史氏鲟免疫学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
史氏鲟是黑龙江特有的经济鱼类,目前已成为重要的养殖品种。对史氏鲟免疫学的研究是养殖过程中疾病的防治以及免疫技术应用的基础。本文采用组织学、生物化学及免疫学等方法对史氏鲟的免疫学及相关因子进行了研究,同时也探讨了史氏鲟免疫系统在免疫应激(包括疾病感染和免疫药物刺激)中的变化。
     血细胞是重要的免疫相关细胞。光镜下可以看到史氏鲟的外周血中有网织红细胞和处于分裂状态的红细胞,含有四种类型白细胞,分别为淋巴细胞、粒细胞、血栓细胞和单核细胞。在电子显微镜下观察:红细胞中具有少量的细胞器;淋巴细胞结构典型:单核细胞较粒细胞稍小且具有较多线粒体;血栓细胞具有梭形和圆形两种,胞质较少,其中梭形的血栓细胞胞质几乎透明;史氏鲟的粒细胞有两种不同形态的电子密度高及电子密度低的颗粒。
     鱼类的血清中含有多种蛋白,其中的抗体构成了—个特异性的体液防御体系。对2~+龄史氏鲟,3~+龄中华鲟及3龄达氏鳇的血清蛋白及血清免疫球蛋白进行了研究。血清蛋白分析的结果表明:史氏鲟、达氏鳇及中华鲟分别有11、8及7条血清蛋白谱带;血清蛋白相似系数的结果表明中华鲟和史氏鲟的相似性要高于达氏鳇和史氏鲟;三种鲟鱼的血清蛋白及其组分的含量也存在差别。采用凝胶层析的方法,纯化制备了健康非免疫状态下这三种鲟鱼的血清免疫球蛋白IgM,采用蛋白免疫印迹验证了所提纯物质IgM,同时检测出其重链池具有一定的抗体活性而轻链的检测结果呈阴性。通过PAGE的方法测定出:史氏鲟,中华鲟和达氏鳇IgM的相对分子量分别为867KD,896KD和924KD;这三种鱼IgM的重链分子量均为88KD,都具有29KD的轻链,其中达氏鳇还另有一分子量约为26KD的轻链蛋白。对这三种鲟鱼IgM的同源性分析表明它们的血清Ig具有同源性,与相互之间的兔抗Ig都有免疫沉淀反应,但与鲤血清Ig无同源性。三种鲟鱼血清IgM可被木瓜蛋白酶水解并得到两个均一的、相对分子量分别为44KD和66KD的片段,其中66KD片段免疫印迹检测结果为阳性。采用双抗体夹心ELISA法测定了这三种鲟鱼血清中IgM的平均浓度。
     史氏鲟在受到嗜水气单胞菌感染的情况下,血清中补体C3、C4的含量均有所升高,其中C3的含量呈现显著性的升高,表明C3在史氏鲟抗嗜水气单胞菌感染中具有一定的作用。溶菌酶的量在史氏鲟血清和组织中总的趋势是随着温度的上升而升高,但对于不同的组织,溶菌酶在每个温度梯度之间变化的规律有所差别。血清、粘液、肝、胃及后肠在本研究的最低温和最高温时有显著性的差异,其余各组织的溶菌酶随温度变化无显著性差异。溶菌酶在各组织中分布不同,前肠的溶菌酶量在各温度下均占据优势,幽门垂、后肠及脾中溶菌酶的量也较高,而粘液和血清中溶菌酶的量较低。嗜水气单胞菌感染后的史氏鲟血清溶菌酶量呈
    
    升高趋势,但变化不显著,肝脏除在1今15℃无变仕汐卜,其余温度下较健康对照有显著性升
    高;史氏鳃感染后胃、鳃及粘腋熔菌酶随温度产生不同的变化;史氏鳃前肠、后肠及幽门垂
    在感染后溶菌酶的活性均呈现阳氏的趋势,表明不同组织在感染中的变化不同。史氏鳃与小
    体鳃溶菌前在组织中的分布表明,虽然同为鳃科鳃属,其差另琳王剥良显著的。
     史氏瞬各组织中的碱性磷酸酶AKP周州郎明顶序为:有旗酥幽门塑乡后服卜鲤卜用卜胃:小
    体鳃各组织中AKP活性的排列须序为幽门夔乡蒯卧后服卜鳃明升胃。史氏鳃各组织中酸性磷
    酸酶ACP活性的抖陌山项序为蒯卧用卜幽门菠乡后服卜胃>鳃:小体鳃各组织中ACP活性的排
    列顺序为月卜幽门诬卜育旗淤后服卜鲤卜胃。史氏鳃的血清中AKP活性显著高于小体鳃,月刊胜中
    AKP的活性则明显低于小体鳃,两种鱼其它各组织AKP无明显差别,两种鱼各组织中的ACP
    活性亦无显著差异。对两个生长阶段史氏瞬及其它五种鳃鱼幼鱼胃、肠道和肝脏中蛋白酶、
    月哥访酶、淀粉酶周幽荆于了测定。除个另师在较大差异外,三种消化酶活性在六种鳃鱼间大
    体上没有明显差异。
     一氧化氮NO是重要的免疫调节分子,在嗜水气单胞菌感染后的史氏鳃血清中检钡怪U了
    NO的显著性升高,月刊胜中的NO在感染后变化不显著。一氧化氮合酶NOS在NO的合成中
    起着关键的作用,但史氏鳃感染后血清及肝脏中的NOS活性无显著性的变化。
     许多研究表明中药黄蔑对免疫功能具有调节作用,采用灌服的方法研究了黄茂对史氏鳃
    免疫功能和抗氧化能力的影响。灌服称劝口剂量为1%的黄蔑的史氏鳃与对照比肝脏溶菌酶量
    有显著升高,其余组织中溶菌酶量虽升高,但无统计学意义;摺貌受截茂后史氏鳃血清中NO
    及NOS无显著变化,但1.仓场组及2.创毛红明升吐NO的量及2.嘶组肝脏NOS活性与对照组有
    显著性差异,同感染试验相比,药物调节的NO及NOS变化不同;黄茂具有抗氧化能力,
    显著阳氏了史氏鳃血浆中的月断欣峰以户物MDA,对红细胞、血浆及肝脏SOD活性总的来
    说有增强作用,添加剂量为1%时效果显著。
Amur sturgeon (Acipenser schrencki Brandt) is a kind of essential economic species in Heilongjiang River and now become an important culture fish. It is very useful to study the immunological factors and other related factors of the fish for curing and preventing diseases and adopting immunization techniques in the fish culture.
    Blood cells are important in immune system. Reticulocyte and erytnrocyte which are splitting were found There are four kind of leukocytes in peripheral blood of Amur sturgeon: lymphocyte, granulocyte, tnrombocyte and monocyte. Blood cells of the fish were observed under electron microscope. There are a little organells in the cytoplasm of the erythrocyte. The lymphocyte is typical and there are lots of mitochondria in cytoplasm of the monocyte which is smaller than granulocyte. Thrombocyte is in fusiform or nearly round form with little cytoplasm. The granules of granulocyte are classified into two kinds based on electron-lucent and electron-dense.
    Serum protein and Ig of 2+ years old Amur sturgeon, 3+ years old Chinese sturgeon Acipenser sinesis Gray and 3 years old Huso sturgeon Huso dauricus Georgi are analyzed. The results show that serum proteins of the three fishes are different with each other in composition and level of serum proteins. Coefficient of similarity about serum protein show that Chinese sturgeon is more similar with Amur sturgeon compared with Huso sturgeon. Saturation ammonium sulfate sedimentation and Sephadex G-200 gel chromatography were used to purify Ig from serum of Amur sturgeon, Chinese sturgeon and Huso sturgeon respectively. IgM molecular weight of Amur sturgeon, Chinese sturgeon and Huso sturgeon are 867KD, 896KD and 924KD respectively assayed by unreduced PAGE. Reduced SDS-PAGE shows that heavy chain molecule weight of IgM in the three Sturgeons serum are all 88KD and light chain molecule weight of Amur sturgeon and Chinese sturgeon are 29KD, while there are two kinds of light chain in Huso sturgeon with molecule weigh
    t at 29KD and 26KD. Western-blotting analysis showed antibody activity of IgM and the heavy chain of IgM in serum of die three Sturgeons. Ouchterlony results show that IgM of each of the three Sturgeons can precipitated with rabbit serum anti IgM of each other, but cannot response with rabbit serum anti carp IgM. IgM of the three Sturgeons can be hydrolyzed by papain in corresponding conditions and two fragments are obtained. Molecule weight of first peak is 66KD and that of the second is 44 KD determined by SDS-PAGE. Content of IgM in sera of Ihe three Sturgeons were assayed by sandwich ELISA with sensitivity at 16ng.ml-1.
    C3 content in serum increased significantly while the fish infected by Aeromonas hydrophila (Ah) and C4 showed insignificant in the same condition It seemed that C3 is important in Ah
    
    
    infection. Lysozyme content in serum and other tissues of 1+ years old Amur sturgeon tended to increase with the temperature, but increasing range varied in different tissues. Lysozyme content in serum, mucus, liver, stomach and hindgut showed significant difference between the lowest and the highest temperature in the test while that in the other tissues showed no significant difference. We analyzed distribution of lysozyme in serum and several tissues of Amur sturgeon and the results show that lysozyme content in foregut is the highest in the tissues assayed in every temperature in the test while lysozyme in pylonc caecum, hindgut and spleen show hight level in the test and that in serum and mucus are lower in level compared with the other tissues. Lysozyme content in serum increased insignificantly after Amur sturgeon infected by Ah compared with that in the normal fish. Lysozyme in liver showed significant increasing between normal fish and fish infected except at 14-15℃. Difference of lysozyme in stomac
    h, mucus and gill between nonnal fish and fish infected varied in different temperature. Lysozyme in foregut, hindgut and pylonc caecum decreased after the fish infected by Ah. The changes of different tissues were not the same after
引文
1.安利国,冯和强,邢维贤等.灭活疫苗对鲤鱼血清溶菌酶和腹腔吞噬细胞活性的作用.山东师范大学学报(自然科学版).1999;14(2):175-179.
    2.蔡完琪,孙偑芳.“四大家鱼”对暴发性鱼病的抗病力的种间差异.中国水产科学.1995;2(2):71-77.
    3.蔡完琪,孙偑芳.三种鲤对暴发性鱼病抗病力的差异.水产学报,1994;18(4):290-296.
    4.蔡中华等.四种中药对鲤鱼非特异性免疫功能的影响.天津农学院学报,1998;5(2):31-34
    5.陈昌福,纪国良.鱼类的某些“自然抗体”(非特异性免疫物质)的特性及其功能.鱼类病害研究.1990; 12(2):42-48.
    6.陈昌福,罗宇良,蔡冰等.饲养水温对草鱼溶菌酶活性的影响.中国水产科学.1996;3(3):24-30.
    7.陈洪茂,赵佐庆,吕发勤等.肝脏肿瘤缺血再灌注损伤后NO和NOS的改变及意义.第四军医大学学报. 2003;24(24):2247-2250.
    8.陈奖励,何昭阳,赵文.水产微生物学.第—版.北京:农业出版社.1993:294-305.
    9.陈立翠,刘贤武,林月景等.劲力康口服液对疲劳大鼠MDA,SOD,NO含量的影响实验研究.成都中医药大学学报.2001;24(4):45-46.
    10.陈民利,应华忠,史国荣等.金葡液对小鼠血清碱性磷酸酶活力的影响.上海实验动物科学.2000;20(3): 157-158.
    11.陈小囡,张家兴,方志明等.一氧化氮合酶阳性神经元在鱼脑的分布.浙江师范大学学报(自然科学版). 2002;25(2):163-165.
    12.程富胜,胡庭俊,梁纪兰等.黄芪多糖对小鼠腹腔巨噬细胞一氧化氮生成的影响.2001;3:3-5.
    13.丁橘.罗非鱼溶菌酶活力的研究.湛江海洋大学学报.2002;22(3):3-7
    14.杜光,王丽.黄芪的免疫药理作用研究进展.时珍国医国药.2001;12(10):953-954.
    15.范瑞青,姜明,汝少国等.不同渗透压下美国红鱼外周血细胞超微结构的变化.海洋科学.2000;24(11): 48-53.
    16.冯娟,胡超群.四种海水养殖鱼类血清免疫球蛋白的分离纯化及分子量测定.热带海洋学报.2002; 21(4):8-13.
    17.冯娟,胡超群.抗紫红笛鲷血清免疫球蛋白单克隆抗体的制备.热带海洋学报.2002a;21(4):14-20.
    18.冯强等.中草药添加剂有效成分和免疫机理及应用与前景的探讨.饲料工业.1996;17(12):1-6
    19.龚非力.医等免疫学.北京:科学出版社.2003:17-42.
    20.归莉琼,魏东艺.NO:一种重要的生物信使分子.生命科学.1998;10(4):188-191
    21.郭松林,陈小云.粘膜免疫机理研究进展,广东兽医科技.2000;25(1):10-12.
    22.滑静,曹永春,万善霞等.免疫球蛋白制剂对仔猪血清碱性磷酸酶活洼和断奶时增重的影响.北京农学
    
    院学报.2003;18(2):115-116.
    23.黄峰,严安生,牟松等.鲢、鳙蛋白酶、淀粉酶的研究.中国水产科学.1999;6(2):14-17.
    24.贾杨.中药调节一氧化氮的研究进展.山东中医杂志.2000;19(2):122-124.
    25.姜泊,张亚历,周殿元.分子生物学常用实验方法.北京:人民军医出版社,1997:88.
    26.江育林等.草鱼免疫应答初步研究.水生生物学报.1991;15(4):321-326.
    27.蒋波,楚正绪.一氧化氮与炎症.国外医学生理,病理科学与临床分册.1998;18(1):44-47.
    28.李传武.兴国红鲤,草鱼及其杂交一代血清蛋白质的电泳分析.淡水渔业.1991:6:14.
    29.李桂峰,康裕财,孙际佳等.酵母多糖对赤眼鳟非特异性免疫功能的影响.中山大学学报(自然科学版). 2003;55-58
    30.李宏全,段县平,马海利等.黄芪多糖提高鸡抗氧化作用对免疫功能的影响.山西农业大学学报.2002; 22(1):78-81.
    31.李金贵,朱蓓蕾,蒋金书.诱导型一氧化氮合酶与动物疾病.2002;23(4):41-46.
    32.李连达等.中药药理的研究慨况.中草药.1989;20(9):29-34
    33.李凌,吴灶和.鱼类体液免疫研究进展.海洋科学.2001;25(11):20-22.
    34.李庆章,刘忠贵.鸡免疫球蛋白MFc(IgMFc)重链的分离纯化及其抗血清的制备.东北农学院学报.1991; 22(3):243-249.
    35.李万程等.岳鲤及其双亲血红蛋白和血清蛋白的研究.水生生物学报.1986;10(4):365-372
    36.李文富.动物粘膜免疫系统.动物科学与动物医学.2001;18(6):17-19.
    37.李霞,郑振群.NO-一种新发现的免疫调节分子.免疫学杂志.1996;12(3):201-204.
    38.李亚南,陈全震,邵健忠等.鱼类免疫学研究进展.动物学研究.1995;16(1):83-94.
    39.李亚南.草鱼ANAE阳性细胞及免疫组织和巨嗜细胞ACP活性分析.浙江大学学报(理学版).2000; 27(5):548-552.
    40.梁小威.几种淡水养殖鱼类血清溶菌酶活性的初步观察.水产科学.1993;12(2):15-17.
    41.林光华,张丰旺,翁世骢.草鱼血液的研究.动物学报.1985;31(4):336-343.
    42.林光华.成年草鱼外周血细胞的超微结构.动物学报.1996;42(2):123-128.
    43.林天龙,陈强.俞伏松等.欧洲鳗血清免疫蛋白纯化及部分特性分析.水产学报.2001;25(1):52-57.
    44.刘树青,江晓路,牟海津等.免疫多糖对中国对虾血清溶菌酶,磷酸酶和过氧化物酶的作用.海洋与湖沼.1999;30(3):278-283.
    45.刘艳,吴伟康,杨成梯等.从氧自由基,一氧化氮探讨四逆汤抗急性失血性休克的肝脏机制.中国病理生理杂志.2003;19(6):810-814.
    46.刘玉斌,苟仕金.动物免疫学实验技术 长春:吉林科学技术出版社.1989:58-59
    47.罗鹏,吴应宽,蒋宪瑶等.竹节荪提取液对砷中毒小鼠肝脏的保护作用.贵阳医学院学报,2003;28(5):
    
    402-404.
    48.罗日祥.中药活性制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼.1997;28(6):573-578
    49.莫志贤,邵红霞.白藜芦醇苷体外对过氧化氢导致小鼠肝细胞损伤的保护作用.中国药理学通报.2000; 16(5):519-521.
    50.牟海津,江晓路,刘树青等.免疫多糖对栉孔主扇贝酸性磷酸酶,碱性磷酸酶和超氧化物岐化酶活性的影响.青岛海洋大学学报.1999;29(3):463-468.
    51.楠田理一,北代典幸.活性及饲育水温影响.水产增殖.1992;40(4):453-456.
    52.倪寿文,桂明远,刘焕亮.草鱼、鲤、鲢、鳙和尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨.动物学报.1993;39(2):160-167.
    53.聂品.鱼类体液免疫研究新进展.水产学报.1999;21(1):69-73
    54.上海市医学化验所.临床生化检验.上海:上海科学技术出版社,1979.
    55.史源.一氧化氮及其临床意义.国外医学儿科学分册.1994;21(2):89-92.
    56.孙大江,曲秋芝,马国军,等.史氏鲟人工养殖现状与展望.中国水产科学.1998;5(3):108-111.
    57.孙虎山&李光友.脂多糖对栉孔扇贝血清和血细胞中7种酶活力的影响.海洋科学.1999;4:54-58.
    58.孙蔚.细胞外超氧岐化酶对一氧化氮生物活性调节的研究.国外医学泌尿系统分册.1997;220-224.
    59.孙忠亲.中草药对超氧化物岐化酶活性影响的研究进展.中草药.1995;26(1):45-47.
    60.谭北平.太湖沿岸区几种肉食性鱼类蛋白酶活性的研究.湖北农学院学报.1995;15(2):96-98.
    61.唐玫,马广智,徐军.鱼类免疫学研究进展.免疫学杂志.2002;18(3):112-117
    62.汪德清,沈文梅,田亚平等.黄芪的三种提取成分对氧自由基作用的影响.中国药理学通报.1994;10(2): 129-133.
    63.汪家政,范明.蛋白质技术技术手册.北京:科学出版社.2001:212-259.
    64.王长法,安得国,杨桂文等.鱼类免疫球蛋白研究进展.中国水产科学.1999;6(2):105-107.
    65.王根生,刘耕陶.一氧化氮在小鼠肝损伤中的作用.中华医学杂志.1996;76(3):203-206.
    66.王宏田.牙鲆免疫系统和抗病力的研究.中国科学院海洋研究所博士学位论文.2000.
    67.王宏田,张培军.重组酵母菌对牙鲆非特异性免疫功能影响.海洋与湖沼.2000;31(6):631-635.
    68.王坚,徐项桂.一氧化氮的生物学效应.生物学通报.1996;31(9):1-4.
    69.王景华等.鱼用中草药添加剂.兽药与饲料添加剂.1998;3(2):27-29
    70.王润田,单保恩,李巧霞等.黄芪提取物免疫调节活性的体外实验研究.中国中西医结合杂志.2002; 22(6):453-456.
    71.王宗任,贾风兰.八种动物血清蛋白质的聚丙烯酰胺凝胶电泳和在进化中的相互关系.遗传学报.1988; 15(4):290-298.
    72.尾崎久雄.鱼类血液与循环生理(许学龙等译).上海:上海科技出版社.1982:349-352.
    
    
    73.尾崎久雄著.鱼类消化生理(上、册)[M].上海:上海科学技术出版社.1985.
    74.文兴豪,张凯,李德雪等.日本七鳃鳗血细胞显微及亚显微结构.中国兽医学报.1998;18(6):614-617.
    75.翁朝红,谢仰杰.环境因素对鱼类免疫功能的影响.集美大学学报(自然科学版).2001;6(2):184-190.
    76.吴德峰等.中草药饲料添加剂对欧鳗养殖效果的影响.福建农业大学学报.2001;30(1):95-98
    77.吴垠,张峰,桂明远.几种养殖鱼类越冬生理生化指标的变化Ⅲ-血清蛋白组分.大连水产学报.1995;10(4):19-25.
    78.吴婷婷,朱晓鸣.鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究.中国水产科学.1994;1(2):11-17.
    79.吴晓英,林影,陈慧英.溶菌酶的研究进展.工业微生物.2002;32(4):55-58.
    80.夏春等.鳗鲡淋巴细胞表面存在不同表型的免疫球蛋白.水产学报.1996;20(4):361-364
    81.夏英等.黄芪多糖(APS)免疫作用的实验研究.上海中知医药杂志.1994;11:42-43.
    82.谢艳霞,林光华.日本白鲫外周血细胞显微及亚显微结构的观察.动物学杂志.1996;31(1):12-16.
    83.熊杰,白生华,汪正清.活化补体诱生一氧化氮介导肝细胞损伤的实验研究.西南国防医药.2002;12(2): 112-115.
    84.熊静波.组织器官及培养细胞一氧化氮合酶活性的测定.国外医学临床生物化学与检验学分册.1997; 18(4)151-153.
    85.徐延震,王振龙,宋憬愚.鱼类的免疫机制.中国兽药杂志.1995;29(4):57-60.
    86.徐延震等.中药免疫机制初探.中国兽药杂志.1995a;29(3):50-52
    87.徐宜为.免疫检测技术.北京:科学出版社,1997.
    88.严杰,罗海波,陆德源.现代微生物学实验技术及其应用[M].北京:人民卫生出版社,1997,第一版,17-35.
    89.颜桂利,黄键,江道提等.四种脊椎动物血细胞亚显微结构的比较研究.解剖学报.1996;27(1):100-103.
    90.颜天华,张朝晖,禹道春等.胡黄连总苷对小鼠急性化学性肝损伤的保护作用.2002;24(3):145-147.
    91.杨光.一氧化氮与炎症及免疫调节.国外医学免疫学分册.1995;6:303-307.
    92.杨桂文,安利国,王长法,等.鲤鱼皮肤粘液与血清中免疫球蛋白的比较研究.动物学研究.1998;19 (6):489-492.
    93.杨桂文,安利国,温武军,等.鲤胆汁与血清中免疫球蛋白的比较研究.水产学报.1998a;22(3):199-203.
    94.杨先乐.鱼类免疫学研究进展.水产学报.1989;13(3):271-284
    95.叶冰,杜久林,杨雄里.NO对鲫鱼视网膜视杆和视锥信号传递的不同作用.中国科学(C辑).1997; 27(2):109-115
    96.袁仕取,张永安,姚卫健等.鳜鱼外周血细胞显微和亚显微结构的观察.水生生物学报.1998;22(1): 39-47.
    97.曰比谷京.鱼类组织图说.正常组织病理组织.东京:讲谈社.1983:65-71
    98.张庆茹.中草药免疫促进作用的研究进展.中兽医医药杂志.1997;5:15-16.
    
    
    99.张树民,郑振群.一氧化氮—新奇的抗寄生虫免疫分子.国外医学免疫学分册.1996;2:69-72.
    100.张新跃,何永康,李毅等.东方田鼠感染血吸虫前后血清补体C3 C4水平的动态.实用预防医学.2001; 8(4):244-245.
    101.张奕华,任勇,彭司勋.中药对一氧化氮的影响研究.2001;26(2):75-79.
    102.张永安,孙宝剑,聂品.鱼类免疫组织和细胞的研究概况.水生生物学报.2000;24(6):648-656.
    103.张永安,聂品,朱作言.鱼类免疫球蛋白的研究进展.鱼类病害研究.2001;23(3):1-17.
    104.赵红卫.一氧化氮与免疫调节.上海免疫学杂志.1996;16(6):373-376.
    105.赵万鹏,刘永坚,潘庆等.草鱼对饲料中碳水化合物利用的研究.中山大学学报.1999;38(4):92~96.
    106.郑丽杰,钱东华,戴洪龄.红细胞膜的脂质过氧化物与衰老.白求恩医科大学学报.1994;20(1):20-21.
    107.郑晓宾,韩德五,马学惠等.一氧化氮在实验性肝损伤中的作用.中国病理生理杂志.1999;15(12):1090-1093
    108.中国医学百科全书编辑委员会.中国医学百科全书—免疫学.第一版.上海:上海科学技术出版社.1983:2-3
    109.中山大学生物系生化微生物学教研室.生化技术导论.北京:人民教育出版社,1978.
    110.周宏灏.1999.当代医学新理论与新技术丛书-分子药理学.哈尔滨:黑龙江科学技术出版社.1999:211.
    111.周景祥,余涛,黄权,等.鲤鱼、黄颡鱼和大眼(?)鲈消化酶活性的比较研究.吉林农业大学学报.2001;23(1): 94-96,120.
    112.周显青,牛翠娟,孙儒泳.黄芪和酸应激对中华鱉血清补体C3和C4含量的影响.动物学研究.2002; 23(2):177-180.
    113.周玉,郭文场,杨振国.鱼类血细胞研究进展.动物学杂志.2001;36(6):55-57.
    114.周玉,郭文场,杨振国等.欧洲鳗鲡外周血细胞的显微和超微结构.动物学报.2002;48(3):393-401.
    115.朱洪文,王浩,秦国强.鲫鱼外周血细胞显微和亚显微结构的观察.动物学研究.1985;6(2):147-153
    116.邹桂伟,潘光碧,罗相忠等.大口鲇和鲇鱼血清蛋白质及同工酶的比较研究.遗传.1997;19(5):34-46.
    117. Adkison MA, Basurco B, Hedrick RP. Humoral immunoglobulins of the white sturgeon, Acipenser Iransmontanus: partial characterization of and recognition with monoclonal antibodies. Dev Comp Immunol 1996; 20(4): 285-98
    118. Amar EC, Kiron V, Satoh S. Effects of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries Science. 2000; 66(6): 1068-1075.
    119. Bagni M, Archetti L, Amadori M, et al. Effect of long-term oral administration of an immunostimulant diet on innate immunity in sea bass (Dicentrarchus labrax). J Vet Med B Infect Dis Vet Public Health 2000; 47(10): 745-51
    120. Balfry SK, Maule AG, Iwama GK. Coho salmon Oncorhynchus kisutch strain differences in disease resistance
    
    and non-specific immunity, following immersion challenges with Vibrio anguillarum. Dis Aquat Organ 2001; 47(1): 39-48
    121. Barber DL, Westmann JEM and White MG. The blood cells of the Antarctic icefish Chaenocephalu aceratus Lonnberg: light and dectron microscopic observations. J. Fish Biol. 1981; 19:11-28.
    122. Bayne C J, Gerwick L. The acute phase response and innate immunity of fish. Developmental and Comparative Immunology. 2001; 25: 725-743.
    123. Blaxhall PC and Daisley KW. Routine hemalological methods for nse with fish blood. J. Fish. Biol. 1973; 5: 771-781.
    124. Binning G, Hattwig K, Mayer B. Nitric oxide synthase in the peripheral nervons system of the goldfish, Camssius auratus. Cell Tissue Res. 1996; 284(1): 87-98.
    125. Cain KD, Jones DR, Raison RL. Characterisation of mucosal and systemic immune responses in rainbow trout (Oncorhynchns mykiss) using surface plasmon resonance. Fish Shellfish Immunol. 2000; 10(8): 651-66.
    126. Cameron DJ. Biochemical purification of antineoplastic agents obtained from sturgeon. Journal of the National Cancer Institute. 1984; 73(1): 281-8.
    127. Campos-Perez JJ, Ward M, Grabowski PS, Ellis AE, Secomhes CJ. The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the gram-positive pathogen Renibacterium saimoninarum. Immunology. 2000; 99(1): 153-61.
    128. Cannon MS, Mollenhauer HH, Tompkins C. An ulstructural study of the leukocytes of the channel fish, Ictalurus punctatus. J. Morphol. 1980; 164:1-23
    129. Chakravorty P, Sinha GM. Detection and localization of alkaline acid acid phosphatases in the digestive system of the adult Catla catla (Hamilton), an Indian freshwater major carp by histochemical methods. Gegenbaurs Morphol Jahrb. 1982; 128(5): 799-808.
    130. Choudhury A, Dick TA. Natural anti-phosphorylcholine (PC) antibodies in lake sturgeon, Acipenser fulvescens Rafinesque, 1817 (Chondrostei: Acipanseridae). Fish & Shellfish Immunology. 1994; 4(5): 399-401.
    131. Claire M, Holland H, Lambris JD. The complement syslem in teleosts. Fish and Shellfish Immunology. 2002; 12: 399-420.
    132. Clem LW, et al. Phylogeny of immunoglobulin structure and function. Ⅳ Immunoglobulin of the giant grouper. Epinephelus itaira. J of Biological. 1967; 246: 9-15.
    133. Clem LW, et al. Phylogeny of immunoglobulin structure and function. Ⅱ Immunogiobulin of the nurse shark. J Immunol. 1967a; 99: 226.
    134. Clem LW et al. Evolution of lymphocyte subpopulations, their interactions and temperature sensitivities. In: Warr G W, Cohen N, ed. Phylogenesis of Immune Functions. Boca Raton, Florida. CRC Press. 1991:191-214.
    
    
    135. Clerton P, Troutaud D, Verlhac V, et al. Dietary vitamin E and rainbow trout (Oncorhynchus mykiss) phagocyte functiom: effect on gut and on head kidney leucocytes. Fish Shellfish Immunol. 2001; 11 (1): 1-13.
    136. Dalmo RA, Ingebrigtsen K, Bogwald J. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system. J Fish Dis. 1997; 20: 241-273.
    137. Das, K. M., Tripathi, S. D. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella(Val. ). Aquaculture. 1991; 92: 21-32.
    138. Davidson GA, Lin SH, Secombes CJ, Ellis AE. Detection of specific and 'constitutive' antibody secreting cells in the gills, head kidney and peripheral blood leucocytes of dab (Limanda limanda). Vet Immunol Immunopathol. 1997; 58(3-4): 363-74.
    139. Desvignes L, Quentel C, Lamour F, le VA. Pathogenesis and immune response in Atlantic salmon (Salmo solar L. ) parr experimentally infected with salmon pancreas disease virus (SPDV). Fish Shellfish Immunol. 2002; 12(1): 77-95.
    140. Eder K, Flader D, Hirche F, et al. Excess dietary vitamin E lowers the activities of antioxidative enzymes in erythrocytes of rats fed salmon oil. J Nutr. 2002; 132(11): 34004.
    141. Elgendy KS, Aly NM, Elsebae AH. Effects of edifenphos and glyphosate on the immune response and protein biosynthesis bolti fish(Tilapia nilotica). Journal of Environaental Science and Health Part B-Pesticides Food Contaminants. 1998; 33(2): 135-149.
    142. Ellis AE. Leucocytes and related cells in the plaice Pleuronectes platessa. J, Fish. Biol. 1976; 8:143-156.
    143. Ellis AE. The leukocytes of fish: A review. J. Fish Biol. 1977; 11: 453-491.
    144. Endo Y, Takahashi M, Nakao M, et al. Two linegea ofmannose-binding lectin-associated serine protease (MASP) in vertebrates. Journal of Immunology. 1998; 161: 4924-4930.
    145. Fange R. Lymphoid organs in sturgeons (Acipenseddae). Vet Immunol Immunopathol 1986; 12(14):153-61
    146. Fast MD, Sims DE, Burka JF, et al. Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comp Biochem Physiol A Mol Integr Physiol. 2002; 132(3): 645-57.
    147. Fendis EK. Osteology and phylogenentic interrelationships of sturgeon (Acipenseridae). Envl Fish Biol. 1997; 48:73-126.
    148. Ferguson, H. W. The ultrastructure of plaice Pleuronectes platessa leukocytes. J. Fish Biol. 1976; 8: 139-142.
    149. Foott JS, Harmon R, Stone R. FY 2002 Investigational Report. Ceratomyxosis resistance in juvenile Chinook Salmon and Steelhead Trout from the Klamath River. U. S. Fish & Wildlife Service California- Nevada Fish Health Center, Anderson, CA. 2003.
    150. Friedl R, Moeslinger T, Kopp B, et al. Stimulation of nitric oxide synthesis by the aqueous extract of Panax
    
    ginseng root in RAW 264. 7 cells. Br J Pharmacol. 2001; 134(8): 1663-70.
    151. Fuda H, Ham A, Yamazaki F, Kobayashi K. A peculiar immunoglobulin M (IgM) identified in eggs of chum salmon (Oncorhynchus keta). Dew Comp Immunol. 1992; 16(5): 415-23.
    152. Fujita T. Evolution of Lectin-complement pathway and its role in innate immunity. Nature. 2002; 2: 347-353
    153. Gelman A, Mokady S, Cogan U. The thermal properties of intestinal alkaline phosphatase of three kinds of deep-water fish. Comp Biochem Pbysiol B. 1989; 94(1): 113-6.
    154. Gershanovich AD and Kiselev GA. Growth and hematological response of sturgeon hybrids Russian sturgeon (Acipenser-guldenstadtis Brandt) x Beluga (Huso-huso L. ) to protein and lipid contents in the diet: Comparative Biochemistry and Physiology APhysiology. 1993; 106:581-586.
    155. Goel KA. Histochemical study of the activity of acid and alkaline phosphatases and lipase in the gastro-intestinal tract of Cirrhinus mrigala. Acta Histuchem. 1975; 54(1): 48-55.
    156. Gongora R, Figueroa F, Klein J. Independent duplications of Bf and C3 complement genes in the zebrafish. Scandinavian journal of immunology. 1998, 48:651-658.
    157. Graham S, Secomhes CJ. Cellular requirements for lymphokine secretion by rainbow trout Salmo gairdneri leucocytes. Dev. Comp. Immunol. 1990; 14: 59-68.
    158. Hadge D, Richter RF, Ambrosius H. Structural and immunochemical studies of carp (Cyprinus carpio L. ) immunoglobulin. Ⅴ. Tryptic fragment of carp (Cyprinus carpio L. ) immunoglobulin M. Acta Biol Med Ger. 1979; 39(9): 1347-1360.
    159. Hanley PJ, Hook JW, Raftos DA, et al. Hagfish humoral defense protein exhibits structural and functional homology with mammalian complement components. 1992; 89:7910-7914.
    160. Hatten F, Fredriksen A, Hordvik I, et al. Presence of IgM in cutaneous mucus, but not in gut mucus of Atlantic salmon, Salmo salar. Serum IgM is rapidly degraded when added to gut mucus. Fish Shellfish Immunol. 2001; 11(3):257-68.
    161. Hebert P, Ainsworth AJ, Boyd B. Histological enzyme and flow cytometric analysis of channel catfish intestinal tract immune cells. Dev Comp Immunol 2002; 26(1): 53-62
    162. Hidalgo, M. C., Urea, E., Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture. 1999; 170: 267~283.
    163. Hobart MJ, Fernie BA, Discipio RG. Structure of the jhuman C7gene and comparison with C6, CSA, CSB, and C9 genes. Journal of Immunology. 1995; 154:5188-5194
    164. Hogg N, Struck A, Goss SP, et al. Inhibition of macrophage-dependent low density lipoprotein oxidation by nitric oxide donors. J Lipid Res. 1995; 36(8): 1756.
    
    
    165. Holmqvist BI, Ostholm T, Alm P, Ekstrom P. Nitric oxide synthase in the brain of a teleost. Neurosci Lett. 1994; 171(1-2): 205-8.
    166. Hordvik I, Voie AM, Glette J, et al. Cloning and sequence analysis of two isotypic IgM heavy chain genes from. Atlantic salmon, Salmo salar L. Eur J Immunol. 1992; 22(11):2957-62.
    167. Hordvik I, Berven FS, Solem ST, et al. Analysis of two IgM isotypes in Atlantic salmon and brown trout. Mol Immunol. 2002; 39(5-6):313-21.
    168. Hyder SL, Cayer ML, Pettey CL。Cell types in peripheral blood of the nurse shark: an approach to structure and function. Tissue Cell. 1983;15(3):437-55.
    169. Imagawa T, Hashimoto Y, Kitagawa H, et al. Morphology of blood cells in carp (Cyprinus carpio L. ). Nippon Juigaku Zasshi. 1989; 51(6):1163-72.
    170. Imbrogno S, de Iuri L, Mazza R, et al. Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. The Journal of Experimental Biology. 2001; 204: 1719-1727.
    171. Ishihara T, Okura. T, Kohno K, et al. Polygonum tinctorium extract suppresses nitric oxide production by activated macrophages through inhibiting inducible nitric oxide synthase expression. J Ethnopharmacol 2000; 72(1-2):141-50
    172. Israelsson, O., A. Petersson, E. Bengtén, EJ. et al. Immunoglobulin concentration in Atlantic cod, Gadus morhua L., serum and cross-reactivity between anti-cod antibodies and immunoglobulins from other species. Journal of Fish Biology. 1991; 39: 265-278.
    173. Izokun-Etiobhio BO, Oraedu AC, Ugochukwu EN. A comparative study of superoxide dismutase in various animal species. Comp Biochem Physiol B. 1990; 95(3): 521-3.
    174. Jany, K. D. Studies on the digestive enzymes of the stomachless bony fish Carassius auratus Gibelio(Bloch):endopeptidases. Comp. Biochem. Physiol. B. 1976; 53: 31-38.
    175. Jenkins JA. Pallid Sturgeon in the Lower Mississippi Region: Hematology and Genome Information. USGS Open File Report. 2003.
    176. Joanne L. Maki and Harry W. Dickerson. Systemic and Cutaneous Mucus Antibody Responses of Channel Catfish Immunized against the Protozoan Parasite Ichthyophthirius multifiliis. Clinical and Diagnostic Laboratory Immunology. 2003; 10(5): 876-881.
    177. Kalbassi, M. R. Soltani, M. Pourbakhsh, S. A. Adams, A. Humoral immune response of cultured persian sturgeon (Acipenser persicus). Archives of Razi Institute. 2000; 51: 75-83.
    178. Killie JK, Espelid S, Jorgensen TO. The humoral immune response in Atlantic salmon (Salmo salar L. ) against the hapten carder antigen NIP-LPH: the effect of deter minant (NIP) density and isotype profile of anti-NIP antibodies. Fish Shellfish Immunol. 1991; 1: 33-46.
    
    
    179. Klontz GW. Haematological techniques and immune response in rainbow trout. In: Diseases of fish (Ed. Mawdesley-Thomas, L. E. ), Symp. Zool. Soc. Lond. No. 30. New York and London: Academic press. 1972: 89-99.
    180. Kobayashi K, Tomonaga S, Tanaka S. Identification of a second immunoglobulin in the most primitive shark, the frill shark, Chlamydoselachus anguineus. Dev Comp Immunol. 1992; 16(4): 295-9.
    181. Kofod H, Pedersen K, Larsen JL, et al. Purification and characterization of IgM-like immunoglobulin from tubort(scophthalmus maximuse). Acta Vet Stand. 1994; 35: 1-10.
    182. Kolman H, Siwicki AK, Kolman R. Dynamics of some cellular and humoral non-specific immune parameters in Siberian sturgeon (Acipenser baeri Brandt) reared in a water recirculation system. Archiwum Rybactwa Polskiego. 1998; 6(2):411-423.
    183. Kolman H, Kolman R, Siwicki AK. Dynamics of some cellular and humoral non-specific immune mechanisms in bester (Huso huso L. x Acipenser ruthenus L. ). Archiwum Rybactwa Polskiego. 1998; 6(2):425-437.
    184. Kolman H, Kolman R, Siwicki AK. Non-specific defence mechanisms of Russian sturgeon (Acipenser gueldenstaedti Brandt) reared in cages. Archiwum Rybactwa Polskiego. 2000; 8(2): 181-192.
    185. Kolman H. Primary humoral response in Siberian sturgeon after exposure to anti-furunculosis bacterin. Zivocisna Vyroba. 2002; 47(5): 183-188.
    186. Koppenheffer TL. Serum complement systems of ectothermic vertebrates. Dev Comp Immunol. 1987; 11: 279-286.
    187. Kuroda N, Wada H, Naruse K, Simada A, Shima A, Nonaka M. Molecular cloning and linkage analysis of complement C3and C4genes of the Japanese medaka fish. Immunogenetics. 2000; 51:117-128.
    188. Lambris JD, Lao Z, Pang J, et al. Third component of trout complement cDNA cloning and conservation of functional sites. J Immunol. 1993; 151: 6123-6134.
    189. Lange MA, Govyadinova AA, Khrushchev NG. Study on Localization of Hemopoietic Tissue in Sturgeon. Russian Journal of Developmental Biology. 2000; 31(6): 372-376.
    190. Langston AL, Hoare R, Stefansson M, The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L. ). Fish Shellfish Immunol. 2002; 12(1): 61-76.
    191. Lemorvan C, Deschaux P, Troutaud D. Effects and mechanisms of environmental temperature on carp (Cyprinus carpio) anti DNP antibody response and non-specific cytotoxic cell activity: Akinefic study. Developmental and Comparative Immunology. 1996; 20(5): 331-340.
    192. Lobb CJ, Olson MO, Clem LW. Immunoglobulin light chain classes in a teleost fish. J Immunol. 1984; 132 (4): 1917-23.
    193. Lobb CJ, Olson M O. Immunoglobulin heavey H chain in a teleost fish. Immunol, 1988; 141:1236-1245.
    
    
    194. Luk'ianenko Ⅵ, Geraskin PP, Bal' NV, Popov AV. Fractional composition of serum proteins in Amur sturgeons and its evolutionary significance. Zh Evol Biokhim Fiziol 1978; 14(3): 236-40
    195. Lundqvist M, Bengten E, Stromherg S, Pilstrom L. Ig light chain gene in the Siberian sturgeon (Acipenser baeri). Implications for the evolution of the immune system. J Immunol. 1996; 157(5): 2031-8.
    196. Lynn LR, Avila D, Diaz M, et al. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. PNAS. 2001; 98(4): 1775-1780.
    197. Magnadóttir B. Gudumundsdottir B. K. Acomparison of total and specific immunoglo-bulinlevels in healthy Atlantic salmon and in salmon naturally infected with Acromonas salmonicida subsp achromogenes. Vrterinary, immunology and immuno pathology. 1992; 32:179-189.
    198. Magnadóttir B. Comparison of immunoglobulin (IgM) from four fish species. ICEL. AGR. SCI. 1998; 12: 47-59.
    199. Magnadóttir B. The spontaneous haemolytic activity of cod serum: Heat insensitivity and other characteristics. Fish & Shellfish Immunology. 2000; 10:731-735
    200. Manning M J, Fishes A, Tumer R J. Immonology: AComparative Approach. Britain: John Wiley&Sons Ltd, 1994: 69-99.
    201. Martinez-Alvarez RM, Hidalgo MC, Domezain A, et al. Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J Exp Biol. 2002; 205: 3699-3706.
    202. Matsushita M, Endo Y, Nonaka M, Fujita T. Complement-related serine proteases in tunicates and vertebrates. Current Opinion in Immunology. 1998; 10: 29-35.
    203. Mccarthy DH, Stevenson JP and Roberts MS. Some blood parameters of rainbow trout (Salmo gairdneri). J. Fish. Biol. 1973; 5: 1-8.
    204. McCord J Mand Fridovich. Superoxide dismutase. J Biol Chem. 1969; 244: 6049.
    205. Merino-Contreras ML, Guzman-Murillo MA, Ruiz-Bustos E, Romero MJ, Cadcna-Roa MA, Ascencio F. Mucosal immune response of spotted sand bass Paralabrax maculatofasciatus (Steindachner, 1868) orally immunised with an extracellular lectin of Aeromonas veronii. Fish Shellfish Immunol. 2001; 11 (2): 115-26
    206. Michiels C, Raes M, Toussaint O and Rcmacle J. Importance of Se-glutathione per-oxidase, catalase and Cu/Zn-SOD for cell against oxidative stress. Free Radical Bio Med. 1994; 17: 235-248.
    207. Miura S, Tsuzuki Y, Hokari R, Ishii H. Modulation of intestinal immune system by dietary fat intake: relevance to Crohn's disease. J Gastroenterol Hepatol. 1998; 13(12): 1183-90
    208. Mohammad SA, Akaike T, Okamoto S, et al., Role of Nitric Oxide in Host Defense in Murine Salmonellosis as a Function of Its Antibacterial and Antiapoptotic Activities. Infection and Immunity. 2002; 70(6): 3130-3142.
    209. Moyner K, Roed KH, Sevatdal S, Heum M. Changes in non-specific immune parameters in Atlantic salmon,
    
    Salmo salar L. induced by Aeromonas salmonicida infection. Fish Shellfish Immunol. 1993; 3: 253-265.
    210. Nakao M, Osaka K, Kato Y. Molecular cloning of complementClr/Cls/MASP2-like serine proteases from the common carp (Cyprinus carpio). Immunogenetics. 2001; 52: 255-263.
    211. Neumann NF, Fagan D, Belosevic M. Macrophage acti-vating factor(s) secreted by mitogen stimulated goldfish kidney leucocytes synergize with bacterial lipopolysac-charide to induce nitric oxide production in teleost macro-phages. Dev Comp Immunol. 1995; 19:473-482
    212. Nonaka M, Natsuume-Sakai, S. & Takahashi, M. The complement system of the rainbow trout (salmo gairdneri). 1. Idendfication of the serum lytic system homologous to mammalian complement. J Immunol. 1981; 126:1489-1494.
    213. Nonaka M., Natsuume-Sakai, S. & Takahashi, M. The complementsystem of rainbow trout (Salmo gairdneri) Ⅱ. Purification and characterization of the fifth component (C5). Journal of Immunology. 1981; 126: 1495-1498.
    214. Nonaka M, Iwaki M, Nakai C, Nozaki M, Kaidoh T, Nonaka M, Natsuume-Sakai S, Takahashi M. Purification of a major serum protein of rainbow trout (Salmo gairdneri) homologous to the third component of mammalian complement. J Biol Chem. 1984; 259(10): 6327-33.
    215. Nonaka M, Irie M, Tanabe K, Kaidoh T. Journal of Biological Chemistry. 1985; 260:809-814.
    216. Nonaka M, Smith SL. Complement sysytemn of bony and cartilaginous fish. Fish and Shellfish Immunology. 2000; 6: 277-289.
    217. Omishi, T., Murayama, S., Yakeuchi, M. Changes in digestive enzyme levels in carp after feeding Ⅲ response of protease and amylase to twice-a-day feeding. Bull. Jpn. Soc. Sci. Fish. 1976; 42(8): 921-929.
    218. Palenzuela O, Sitja-Bobaadilla A, Alvarez P. Isolation and partical characterization of serum immunoglobulins from sea bass (Dicentrarchus labras L. ) and gilthead sea bream(Sparus aurata L. ). Fish Shellfish Immunol. 1996; 6:81-94.
    219. Palikova M, Mare J, Jirasek J. Characteristics of leukocytes and thrombocytes of selected sturgeon species from intensive breeding, Acta Vet. Bmo. 1999; 68:259-264.
    220. Parrott DMV, Desousa MAB. Thymus-dependent and thymus-independent populations. Origins, migratory patterns and life span. Clin. Exp. Immunol. 1971; 8: 663-684.
    221. Passantino L, Altamura M, Cianciotta A。Fish immunology. Ⅰ. Binding and engulfment of Candida albicans by erythrocytes of rainbow trout (Salmo gairdneri Richardson). Immunopharmacol Immunotoxicol. 2002;24(4):665-78.
    222. Partula S, Charlemagne J. Characterization of serum immunoglobulins in a chondrostean fish, Acipenser baeri. Dev Comp Immunol 1993; 17(6):515-24
    223. Paulsen SM, Engstad RE, Robertsen B. Enhanced lysozyme production in Atlantic salmon (Salmo salar L. )
    
    macrophages treated with yeast beta-glucan and bacterial lipopolysaccharide. Fish Shellfish Immunol. 2001; 11(1): 23-37.
    224. Paulsen SM, Lunde H, Engstad RE, et al. In vivo effects of beta-glucan and LPS on regulation of lysozyme activity and mRNA expression inAtlantic salmon (Salmo salar L. ). Fish Shellfish Immunol. 2003; 14(1): 39-54.
    225. Pilstrom L, Bengten E. Immunoglobulin in fish-genes, expression and structure. Fish Shellfish Immunol. 1996; 6: 243-262.
    226. Pylkko P, Lyytikainen T, Ritola O, et al. Temperature effect on the immune defense functions of Arctic charr Salvelinus alpinus. DisAquat Organ. 2002; 52(1): 47-55.
    227. Rageb Radi AA, Do Quy Hai, Matkovies B, et al. Comparative antioxidant enzyme study in freshwater fish with different types of feeding behaviour. Comp Biochem Physiol C. 1985; 81(2): 395-9.
    228. Remer KA, Jungi TW, Fatzer R, et al. Nitric Oxide Is Protective in Lisleric Meningoencephalitis of Rats. Infection and Immunity. 2001; 69(6): 4086-4093.
    229. Rombout JH, Taveme-Thiele AJ, Villena MI. The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L. ): an immunocytochemical analysis. Dev Comp Immunol. 1993; 17( 1 ): 55-66.
    230. Rombout JH, Taverne N, van de Kamp M, et al. Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L. ). Dev Comp Immunol. 1993; 17(4): 309-17.
    231. Roubal FR. Blood and other possible inflammatory cells in the sparid Acanthopagrus australis(Gunther). J. Fish Biol. 1986; 28:573-593.
    232. Saeij JP, Van Muiswinkel WB, Groeneveld A, et al. Immune modulation by fish kinetoplastid Parasites: a role for nitric oxide. Parasitology. 2002; 124(Pt 1):77-86
    233. Sakai DK. The activation of alternative pathway by pronase, LPS and Zymosan in the complement system of rainbow trout serum. Bulletin of the Japan Society of Scientific Fisheries. 1983; 49:347-351.
    234. Sakai DK. Opsonization by fish antibody and complement in the immune phagocytosis by peritoneal exudate cells isolated from salmonid fishes. Journal of Fish Diseases. 1984; 7: 29-38.
    235. Sakai DK. The non-specific activation of rainbow trout, Salmo galrdned Richardson, complement by Aeromonas salmonicida extracellular products and the correlation of complement activity with the inactivation of lethal toxicity products. Journal of Fish Diseases. 1984a; 7:329-338.
    236. Sakai DK. Repertoire of complement in immunological defense mechanisms of fish. Annual Review of Fish Diseases pp. 1992: 223-247.
    237. Sastry KV. Acid and alkaline phosphatases in the kidney of a few fishes. Acta Histochem. 1975; 53(2):206-10.
    238. Sastry VK. Alkaline and acid phosphatase in the digestive system of two teleost fishes. Anat Anz. 1975a; 137(1-2): 159-65.
    
    
    239. Sastry KV, Subhadra K. In vivo effects of cadmium on some enzyme activities in tissues of the freshwater catfish, Heteropneustes fossilis. Environ Res. 1985; 36(1): 32-45.
    240. Savage AG. The ultrastructure of the blood cells of the pike, Esox lucius L. J. Morphology. 1983; 178:187-206.
    241. Scharsack JP, Steinhagen D, Kleczka C, et al. Head kidney neutrophils of carp (Cyprinus carpio L. ) are functionally modulated by the haemoflagellateTrypanoplasma borreli. Fish Shellfish Immunol. 2003; 14(5): 389-403.
    242. Sealey WM, Gatlin DM 3rd. Dietary vitamin C and vitamin E interact to influence growth and tissue composition of juvenile hybrid striped bass (Momne chrysops (female) x M. saxatilis (male)) but have limited effects on immune responses. J Nutr. 2002; 132( 4 ): 748-55.
    243. Shaffi SA. Effect of starvation on tissue and serum gluconeogenic enzymes, alkaline phosphatase and tissue glycogen in the freshwater calfish, Heteropneustes fossilis. Acta Physiol Acad Sci Hung. 1979; 53(4): 501-5.
    244. So HS, Park R, Oh HM, et al. Enhancement of nitric oxide synthesis by the aqueous extract of Spiraea prunifolia var. simpliciflora's root in RAW 264. 7 cells. Immunopharmacol Immunotoxicol 1999; 21(2): 343-55.
    245. Stanley KK, Herz J. Topological mapping of complement component C9 by recombinant DNA technique suggests a novel mechanism for its insertion into target membranes. EMBO J, 1987; 6:1951-1957.
    246. Stenvik J, Lundback AS, Jorgensen TO, et al. Variabl reigeon diversity of the Atlantic cod (Gadus morhua L. ) immunoglobulin heavy chain. Immunogenetics. 2000; 15(8-9): 670-680.
    247. Subbotkina TA and Subbotkin MF. Lysozyme content in organs and blood serum in various species in the Volga River. J. Evolutionary Biochemistry and Physiology. 2003; 39(5): 537-546
    248. Sunyer JO, Zarkadis IK, Sahu A, Lambds JD. Multiple forms of complentment C3 in trout, that differ in complement activators. Proceeding of the National Academy of Science of the U. S. A. 1996; 93:8546-8551.
    249. Sunyer JO, Tort L, Lambris JD. Diversity of the third form of complement, C3, in fish: functional characterization of five forms of C3 in the diploid fish Sparus aurata. Biochemical Journal. 1997; 326: 877-881.
    250. Tafalla C, Figueras A, Novoa B. Role of nitric oxide on the replication of viral haemorrhagic septicemia virus (VHSV), a fish rhabdovirus. Vet Immunol Immunopathol. 1999; 72(3-4): 249-56
    251. Tafalla C, Novoa B. Requirements for nitric oxide production by turbot (Scophthalmus maximus) head kidney macrophages. Dev Comp Immunol. 2000; 24(6-7):623-31.
    252. Tafalla C, Figueras A, Novoa B. Viral hemorrhagic septicemia virus alters turbot Scophthalmus maximus macrophage nitric oxide production. Dis A quat Org. 2001; 47: 101-107.
    253. Timothy R. Evolution of the complement system. Immunol. Today. 1991; 12:295
    254. Tomonaga S, Kobayashi K, Haglwara K, Sasaki K, Sezaki K. Studies on immunoglobulin and immunoglobulin forming cells in Heterodontus japonicus, a cartilaginous fish. Dev Comp Immunol. 1985; 9(4): 617-26.
    
    
    255. Trump GN, Hidemann WH. Antibody response of goldish to bovine serum albumin: Primary and secondary responses. Immunology. 1970; 19:627
    256. Tyagi MP, Dalela RC, Verma SR. Histochemical mapping of alkaline phosphatase in the digestive system of a few teleost fishes. Z Mikrosk Anat Forsch. 1980; 94(1): 21-32.
    257. Ueda IK, Egami MI, Silva Sasso W, et al. Cytochemical aspects of the peripheral blood cells of Oreachromis (Tilapia) niloticus. (Linnaeus, 1758) (Cichlidae, Teleostei)-Part Ⅱ. Braz. J. Vet. Res. Anim. Sci., 2001; 38(6):273-277
    258. Uemura T, Yano T, Shiraishi H et al. Purification and characterization of the eighth and ninth component of carp complement. Molecular Immunology. 1996; 33: 925-932.
    259. van Ginkel FW, Pascual DW, Clem LW. Proteolytic fragmentation of channel catfish antibodies. Dev Comp Immunol. 1991; 15(1-2): 41-51.
    260. Villamil L, Figueras A, Aranguren R, Novoa B. Non-specific immune response of turbot, Scophthalmus maximus (L. ), experimentally infected with a pathogenic Vibrio pelagius. J Fish Dis. 2003; 26(6): 321-9.
    261. Villamil L, Figueras A, Novoa B. Immunomodulatory effects of nisin in turbot (Scophthalmus maximus L. ). Fish Shellfish Immunol. 2003a; 14(2): 157-69.
    262. Watts M, Munday BL, Burke CM. Immune responses of teleost fish. Aust. Vet. J. Vol. 2001; 79(8): 570-574.
    263. Weiler R, Kewitz B. The marker for nitric oxide synthase, NADPH-diaphorase, co-localizes with GABA in horizontal cells and cells of the inner retina in the carp retina. Neurosci Lett, 1993; 158:151-154
    264. Williams RW, Warner MC. Some observations in the stained cellular elements of channel catfish, Ictalagrus punctatus. J. Fish Biol. 1976; 9: 491-497.
    265. Wink DA, Michell JB. Chemical biology of nitric oxide: insight into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radio Biol Med. 1998; 25: 434-456.
    266. Winston GW, Di Giulio RT. Prooxidant and antioxidant mechanism in aquatic organism. Aquat Toxicol. 1991; 24:143-152
    267. Xia Y, Zweier JL. Direct measurement of nitric oxide generation from nitric oxide synthase. Proc. Natl. Acad. Sci. 1997; 94(23): 12705-12710.
    268. Xing Z & Schat KA. Inhibitory Effects of Nitric Oxide and Gamma Interferon on In Vitro and In Vivo Replication of Marek's Disease Virus. Journal of Virology. 2000; 74(8): 3605-3612
    269. Yin Z, Lam TJ, Sin YM. Cytokine-mediated antimicrobial immune response of catfish, Clarias gariepinus, as a defense against Aeromonas hydrophila. Fish Shellfish Immunol. 1997; 7:93-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700