WE斯图瓦特,EN莱特富特.传递现象,北京:化学工业出版社.1990:22-25
    14. F Sibieude, J Rodriguez, MT Clavaguera-mora. Thin Solid Films, 1991, 204:217
    15. T Narushima, JRY Lin, Y Iguchi, et al.. J.Am.Ceram.Soc., 1993, 76:1047
    16. CD Fung, JJ Kopanski. Appl. Phys.Lett., 1984, 45:757
    17. T Narushima, T Goto, Y Iguchi, et al.. J.Am.Ceram.Soc., 1990, 73:3580
    18. EJ Opila. Oxidation kinetics of chemically vapor-deposited silicon carbide in wet oxygen. J. Am. Ceram. Soc. 1994; 77 (3): 730-36
    19. V Pareek and DA Shores. Oxidation of Silicon Carbide in Environments Containing Potassium Salt Vapor. J. Am. Ceram. Soc., 1991;74(3):556-63
    20. F Lamouroux and G Camus. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: Ⅱ, Theoretical Approach. J.Am.Ceram.Soc. 1994; 77(8): 2058-64
    21. Z Zheng, RE Tressler, KE Spear. Oxidation of Single-Crystal Silicon Carbide. J. Electrochem, Soc., 1990; 137(9):2812-16
    22. E Fitzer, E Ebi. Kinetics Studies on the Oxidation of Single-Crystal Silicon Carbide. pp.320-28 in Silicon Carbide 1973. Edited by RC Marshall, JW Faust, CE Ryan. University of South Carolina Press. Columbia. SC. 1973
    23.殷小玮.3DC/SiC复合材料的环境氧化行为.博士学位论文,西北工业大学,2001
    24. XW Yin, LF Cheng, LT Zhang, et al.. Oxidation behaviors of C/SiC in the oxidizing environments containing water vapor.Materials Science and Engineering A, 2003, 348: 47-53
    25. K Muehlenbachs, HA Schaeffer.Oxygen diffusion in vitreous silica-utilization of natural isotopic abundances. Can. Mineral., 1977, 15:179-84
    26.袁一,戎顺熙,石炎福译,RB伯德,WE斯图瓦特,EN莱特富特.传递现象,北京:化学工业出版社,1990:630
    27. XW Yin, LF Cheng, LT Zhang. Thermal shock behavior of 3-dimensional C/SiC composite. Carbon, 2002, 40:905-910

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700