金属薄膜厚度和光学常数测量及对称金属包覆波导振荡场传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的发展,特别是生命科学、临床医学等新兴科学的发展,生物探测和传感所面临的挑战越来越大,对光学生物传感器的灵敏度要求也越来越高。在研究了传统的基于迅衰场探测的光学传感器的特点之后,我们提出了一种基于振荡场探测的对称金属包覆波导(SMCW)结构的传感器。
     与普通的介质光波导不同的是,SMCW采用金属薄膜作为波导的包覆层,金属薄膜的厚度和光学常数的测量也成为一个重要的课题。厚度在几十个纳米范围内的金属薄膜的厚度和光学常数通常采用衰减全反射(ATR)法进行测量。从表面等离子共振吸收峰的三个参数共振角θSPR,半峰宽Wθ和反射率最小值Rm in出发会得到两组关于金属薄膜光学常数与厚度的解。传统的测量方法认为,必须改变探测条件进行二次测量才能对这两组解进行验算,找出真解。我们利用扩展的ATR谱,即包括全反射(TIR)部分的ATR谱,使用最基本的棱镜-金属薄膜结构,只用一次测量就可以完全定金属薄膜的厚度和光学常数。其原理是引入一个新的参数—全反射时的反射率阶越变化ΔR,根据ΔR是金属薄膜厚度的敏感函数的性质,就可以确定所得到的两组解中的真解。
     金属薄膜的特殊光学性质使得SMCW具有普通的介质光波导所不同的特点,如波导层厚度可以扩展到毫米量级,所激发的超高阶导模对波导参数的变化非常灵敏以及模式无关等特性。基于SMCW的以上特点,我们提出了将样品注入到SMCW的波导层中,利用激发的超高阶导模进行测量,实现了振荡场光学传感器的构造。其特征是,处于波导层中的样品由功率较大振荡场进行探测;另外,作为探针的超高阶导模比普通波导中的低阶模具有更高的灵敏度。理论分析表明,与现有的光学迅衰场传感器相比, SMCW振荡场传感器的灵敏度有一到两个量级的提升。
     我们通过实验对SMCW传感器的性能作了验证。用不同浓度的NaCl水溶液作为样品,在采用角度调制法时达到了424o/RIU的灵敏度和7.3×10-6RIU的分辨率;在采用强度调制法时,实现了0.88×10-6RIU的分辨率。在测量样品的吸收时,我们使用了亚甲蓝溶液作为样品,探测分辨率达到5×10-6,并且避免了亚甲蓝分子在波导表面的吸附效应所产生的影响。
     研究结果表明,SMCW振荡场光学传感器具有简单的结构和极高的灵敏度,在迅速发展的生物探测领域将有广阔的应用前景。
With the development of modern science and technology, especially the development of emerging science such as life sciences and clinical medicine, the biological survey and the sensing face growing challenge, the need for more sensitive biosensor has increased rapidly as well. After studying the conventional biosensors based on evanescent-field sensing, a symmetrical metal-clad waveguide (SMCW) sensor based on oscillating-field sensing is proposed.
     Different from the common dielectric waveguide, the cladding layer of SMCW is constructed by two thin metal films. Measurement of thickness and optical constants of thin metal films is also a research subject of our article. An extended attenuated total reflection (ATR) spectrum, which consists of a surface plasmon resonance (SPR) dip and a total internal reflection (TIR) step, is used to determine the optical constant and the thickness of a thin metal film at a given frequency in the conventional Kretschmann configuration. Previous research has shown that two sets of solutions for the optical constant and thickness can be obtained from a SPR dip, and the ambiguity should be removed by carrying out another angular scan process or employing a more complicated structure. However, we find that the true solution can be simply selected by a new parameter that denotes the TIR step change. Our method can avoid not only the troubles caused by the double-scan techniques, but also the increased difficulties due to the existence of an additional polymer film in a single-scan method.
     Due to the special optical properties of the metal film, the characteristic of SMCW is greatly different from the common dielectric waveguide in many aspects, such as the waveguide layer can be enlarged to millimeter scale, the ultra-high order modes in SMCW is very sensitive to refractive change of the waveguide, and present polarization independence. These unique features enable us to fabricate an oscillating-filed sensor based on SMCW. The samples are introduced into the waveguide layer and probed by the ultra-high order modes. Owing to the concentrated power in the sensing region and the use of very sensitive ultra-high order modes, the SMCW sensor gains a sensitivity enhancement of 1 to 2 orders of magnitude than that of the previous sensor structure.
     To verify the performance of the proposed SMCW sensor, several experiments with different measurement interrogation are carried out. Using the NaCl water solutions as samples, we obtain a sensitivity of 424o/RIU and resolution of 7.3×10-6RIU by applying an angular interrogation, and a resolution of 0.88×10-6RIU by applying an intensity interrogation. When employed as an absorption sensor, with the methylene blue solutions as samples, the SMCW structure achieves a resolution of 5×10-6, and avoides the surface adsorption effect of methylene blue solutions.
     It is demonstrated both theoretically and experimentally that the SMCW senor based on oscillating-filed sensing is more sensitive and easy fabricated, and has the potential applications in high sensitivity, low cost and accurate bio-sensing science.
引文
[1]乔明霞,[薄膜光学常数和厚度的透射光谱法测定研究],四川,四川大学,2007。
    [2]章睿荣,[通过全光谱拟合法确定薄膜光学常数和厚度],浙江,浙江大学,2007。
    [3] Homola J, Yee S S and Gauglitz G, Surface Plasmon Resonance Sensors: Review, 1999, Sensors and Actuators B, 54: 3-15.
    [4] Jiang Y, Cao Z and Shen Q, Low voltage electro-optic polymer light modulator using attenuated total internal reflection, Optics & Laser Technology, 2001, 33: 417-420.
    [5] Sarid D, Long-Range Surface-Plasma Waves on Very Thin Metal Films, Physics Review Letters, 1981, 47: 1927-1930.
    [6] Nenninger G G, Topiska P, Homola J, et al., Long-range surface plasmons for high resolution surface plasmon resonance sensors, Sensors and Actuators B: Chemical, 2001, 74: 145–151.
    [7] Zourob M, Mohr S and Brown B et al., The development of a metal clad leaky waveguide sensor for the detection of particles, Sensors and Actuators B: Chemical, 2003, 90: 296-307.
    [8] Chen F, Cao Z, Shen Q et al., Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide, Optics Express, 2005, 13: 10061-10065.
    [9] Lu H, Cao Z, Li H, Shen Q et al., Polarization-independent and tunable comb filter based on a free-space coupling technique, Optics Letters, 2006, 31: 386-388.
    [10] Chen G, Cao Z and Gu J et al., Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides, Applied Physics Letters, 2006, 89: 081120.
    [11]季一勤,刘华松,张艳敏,光学薄膜常数的测试与分析,红外与激光工程,2006,35:513 -518。
    [12]陈燕平,余飞鸿,薄膜厚度和光学常数的主要测试方法,光学仪器,2006,28:84-88。
    [13]张荣君,陈良尧,郑玉祥等,贵金属薄膜与介质相关的表面光学特性研究,红外与毫米波学报,1999,18:237-242。
    [14] Yanagihara M, Cao Jianlin, Yamamoto M, et al., Optical constants of very thin gold films in the soft x-ray region, Applied Optics, 1991, 30: 2807-2814。
    [15] Schulz L G, The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k, Journal of the Optical Society of America, 1954, 44:357-362.
    [16] Schulz L G, Tangherlini F R, Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n, Journal of the Optical Society of America, 1954, 44:362-368.
    [17] Kretschmann E,Determination of the optical constants of metals by excitation of surface plasmons,Zeitschrift für Physik, 1971, 248: 313-324.
    [18] Chen W P, Chen J M,Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,Journal of the Optical Society of America, 1981, 71: 189-191.
    [19] Yang F Z, Cao Z Q, Fang J X, Use of exchanging media in ATR configurations for determination of thicknew and optical constants of thin metallic films, Applied Optics, 1988, 27: 11-14.
    [20] Ding Y, Cao Z Q, Shen Q S, Improved SPR technique for determination of the thickness and optical constants of thin metal films, Optics & Quantum Electronics, 2003, 35: 1091-1097.
    [21] Lopez T,Vuye G,In situ investigation of metallic surfaces by surface plasmon ATR spectroscopy, electrical resistance measurements and Auger spectroscopy,Journal of Physics E: Scientific Instruments, 1982, 15: 456-461.
    [22] Liedberg B, Nylander C and Lundstrom I, Biosensing with surface plasmon resonance: how it allstarted, Biosensors & Bioelectronics, 1995, 10: i-ix.
    [23] Liedberg B, Nylander C and Lundstrom I, Surface plasmons resonance for gas detection and biosensing, Sensors and Actuators, 1983, 4: 299–304.
    [24] Challener W A, Edwards J D, McGowan R W, et al., A multilayer grating-based evanescent wave sensing technique, Sensors and Actuators B: Chemical, 2000, 71: 42–46.
    [25] Tiefenthaler K, Lukosz W, Integrated optical switches and gas sensors, Optics Letters, 1984, 10: 137-139.
    [26] Tiefenthaler K, Lukosz W, Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B, 1989, 6: 209-220.
    [27] Qi Z, Itoh K, Murabayashi M, et al., A Composite Optical Waveguide-Based Polarimetric Interferometer for Chemical and Biological Sensing Applications, Journal of Lightwave Technology, 2000, 18: 1106-1110.
    [28] Lavers C R, Itoh K, Wu S C, et al., Planar optical waveguides for sensing applications, Sensors and Actuators B: Chemical, 2000, 69: 85–95.
    [29] Brecht A, Gauglitz G, Label free optical immunoprobes for pesticide detection, Analytica Chimica Acta, 1997, 347: 2 19-233.
    [30] Maims C, Hulme J, Fielden R, et al., Grating coupled leaky waveguide micro channel sensor chips for optical analysis, Sensors and Actuators B: Chemical, 2001, 77: 671–678.
    [31] Yang S, Sasaki K, Minamitani H, Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption, Applied Optics, 1993, 32: 3544-3549.
    [32] Horvath R, Pedersen H C and Larsen N B, Demonstration of reverse symmetry waveguide sensing, Applied Physics Letters, 2002, 81: 2166-8
    [33] Horvath R, Pedersen H C, Skivesen N, et al., Monitoring of living cell attachment and spreading using reverse symmetry, Applied Physics Letters, 2005, 86: 071101.
    [34] Horvath R, Pedersen H C, Skivesen N, et al., Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating, Journal of Micromechanics and Microengineering, 2005, 15: 1260-1264.
    [35] Skivesen N, Horvath R, Pedersen H C, Multimode reverse-symmetry waveguide sensor for broad-range refractometry, Optics Letters, 2003, 28: 2473-2475.
    [36] Qi Z, Matsuda N, Santos J H, et al., Prism-coupled multimode waveguide refractometer, Optics Letters, 2002, 27: 689-691.
    [37] Okamoto T and Yamaguchi I, Absorption measurement using a leaky waveguide mode, Optical Review, 1997, 4: 354–357.
    [38] Okamoto T, Yamamoto M and Yamaguchi I, Optical waveguide absorption sensor using a single coupling prism, J. Opt. Soc. Am. A, 2000, 17: 1880-1886.
    [1]曹庄琪,导波光学中的转移矩阵方法,上海,上海交通大学出版社,2000
    [2]曹庄琪,导波光学,北京,科学技术出版社,2007
    [3]波恩M,沃尔夫E,光学原理,北京,科学出版社,1978
    [4]陈洸,[基于对称金属包覆波导的高灵敏度光生化传感器的研究],上海,上海交通大学,2007
    [5] Charles Kittel, Introduction to Solid State Physics, 7th edition, John Wiley & Sons, Inc., 1996
    [6]孙喜莲,洪瑞金,齐红基等,磁控溅射不同厚度银膜的微结构及其光学常数,物理学报,2006,55:4923-4927
    [7] Schulz L G, The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k, Journal of the Optical Society of America, 1954, 44:357-362.
    [8] Schulz L G, Tangherlini F R, Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n, Journal of the Optical Society of America, 1954, 44:362-368.
    [8] Otto A, Exaction of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection, Zeitschrift für Physik, 1968, 216: 398-410.
    [9] Kretschmann E,Determination of the optical constants of metals by excitation of surface plasmons,Zeitschrift für Physik, 1971, 248: 313-324.
    [10] Lopez T,Vuye G,In situ investigation of metallic surfaces by surface plasmon ATR spectroscopy, electrical resistance measurements and Auger spectroscopy,Journal of Physics E: Scientific Instruments, 1982, 15: 456-461
    [1]曹庄琪,导波光学中的转移矩阵方法,上海,上海交通大学出版社,2000.
    [2]曹庄琪,导波光学,北京,科学技术出版社,2007.
    [3] Otto A,Exaction of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,Zeitschrift für Physik, 1968, 216: 398-410.
    [4] Kretschmann E.,Determination of the optical constants of metals by excitation of surface plasmons,Zeitschrift für Physik, 1971, 248: 313-324.
    [5] Chen W P, Chen J M,Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,Journal of the Optical Society of America, 1981, 71: 189-191.
    [6] Chen W P, Chen J M,Surface plasma wave studey of submonolayer Cs and Cs-O cover Ag surfaces, Surface Science, 1980, 91: 601-617.
    [7] Roberson W M, Fullerton E, Reexamination of the surface-plasma-wave technique fordetermining the dielectric constant and thickness of metal films, 1989, 6: 1584-1589.
    [8]刘军民,用衰减全反射(ATR)及拟合法对固体表面物理性质的研究,光子学报,2000,29:161-165.
    [9] Yang F Z, Cao Z Q, Fang J X, Use of exchanging media in ATR configurations for determination of thicknew and optical constants of thin metallic films, Applied Optics, 1988, 27: 11-14.
    [10]周俊,崔春祥,贾振红等,单波长光激励SPW测定金属膜厚度与介电常数,中国激光,1996,23:338-342.
    [11] Ding Y, Cao Z Q, Shen Q S, Improved SPR technique for determination of the thickness and optical constants of thin metal films, Optics & Quantum Electronics, 2003, 35: 1091-1097.
    [12] Lopez T, Vuye G, In situ investigation of metallic surfaces by surface plasmon ATR spectroscopy, electrical resistance measurements and Auger spectroscopy, Journal of Physics E: Scientific Instruments, 1982, 15: 456-461.
    [13] Sarid D, Long-Range Surface-Plasma Waves on Very Thin Metal Films, Physics Review Letters, 1981, 47: 1927-1930.
    [14] Deck R T, Sarid D, Enhancement of second harmonic generation by coupling to long-range surface plasmons, Journal of the Optical Society of America, 1982, 72: 1613-1617.
    [15] Schulz L G, The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k, Journal of the Optical Society of America, 1954, 44:357-362.
    [16] Schulz L G, Tangherlini F R, Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n, Journal of the Optical Society of America, 1954, 44:362-368.
    [1] Gu J H, Cao Z Q, Shen Q S et al., Determination of thickness and optical constants of thin metal films with an extended ATR spectrum, Journal of Physics D: Applied Physics, 2008, 41: 155309.
    [2] Homola J, Yee S S and Gauglitz G, Surface Plasmon Resonance Sensors: Review, 1999, Sensors and Actuators B, 54: 3-15.
    [3] Jiang Y, Cao Z and Shen Q, Low voltage electro-optic polymer light modulator using attenuated total internal reflection, Optics & Laser Technology, 2001, 33: 417-420.
    [4] Shankaran D R and Miura N, Trends in interfacial design for surface plasmon resonance based immunoassays, Journal of Physics D: Applied Physics, 2007, 40: 7187-7200.
    [5] Harris R D and Wilkinson J S, Waveguide surface plasmon resonance sensors, Sensors and Actuators B: Chemical, 1995, 29: 261-267.
    [6] Zourob M, Mohr S and Brown B et al., The development of a metal clad leaky waveguide sensor for the detection of particles, Sensors and Actuators B: Chemical, 2003, 90: 296-307.
    [7] Chen F, Cao Z, Shen Q et al., Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide, Optics Express, 2005, 13: 10061-10065.
    [8] Lu H, Cao Z, Li H, Shen Q et al., Polarization-independent and tunable comb filter based on a free-space coupling technique, Optics Letters, 2006, 31: 386-388.
    [9] Chen G, Cao Z and Gu J et al., Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides, Applied Physics Letters, 2006, 89: 081120.
    [10] Chen W P, Chen J M,Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,Journal of the Optical Society of America, 1981, 71: 189-191.
    [11] Yang F Z, Cao Z Q, Fang J X, Use of exchanging media in ATR configurations for determination of thicknew and optical constants of thin metallic films, Applied Optics, 1988, 27: 11-14.
    [12] Ding Y, Cao Z Q, Shen Q S, Improved SPR technique for determination of the thickness and optical constants of thin metal films, Optics & Quantum Electronics, 2003, 35: 1091-1097.
    [13] Roberson W M, Fullerton E, Reexamination of the surface-plasma-wave technique for determining the dielectric constant and thickness of metal films, 1989, 6: 1584-1589.
    [14] Otto A, Exaction of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection, Zeitschrift für Physik, 1968, 216: 398-410.
    [15] Kretschmann E, Determination of the optical constants of metals by excitation of surface plasmons, Zeitschrift für Physik, 1971, 248: 313-324.
    [1] Garcia-Valenzuela A and Diaz-Uribe R, Detection limits of an internal-reflection sensor for the optical beam deflection method, Applied Optics, 1997, 36: 4456-4462.
    [2] Tentori D, Famozo C L, High-accuracy critical angle refractometry, Optical Engineering, 1993, 32: 593-601.
    [3] Meeten G H, North A N, Refractive-index measurement of absorbing and turbid fluids by reflection near the critical angle, Measurement Science Technology, 1995, 6: 214-221.
    [4] Li H, Xie S, Measurement method of the refractive index of biotissue by total internal reflection, Applied Optics, 1996, 35: 1793-1795.
    [5] Garcia-Valenzuela A, Pena-Gomar M C and Fajardo-Lira C, Measuring and sensing a complex refractive index by laser reflection near the critical angle, Optical Engineering, 2002, 41: 1708-1716.
    [6] Pena-Gomar M C, Gonzalez-Gonzalez M L and Garcia-Valenzuela A, et al., Monitoring Particle Adsorption by Use of Laser Reflectometry Near the Critical Angle, Applied Optics, 2004, 43:5963-5970.
    [7] Micheletto R, Kawakami Y, Hamamoto K et al., Index-of-refraction sensors: virtually unlimited sensing power at the critical angle, Optics Letters, 2006, 31: 205-207.
    [8] Liedberg B, Nylander C and Lundstrom I, Biosensing with surface plasmon resonance: how it all started, Biosensors & Bioelectronics, 1995, 10: i-ix.
    [9] Homola J, Yee S S and Gauglitz G, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical, 1999, 54: 3-15.
    [10] Lubbers D W, Opitz N, Eine neue pCO2-bzw: pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flussigkeiten, Zeitschrift Fur Naturforschung C, 1975, 30: 532–533.
    [11] Liedberg B, Nylander C and Lundstrom I, Surface plasmons resonance for gas detection and biosensing, Sensors and Actuators, 1983, 4: 299–304.
    [12] Kretschmann E,Determination of the optical constants of metals by excitation of surface plasmons,Zeitschrift für Physik, 1971, 248: 313-324.
    [13] Vidal M M B, Lopez R and Aleggret S et al., Determination of probable alcohol yield in musts by means of an SPR optical sensor, Sensors and Actuators B: Chemical, 1993, 11: 455–459.
    [14] Matsubara K, Kawata S, Minami S, Optical chemical sensor based on surface plasmon measurement, Applied Optics, 1988, 27: 1160–1163.
    [15] Liedberg B, Lundstrom I, Stenberg E, Principles of biosensing with an extended coupling matrix and surface plasmon resonance, Sensors and Actuators B: Chemical, 1993, 11: 63–72.
    [16] Zhang L M and Uttamchandani D, Optical chemical sensing employing surface plasmon resonance, Electronics Letters, 1988, 23: 1469–1470.
    [17] Jorgenson R C and Yee S S, A fiber-optic chemical sensor based on surface plasmon resonance, Sensors and Actuators B: Chemical, 1993, 12: 213–220.
    [18] Vukusic P S, Bryan-Brown G, Sambles J R, Surface plasmon resonance on grating as novel means for gas sensing, Sensors and Actuators B: Chemical,1992, 8: 155–160.
    [19] Nelson S G, Johnston K S, Yee S S, High sensitivity surface plasmon resonance sensor based on phase detection, Sensors and Actuators B: Chemical, 1996, 35: 187–191.
    [20] Kooyman R P H, Kolkman H and Gent J, Surface plasmon resonance immunosensors: sensitivity considerations, Analytica Chimica Acta, 1988, 23: 35–45.
    [21] Yeatman E M, Resolution and sensitivity in surface plasmon microscopy and sensing, Biosensors and Bioelectronics, 1996, 11: 635–649.
    [22] Homola J, On the sensitivity of surface plasmon resonance sensors with spectral interrogation, Sensors and Actuators B: Chemical, 1997 41: 207–211.
    [23] Berger C E H, Baumer T A M and Kooyman R P H et al., Surface plasmon resonance multisensing,Analytical Chemistry, 1998, 70: 703–706.
    [24] Karlsen S R, Johnston R S and Yee S S et al., First-order surface plasmon resonance sensor system based on a planar light pipe, Sensors and Actuators B: Chemical,1996, 32: 137–141.
    [25] Homola J, Yee S S, Surface plasmon resonance sensor based on planar light pipe, theoretical optimization analysis, Sensors and Actuators B: Chemical, 1996, 37: 145–150.
    [26] Cahill C P, Johnston K S and Yee S S, A Surface plasmon resonance sensor probe based on retro-reflection, Sensors and Actuators B: Chemical, 1997 45: 161–166.
    [27] Melendez J, Carr R and Bartholomew D, Development of a surface plasmon resonance sensor for commercial applications, Sensors and Actuators B: Chemical, 1997, 39: 375–379.
    [28] Chandezon J, Dupuis M T and Cornet G et al., Multicoated gratings: a differential formalism applicable an the entire optical region, Journal of Optical Society of America, 1982, 72: 839–846.
    [29] Cullen D C, Brown R G and Lowe C R, Detection of immunocomplex formation via surface plasmon resonance on goldcoated diffraction gratings, Biosensors, 1987 3: 211–225.
    [30] Jory M J, Vukusic P S and Sambles J R, Development of a prototype gas sensor using surface plasmon resonance on gratings, Sensors and Actuators B: Chemical, 1994, 17: 1203–1209.
    [31] Lambeck P V, Integrated opto-chemical sensors, Sensors and Actuators B: Chemical, 1992, 8: 103–116.
    [32] Harris R D, Wilkinson J S, Waveguide surface plasmon resonance sensors, Sensors and Actuators B: Chemical, 1995, 29: 261–267.
    [33] Weiss M N, Srivastava R, Groger H, et al., A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors, Sensors and Actuators A: Physical, 1996, 51: 211–217.
    [34] Margheri G, Mannoni A, Quercioli F, A new high-resolution displacement sensor based on surface plasmon resonance, Proc. SPIE, 1996, 2783: 211–220.
    [35] Schaller J K, Czepluch R, Stojanoff C G, Plasmon spectroscopy for high resolution angular measurements, Proc. SPIE, 1997, 3098: 476–486.
    [36] Homola J, Schwotzer G, Lehmann H, et al., A new optical fiber sensor for humidity measurement, 1995, Photonics’95, Prague, Czech Republic, EOS Annual Meeting Digest Series, 2A 245–248.
    [37] Miwa S, Arakawa T, Selective gas detection by means of surface plasmon resonance sensors, Thin Solid Films, 1996, 281–282: 466–468.
    [38] Chadwick B, Gal M, Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium, Applied Surface Science, 1993, 68: 135–138.
    [39] Chadwick B, Gal M, A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy, Sensors Actuators B: Chemical, 1994, 17: 215–220.
    [40] Gent J, Lambeck P V, Bakker R J, et al., Design and realization of a surface plasmon resonance-based chemo-optical sensor, Sensors and Actuators A: Physical, 1991, 26: 449–452.
    [41] Jung C C, Saban S B, Yee S S, et al., Chemical electrode surface plasmon resonance sensor, Sensors and Actuators B: Chemical, 1996, 32: 143–147.
    [42] Chinowsky T M, Saban S B, Yee S S, Experimental data from a trace metal sensor combining surface plasmon resonance with anodic stripping voltammetry, Sensors and Actuators B: Chemical, 1996, 35: 37–43.
    [43] Flanagan M T, Pantell R H, Surface plasmon resonance and immunosensors, Electronics Letters, 1984,20: 968–970.
    [44] I. Lundstro¨m, Real-time biospecific interaction analysis, Biosensors and Bioelectronics, 1994, 9: 725–736.
    [45] Severs A H, Schasfoort R B M, Salden M H L, An immunosensor for syphilis screening based on surface plasmon resonance, Biosensors and Bioelectronics,1993, 8: 185–189.
    [46] Brecht A, Gauglitz G, Label free immunoprobes for pesticide detection, Analytica Chimica Acta, 1997, 347: 219–233.
    [47] Sota H, Hasegawa Y, Iwakura M, Detection of conformational changes in an immobilized protein using surface plasmon resonance, Analytical Chemistry, 1998, 70: 2019–2024.
    [48] Deka J, Kuhlmann J, Muller O, A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein Tau, Eur. J. Biochem., 1998, 253: 591–597.
    [49] Regnault V, Arvieux J, Vallar L, et al., Immunopurification of human Beta(2)-glycoprotein I with a monoclonal antibody selected for its binding kinetics using surface plasmon resonance biosensor, J. Immun. Methods, 1998, 211: 191–197.
    [50] Koh S S, Ansari A Z, Ptashne M, et al., An activator target in the RNA polymerase II holoenzyme, Mol. Cell, 1998, 1: 895–904.
    [51] Chapple D S, Mason D J, Joannou C L, et al., Structure–function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype 0111, Infect. Immunol., 1998, 66: 2434–2440.
    [52] Sarid D, Long-Range Surface-Plasma Waves on Very Thin Metal Films, Physics Review Letters, 1981, 47: 1927-1930.
    [53] Nenninger G G, Topiska P, Homola J, et al., Long-range surface plasmons for high resolution surface plasmon resonance sensors, Sensors and Actuators B: Chemical, 2001, 74: 145–151.
    [54] Challener W A, Edwards J D, McGowan R W, et al., A multilayer grating-based evanescent wave sensing technique, Sensors and Actuators B: Chemical, 2000, 71: 42–46.
    [55] Tiefenthaler K, Lukosz W, Integrated optical switches and gas sensors, Optics Letters, 1984, 10: 137-139.
    [56] Tiefenthaler K, Lukosz W, Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B, 1989, 6: 209-220.
    [57] Qi Z, Itoh K, Murabayashi M, et al., A Composite Optical Waveguide-Based Polarimetric Interferometer for Chemical and Biological Sensing Applications, Journal of Lightwave Technology, 2000, 18: 1106-1110.
    [58] Lavers C R, Itoh K, Wu S C, et al., Planar optical waveguides for sensing applications, Sensors and Actuators B: Chemical, 2000, 69: 85–95.
    [59] Brecht A, Gauglitz G, Label free optical immunoprobes for pesticide detection, Analytica Chimica Acta, 1997, 347: 2 19-233.
    [60] Maims C, Hulme J, Fielden R, et al., Grating coupled leaky waveguide micro channel sensor chips for optical analysis, Sensors and Actuators B: Chemical, 2001, 77: 671–678.
    [61] Yang S, Sasaki K, Minamitani H, Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption, Applied Optics, 1993, 32: 3544-3549.
    [62] Horvath R, Pedersen H C, Larsen N B, Demonstration of reverse symmetry waveguide sensing in aqueous solutions, Applied Physics Letters, 2002, 81: 2166-2168.
    [63] Horvath R, Pedersen H C, Skivesen N, et al., Monitoring of living cell attachment and spreading using reverse symmetry, Applied Physics Letters, 2005, 86: 071101.
    [64] Horvath R, Pedersen H C, Skivesen N, et al., Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating, Journal of Micromechanics and Microengineering, 2005, 15: 1260-1264.
    [65] Skivesen N, Horvath R, Pedersen H C, Multimode reverse-symmetry waveguide sensor for broad-range refractometry, Optics Letters, 2003, 28: 2473-2475.
    [66] Qi Z, Matsuda N, Santos J H, et al., Prism-coupled multimode waveguide refractometer, Optics Letters, 2002, 27: 689-691.
    [67] Okamoto T and Yamaguchi I, Absorption measurement using a leaky waveguide mode, Optical Review, 1997, 4: 354–357.
    [68] Okamoto T, Yamamoto M and Yamaguchi I, Optical waveguide absorption sensor using a single coupling prism, J. Opt. Soc. Am. A, 2000, 17: 1880-1886.
    [1] Li H G, Cao Z Q, Lu H F, et al., Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide, Applied Physics Letters, 2003, 83: 14.
    [2] Lu H, Cao Z, Li H, et al., Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide, Applied Physics Letters, 2004, 85: 20.
    [3] Levy-Yurista G, Friesem A A, Very narrow spectral filters with multilayered grating-waveguide structures, Applied Physics Letters, 2000, 77: 1596-1598.
    [4] Blomqvist M, Khartsev S, Grishin A, Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates, Applied Physics Letters, 2003,82: 439-441.
    [5] Takano T and Hamasaki J, Propagating modes of a metalclad-dielectric-slab waveguide for integrated optics, IEEE Journal of Quantum Electronics, 1972, 8: 206-212.
    [6] Batchman T E and Rashleigh S C, Mode-selective properties of a metal-clad dielectric-slab. waveguide for integrated optics, IEEE Journal of Quantum Electronics, 1972, 8: 848-851.
    [7] Garmire E M and Stoll H, Propagation losses in metal-film-substrate optical waveguide, IEEEJournal of Quantum Electronics, 1972, 8: 763-766.
    [8] Mammel W L and Weber H P, Metal-clad optical waveguides: analytical and experimental study, Applied Optics, 1974, 13, 396-405.
    [9] Zaluzny M and Zietkowski W, On the propagation characteristics of metal clad waveguides with a quantum well, Solid State Communications, 2003,125: 287-292.
    [10] Kim K, Kwon H, Song J, et al., Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide, Optics Communications, 2000, 180: 37-42.
    [11] Chen C H and Wang L, Maximization of Extinction Ratios of Thin-Metal-Clad Optical Waveguide Polarizers with Proper Dielectric-Cover-Layer Thickness, Japanese Journal of Applied Physics, Part 1, 2000, 39: 4130-4137.
    [12] Lu H, Cao Z, Li H, et al., Polarization-independent and tunable comb filter based on a free-space coupling technique, Optics Letters, 2006,31: 386-388.
    [13] Yu B, Pickrell G, Wang A, Thermally Tunable Extrinsic Fabry-Perot Filter, IEEE Photonics Technology Letters, 2004, 16: 2296-2298.
    [14] Grover R, Ibrahim T A, Ding T N, et al., Laterally coupled InP-based single-mode microracetrack notch filter, IEEE Photonics Technology Letters, 2003, 15:1082-1084.
    [15] Gu X J, Wavelength-divisionmultiplexing isolation fiber filter and lightsource using cascaded long-period fiber gratings, Optics Letters, 1998, 23: 509-511.
    [16] Fang X and Claus R O, Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer, Optics Letters, 1995, 20: 2146-2148.
    [17] Kim S and Kang J U, Polarization-independent "figure-eight" birefringent Sagnac variable comb-filter/attenuator, IEEE Photonics Technology Letters, 2004, 16: 494-496.
    [18] An H L, Lin X Z, Pun E, et al., Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter, Optics Communications, 1999, 169: 159-165.
    [19] Sohn K and Song J, Tunable fiber optic comb filter using a side-polished single mode fiber coupler with LiNbO overlay and. intermediate coupling layer, Optics Communications, 2000, 203: 271-275.
    [20] Sohn K and Song J, Thermooptically tunable side-polished fiber comb filter and its application, IEEE Photonics Technology Letters, 2000, 14: 1575-1577 .
    [21] Chen F, Cao Z, Shen Q, et al., Nanoscale displacement measurement in a variable-air-gap optical waveguide, Applied Physics Letters, 2006, 88: 161111.
    [22] Chen F, Cao Z, Shen Q, et al., Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide, Optics Express, 2005, 13: 10061-10065.
    [23] Waters R L and Aklufi M E, Micromachined Fabry–Perot interferometer for motion detection, Applied Physics Letters, 2002, 81: 3320-3322.
    [24] Chao C, Wang Z H, Zhu W G, Modulated laser interferometer with picometer resolution for piezoelectric characterization, Review of Scientific Instruments, 2004, 75: 4641-4463.
    [25] Arai Y and Yokozeki S, In-plane displacement measurement using electronic pecklepattern interferometry based on spatial fringe analysis method, Optical Engineering, 2004, 43: 2168-2174.
    [26] Lee C W, Zhang X M, Tjin S C, et al., Nanoscale displacement measurement of MEMS devices using fiber optic interferometry, Journal of The Institution of Engineers, 2004, 44: 1-7.
    [27] Jiang Y, Cao Z, Shen Q, Determination of the Complex Dielectric Coefficient and Thickness of Absorbing Films Using Guided Waves, Acta Optica Sinica, 2000, 20: 642-646.
    [28] Shi J, Cao Z, Zhu J, et al., Displacement measurement in real time using the attenuated total reflection technique, Applied Physics Letters, 2004, 84: 3253.
    [1] Tiefenthaler K, Lukosz W, Sensitivity of grating couplers as integrated-optical chemical sensors, Journal of Optics Society of America B, 1989, 6: 209-219.
    [2] Qi Z, Yimit A, Itoh K, et al., Composite optical waveguide composed of a tapered film of bromothymol blue vaporated onto a potassium ion–exchanged waveguide and its application as a guided wave absorption–based ammonia-gas sensor, Optics Letters, 2001, 26: 629-631.
    [3] Qi Z, Itoh K, Murabayashi M, et al., Characterization and application of a channel-planar composite waveguide, Optics Letters, 2000, 25: 1427-1429.
    [4] Saarinen J J, Weiss S M, Fauchet P M, et al., Optical sensor based on resonant porous silicon structures, Optics Express, 2005, 13: 3754-3764.
    [5] Weiss S M and Fauchet P M, Electrically tunable porous silicon active mirrors, Physica Status Solidi A, 2003, 197: 556–560.
    [6] Lugo J, Rio J, Taguena-Mart?nez J, Influence of surface coverage on the effective optical properties of porous silicon modeled as a Si-wire array, Journal of Applied Physics, 1997, 81: 1923–1928.
    [7] Schmid P E, Optical absorption in heavily doped silicon, Physics Review B, 1981, 23: 5531–5536.
    [8] Li H G, Cao Z Q, Lu H F, et al., Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide, Applied Physics Letters, 2003, 83: 14.
    [9] Homola J, Yee S S and Gauglitz G, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical, 1999, 54: 3-15.
    [10] Horvath R, Pedersen H C, Larsen N B, Demonstration of reverse symmetry waveguide sensing in aqueous solutions, Applied Physics Letters, 2002, 81: 2166-2168.
    [11] Horvath R, Pedersen H C, Skivesen N, et al., Monitoring of living cell attachment and spreading using reverse symmetry, Applied Physics Letters, 2005, 86: 071101.
    [12] Horvath R, Pedersen H C, Skivesen N, et al., Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating, Journal of Micromechanics and Microengineering, 2005, 15: 1260-1264.
    [13] Polky J N, Harris J H, Absorption from Thin-film waveguides, Journal of the Optical Society of America, 1972, 62: 1081-1087.
    [14] Chen G, Cao Z Q, Gu J H, et al., Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides, Applied Physics Letters, 2006, 89: Art No. 081120.
    [15] Chang K A, Lim H J, Su C B, A fiber optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids, Measurement Science and Technology, 2002, 13: 1962~1965.
    [16] Gu J H, G. Chen, Cao Z Q, et al., An intensity measurement refractometer based on a symmetric metal-clad waveguide structure, Journal of Physics D: Applied Physics, 2008, 41: Art No. 185105.
    [17] Qi Z, Matsuda N, Santos J H, et al., Prism-coupled multimode waveguide refractometer, Optics Letters, 2002, 27: 689-691.
    [18] Gu J H, Cao Z Q, Shen Q S, et al., Oscillating wave absorption sensor using a symmetrical metal-cladding optical waveguide structure, Submitted.
    [19] Okamoto T and Yamaguchi I, Absorption measurement using a leaky waveguide mode, Optical Review, 1997, 4: 354–357.
    [20] Okamoto T, Yamamoto M and Yamaguchi I, Optical waveguide absorption sensor using a single coupling prism, J. Opt. Soc. Am. A, 2000, 17: 1880-1886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700