热带气旋全球模态及西北太平洋频发区热带气旋变化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用美国联合预警中心(Joint Typhoon Warning Center, JTWC)和美国海洋大气局的国际飓风中心(the National Hurricane Center, NHC)的最佳路径资料,美国国家环境预报中心和美国国家大气科学研究中心(the National Centers Environmental Prediction and the National Center for Atmospheric Research, NCEP/NCAR)大气环流场资料,美国海洋大气局(the National Oceanic Atmospheric Administration, NOAA)的扩展海温资料(ERSST)以及政府间气候变化专门委员会(IPCC)模式试验中GFDL CM2.0模式结果,应用季节联合主成分分析(Season-reliant Empirical Orthogonal Function, SEOF),季节联合奇异值分解(Season-reliant Singular Value Decomposition, SSVD)等统计方法,对热带气旋(TC)活动与大尺度环流场的关系进行了三方面的研究。首先,文章研究了全球TC活动的变化特征及其与全球海温(SST)的关系;第二方面的探讨是基于TC活动最为活跃的西北太平洋海域进行的,分析了该海域内TC活动频发区TC出现频率变化特征和可能影响这些区域TC活动背景场因素;最后一方面,文章利用IPCC第四次评估中GFDL CM2.0模式结果分析了由Emanuel和Nolan定义的表征TC潜在生成的指数(GPI)在CO2加倍过程中和加倍过程后TC生成的变化趋势,并探讨了引起TC趋势变化的可能环流因素。下面是本文的具有创新性的研究成果:
     1、应用SEOF的方法分析全球热带气旋的变化特征,找到了独立、显著的第一主模态,也就是热带气旋的全球模。并指出这一模态的主要影响因子是ENSO和PDO,而不是ENSO和NAO(Elsner和Kocher,2000; Frank和Young,2007),其中ENSO的作用要更大一些。本文所定义的热带气旋的全球模是指:以TC年(自当年的6月份至下一年的5月份为一个TC年)为基础,TC在全球尺度上变化特征的第一显著模态。其空间分布为:TC出现频率在太平洋上变化态势一致,北大西洋的主体变化趋势与太平洋相反,仅在其东北部分表现出与太平洋一致的变化特征。南半球上,南太平洋海域TC出现频率呈南北变化趋势相反的经向分布态,南印度洋和北印度洋区域主体变化趋势一致,与太平洋同向。研究表明此模态的主要影响因子为ENSO和PDO,其时间序列的相关系数达:0.83和0.56,与NAO的相关系数却很小,仅为0.06。
     2、通过SSVD的分析方法探讨了全球TC出现频率和全球热带、副热带海温的关系。除发现对于热带气旋全球模的主导影响因子是ENSO和PDO外,还给出了全球TC出现频率伴随全球变暖信号所表现出的变化趋势的空间分布。伴随全球海温的增暖,TC出现频率在西北太平洋上的中国南海和西北太平洋东部地区均呈现出下降趋势,但是在东亚地区TC出现频率增高;在东北太平洋上以显著的下降趋势为主,而在大西洋则为全海盆一致的增高现象,南半球海洋澳大利亚东、西两侧分别显示出了下降和上升两种趋势,北印度洋区域则是显著的下降趋势。由于本文的研究对象,TC出现频率,不仅受到TC生成频次的影响同时受到TC生命周期作用,其研究意义还体现了部分TC强度变化特征,所以本文指出大西洋TC出现频率存在显著的上升趋势,是TC生成频次、TC生命周期和部分TC强度综合作用的结果。本文同时发现印太暖池区域(17.5°S-10°N,70°E-140°E)TC出现频率存在上升趋势。尽管全球热带地区存在0.5~1.0℃的升温现象,却不足以令TC出现频率在全球范围内出现增大趋势,仅在部分海域存在趋势变化。
     3、揭示了西北太平洋副热带高压不同时间尺度上的变化导致了西北太平洋不同区域的热带气旋活动表现出不同时间尺度的变化。研究表明:西北太平洋副热带高压存在显著的西伸和南压的趋势变化特征,这种长期趋势变化对中国南海区域(S区)的TC经过个数有显著影响,使得经过此区域TC个数呈现下降趋势;而西北太平洋副热带高压的年代际变化特征则主要影响了经过菲律宾海附近区域(P区)TC路径条数;其年际变化特征正是经过中国东海区域(E区)的TC个数产生3-4年显著振荡的主要影响因子。
     本文同时指出对于热带气旋频发区S区不仅经过该区域的TC个数存在显著的下降趋势,而其本身区域内TC生成个数也表现出显著的递减趋势,进而导致了此区域的TC出现频率同样表现出通过95%置信度检验的线性下降趋势。而影响S区TC生成趋势变化的主要环流因子为700hPa相对湿度和500hPa纬向风的经向切变。
     4、利用热带气旋潜在生成指数对CO2加倍过程中和加倍后热带气旋的生成能力进行预测。其中CO2加倍过程中的研究结果体现了人类活动影响下未来50~100年TC生成的趋势变化,而CO2加倍后的变化趋势则为未来100~150年TC生成的气候变化特征。研究发现无论是CO2加倍过程中还是加倍后,未来热带气旋生成在北太平洋上存在北移增强的特点,在大西洋上则表现为墨西哥湾以东海域TC生成能力减弱,以北、以南区域生成能力增强的特点。其中,在未来100~150年间增强幅度更大。进一步研究表明:由于CO2增加而造成的热带海洋和大陆、海域和海域间增暖的不一致性使得未来环流条件发生不一致的变化特征,而最终引起TC生成表现出上述变化特征。其主要是通过改变垂直风切变和相对湿度这两个因子实现的。
Based on the 44-yr (1965-2008) tropical cyclone (TC) data of the Joint Typhoon Warning Center (JTWC) and the National Hurricane Center (NHC), the data of Atmosphere circulation field from the National Centers Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR), the ERSST from the National Oceanic Atmospheric Administration (NOAA) and the results of GFDL CM2.0 model, some statistic methods, such as Season-reliant Empirical Orthogonal Function (SEOF), Season-reliant Singular Value Decomposition (SSVD), have been used to do the following analysis:the first one is to study the global mode of the TCs and to analyze the relationship between this mode and the SST; the second is to discuss the variation of the TC in the High frequency of occurrence regions (HFOR) in the western north Pacific (WNP) and associated general circulation; the last one is about the climate prediction of TCs using Genesis potential Index defined by Emanuel and Nolan. Some useful results have been got.
     1. It is the first time to using the SEOF to analysis the global TCs and getting a dominant dependent mode, the global mode of TCs. The analysis also shows that it is influenced by El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), the ENSO more important.
     In this paper, the global mode of TCs is the first dominant mode of the SEOF of global TC based on TC year. Its spatial pattern displays an east-west contrast between enhanced activity in the North Pacific and reduced activity in the North Atlantic and a north-south contrast in the Southern Pacific oceans between active tropics and inactive subtropics, which are coupled with the El Nino and a positive phase of the PDO. The correlation coefficient between the PC1 and the index of ENSO and that between the PC1 and PDO reach 0.83 and 0.56, while the one between the PC1 and North Atlantic Oscillation (NAO) is only 0.06.
     2. Using the SSVD, the relationship between the global TCs and the SST is discussed. The two leading mode are got, the first one display the relationship between the global mode of TCs and ENSO and PDO, and the second suggests the variation of the global TC with global warming.
     The second mode reveals regional upward trends over the North Atlantic and the Indo-Pacific warm pool (17.5°S-10°N,70°E-140°E) coupled with the global warming. However, the global total number of frequency of occurrence shows no trend and only an unexpected large amplitude fluctuation driven by ENSO and PDO. The rising temperature of about 0.5~1.0℃in the tropics so far has not yet affected the frequency of occurrence of the global TC, while it only leads to upward or downward trend in some regions in some basins.
     3. The variation of Western North Pacific Subtropical High (WNPSH) in different time scale can affect the variation of the frequency of occurrence (FOC) of TCs in HFOR in the WNP.
     The variation of TCs in peak season (JASO) in three HFORs (the region E, region S and region P) is different. In the region S, whatever the FOC, the track number (TN) and the genesis number (GN) all show significant downward trends. In the P region, the FOC, TN and GN all show about 8-11-year decadal variation. Otherwise, in the region E, the significant 3-4 years oscillation appears in the FOC and TN.
     For the three regions, the TN's variability that influenced by the variation of the WNPSH is the main reason of the variation of the FOC. For the long term trend of the TN of the region S, compare the period 1987 to 2008 with period 1965 to 1986, the WNPSH displays westward and southward, and strengthened. It even expands to the region S. This change of the WNPSH will reduce the number of the tracks which go through the region S. On the decade scale, an anomaly anticyclone appearing in the' northwest of the region P makes the WNPSH stretch northward and westward, and this is suitable for TCs reaching the region P in the larger FOC year of the region P. The interannual variation of the WNPSH results in the interannual variation of the TN of the region E.
     Otherwise, for the region S, the decreasing trend of the GN of the region S and the region (140°~160°E,5°~20°N) where the TC generating may go through the region S is another reason of the downward trend of the FOC of the region S. The reduced relative humidity and increased meridianal shear of zonal wind may be lead to the trend of the GN in the two regions.
     4. The GPI is used to predict the change of the genesis of the TCs in JASO when the CO2 is doubling and doubled in the GFDL2.0 mode.
     The results show that whatever in the doubling of CO2 or doubled, the genesis of TCs in the north Pacific may shift northward (the GPI is positive on the north of 10°N, while negative on the south of 10°N); in the Atlantic, the property of genesis of TCs will decrease on the east of the Gulf of Mexico (GPI, negative), increasing on the south and north the Gulf of Mexico (GPI, positive). The possible reason of these changes may be the change of vertical shear of zonal wind and the relative humidity caused by the inconsistency of the increasing of SST.
引文
1. Bengtsson, L., K. I., Hodges, Erich Roeckner.2006:The natural variability of the pre-industrial European Climate [J]. Climate Dynamics,27(7-8):743-760.
    2. Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. O'Brien,1998:Effect of El Nino on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc.,79,2477-2482.
    3. Camargo S. J. and A. H. Sobel,2005:Western north Pacific tropical cyclone intensity and ENSO, J. Climate,18,2996-3005.
    4. Camargo S., A. G. Barnston, S. E. Zebiak,2005:A statistical assessment of tropical cyclone activity in atmospheric general circulation models [J]. Tellus,57A,589-604, Doi: 10.1111/j.1600-0870.2005.00117.
    5. Camargo S. J., K. A. Emanuel, and A. H. Sobel,2007:Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis, J. Climate,20,4819-4834.
    6. Chan, J. C. L.,1985:Tropical cyclone activity in the northwest Pacific in relation to El Nino/Southern Oscillation phenomenon. Mon. Wea. Rev.,113,599-606.
    7. Chan, J. C. L.,1995:Tropical cyclone activity in the western north Pacific in relation to the stratospheric quasi-biennial oscillation, Mon. Wea. Rev.,123,2567-2571.
    8. Chan, J. C. L., 2000:Tropical cyclone activity over the western North Pacific associated with El Nino and La Nina events. J. Climate,13,2960-2972.
    9. Chan, J. C. L., J. E. Lam, and C. M. Shi,1998:Seasonal forecasting of tropical cyclone activity over western North Pacific and the South China Sea. Weather Forecasting,13(5): 997-1003.
    10. Chan, J. C. L., J. E. Shi, and K. S. Liu,2001:Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific, Weather Forecasting,16(4): 491-498.
    11. Chan, J. C. L:,2006:Comments on "Changes in tropical cyclone number, duration, and intensity in a wanning environment." Science,311, p.1713.
    12. Chan, J. C. L., and J. E. Shi,1996:Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett.,23,2765-2767.
    13. Chan S. S., and K. J. E. Walsh,2009:Tropical cyclone activity in the Fiji region:spatial patterns and relationship to large-scale circulation, J. Climate,22,3877-3893.
    14. Chauvin, F., J.-F. Royer and M. Deque,2006:Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climate at high resplution [J]. Clim, Dyn,27(4):377-399.
    15. Chen, T. C., S. P. Weng, N. Yamazaki, and S. Kiehne,1998:Interannual variation in the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev.,126,1080-1090.
    16. Chia, H. H., and C. F. Ropelewski,2002:The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate,15,2934-2944.
    17. Chu, P. S.,2002:.Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Climate,15,2678-2689.
    18.——,2004:ENSO and tropical cyclone activity. Hurricanes and Typhoons, Past, Present and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press,297-332.
    19.——, and J. Wang,1997:Tropical cyclone occurrences in the vicinity of Hawaii:Are the differences between El Nino and non-El Nino years significant? J. Climate,10,2683-2689.
    20. Clark, J.D., and P.-S. Chu,2002:Interannual variation of tropical cyclone activity in the central North Pacific. J. Meteor. Soc. Japan,80(3),403-418.
    21. Collins, J. M., and I. M. Mason,2000:Local environmental conditions related to seasonal tropical cyclone activity in the Northeast Pacific basin. Geophys. Res. Lett.,27,3881-3884.
    22. Dong, K.,1988:El Nino and tropical cyclone frequency in the Australian region and the North-western Pacific. Aust. Meteor. Mag.,36,219-255.
    23. Elsner, J. B., and B. Kocher,2000:Global tropical cyclone activity:A link to the North Atlantic Oscillation. Geophys. Res. Lett.,27,129-132.
    24. Elsner, J. B., and A. B. Kara,1999:Hurricanes of the North Atlantic:Climate and Society. Oxford University Press,488 pp.
    25. Emanuel, K. A.,2005:Increasing destructiveness of tropical cyclones over the past 30 years. Nature,436,686-688.
    26. Emanuel, K., S. Ravela, E. Vivant, and C. Risi.2006:A statistical deterministic approach to hurricane risk assessment[J]. Bull. Amer. Meteor. Soc.,87(3),299-314.
    27. Emanuel, K., R. Sundararajan, and J. Williams,2008:Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc.,89,347-367.
    28. Frank, W. M., and G. S. Young,2007:The interannual variability of tropical cyclones, Mon. Wea. Rev.,135,3587-3598.
    29. Fu, B., M.S. Peng, T. Li, and D.E.Stevens,2009:Developing versus non-developing disturbances for tropical cyclone formation:part Ⅱ:Western North Pacific. Submitted to Journal of Atmospheric Science.
    30. Gray, W. M.,1984:Atlantic seasonal hurricane frequency. Part I:El Nino and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev.,112,1649-1668.
    31. Gray, W. M., and J. D. Sheaffer,1991:El Nino and QBO influences on tropical cyclone activity. Teleconnections Linking Worldwide Anomalies, M. H. Glantz, R. W. Katz, and N. Nicholls, Eds., Cambridge University Press,257-284.
    32. Gray, W. M., J. D. Sheaffer, and J. A. Knaff,1992:Influence of the stratospheric QBO on ENSO variability, J. Meteor. Soc. Japan,70,975-994.
    33. Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry,1993:Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting,8,73-86.
    34. Goldenberg, S. B., and L. J. Shapiro,1996:Physical mechanisms for the association of El Nino and West African rainfall with Atlantic major hurricane activity. J. Climate,9, 1169-1187.
    35. Hasegawa, A. and S. Emori,2005:Tropcial cyclones and associated precipitation over the Western North Pacific:T106 atmospheric GCM simulation for present-day and double CO2 climates [J]. SOLA, Japan,1:145-148, Soi:10.2151/sola.2005-038.
    36. Hassim, M. E., and K. J. E. Walsh,2008:Tropical cyclone trends in the Australian region, Geochemistry Geophysics Geosystems,10.1029/2007GC001804.
    37. Henderson-Sellers, A. et al.,1998:Tropical cyclones and global climate change:A post-IPCC assessment, Bull. Amer. Meteor. Soc.,79,19-38.
    38. Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. A. Curry,2006:Deconvolution of the factors contributing to the increase in global hurricane intensity. Science,312,94-97.
    39. Holland, G. J., and P. J. Webster 2007:Heightened tropical cyclone activity in the North Atlantic:Natural variability or climate trend?, Philos. Trans. R. Soc. London, Ser. A, doi:10.1098/rsta.2007.2083.
    40. Irwin, R. P., and R. Davis,1999:The relationship between the Southern Oscillation Index and tropical cyclone tracks in the eastern North Pacific. Geophys. Res. Lett.,26,2251-2254.
    41. Klotzbach, P. J.,2006:Trends in global tropical cyclone activity over the past twenty years (1986-2005), Geophys. Res. Lett.,33, L10805, doi:10.1029/2006GL025881.
    42. Klotzbach, P. J. and W. M. Gray,2003:Forecasting September Atlantic basin tropical cyclone activity, Weather and Forecasting,18,1109-1128.
    43. Knaff, J. A.,1997:Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate,10,789-804.
    44. Knapp, K. R., and J. P. Kossin,2007:New global tropical cyclone data from 1SCCP B1 geostationary satellite observations, J. Appl. Remote Sens.,1,013505.
    45. Knutson, T. R., R. E. Tuleya, and Y. Kurihara,1998:Simulated increase of hurricane intensities in a CO2-warmed climate[J]. Science,279(5353):1018-1020.
    46. Knutson, T. R., R. E. Tuleya, W. Shen, and I. Ginis,2001:Impact of CO2-induced warming on hurricane intensities as simulated in hurricance model with ocean coupling [J]. J. Climate, 14(11):2458-2468.
    47. Knutson, T. R. and R. E. Tuleya,2004:Impact of CO2-induced warming on simulated hurricane intensity and precipitation:sensitivity to the choice of climate model and convective parameterization [J],J. Climate,17(18):3477-3495.
    48. Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper,2007:A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett.,34, L0481, doi:10.1029/2006GL028836.
    49. Kuleshov, Y., L., Qi, R. Fawcett and D. Jones,2007:On tropical Cyclone Activity in the Southern Hemisphere:Trends and the ENSO Connection, Geophys. Res. Lett.,35, L14S08, doi:10.1029/2007GL032983.
    50. Lander, M. A., C. P. Guard,1998:A Look at Global Tropical Cyclone Activity during 1995: Contrasting High Atlantic Activity with Low Activity in Other Basins, Mon. Wea. Rev.,126, 1163-1173.
    51. Lander, M. A. and M. D. Angove,1998:Eastern hemisphere tropical cyclones of 1995, Mon. Wea. Rev.,126,257-280.
    52. Lander, M. A. and M. D. Angove,1999:Eastern hemisphere tropical cyclones of 1996, Mon. Wea. Rev.,127,1274-1300.
    53. Lander, M. A. R. A. Pielke Jr., A. M. Mestas-Nunez, and J. A. Knaff,1999:Atlantic basin hurricanes:Indices of climatic changes. Climatic Change,42,89-129.
    54. Landsea, C. W.,2005:Hurricanes and global warming. Nature,438, E11-E12.
    55. —, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff,2006:Can we detect trends in extreme tropical cyclones? Science,313,452-454.
    56. —,2007:Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union,88,197-200.
    57. Li, J. P., and J. X. L. Wang,2003:A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci.,20,661-676.
    58. Li, T., X. Ge, B. Wang, and Y. Zhu,2006:Tropical cyclogenesis associated with Rossby wave energy dispersion of a pre-existing typhoon. Part Ⅱ:Numerical simulations. J. Atmos. Sci.,63 (5),1390-1409.
    59. Mann, M., and K. Emanuel,2006:Atlantic hurricane trends linked to climate change, Eos Trans. AGU,87(24),233,238,241.
    60. Mann, M. E., K. A. Emanuel, G. L. Holland, and P. J. Webster,2007:Atlantic tropical cyclones revisited. Eos, Trans. Amer. Geophys. Union,88,349-350.
    61. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R.C. Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Amer. Meteor. Soc., 78,1069-1079.
    62. Mcdpnald, R. E., D. G. Bleaken, D. R. Cresswell, et al.,2006:Tropcial storms:representation and diagnosis in climate models and the impacts of climate change [J]. Clim. Dyn,25(1): 19-36, Doi:10.1007/s00382-004-0419-0.
    63. Moore, J. C., A. Grinsted, and S. Jeverejeva,2008:Gulf stream and ENSO increase the Temperature Sensitivity of Atlantic Tropical Cyclones, J. Climate,21,1523-1531.
    64. Moron, V., R. Vautard, and M. Ghil,1998:Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn.,14,545-569.
    65. North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng,1982:Sampling errors in the estimation of empirical orthogonal functions, Mon. Weather Rev.,110,699-706.
    66. Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda,2006: Tropcial cyclone climatology in a global-warming climate as simulated in a 20km-mesh global atmospheric model:frequency and wind intensity analysis [J]. J. Meteorol. Soc. Japan, 84(2):259-276.
    67. Pearson K.,1902:On lines and plans of closest fit to system of points in place philos. Magnetism,6:559-572.
    68. Pielke, R. A., Jr., and C. W. Landsea,1999:La Nina, El Nino and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc.,80,2027-2033.
    69. Ramsay, H. A., Leslie, L. M., Lamb, P., Richman, M. B., and Leplastrier, M,2008: Interannual Variability of Tropical Cyclone in the Austrlian Region Role of Large-Scale Environment, J. Climate,21,1083-1103.
    70. Rao, V. B., Ferreira, C., C., Franchito, S. H., and Ramakrishna, S. S. V. S.,2008:In a changing climate weakening tropical easterly jet induces more violent tropical strorms over the north Indian Ocean, Geophys. Res. Lett.,35, doi:10.1029/2008GL034729.
    71. Rogers J C.,1981:The North Pacific oscillation.J Climate,1(1):39-57.
    72. Singh, O. P., T. M. A. Khan, and M. S. Rahman,2000:Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteor. Atmos. Phys.,75,11-20.
    73. Shapiro, L. J.,1987:Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm rmation. Mon. Wea. Rev.,115,2598-2614.
    74. Sriver, R. and M. Huber,2006:Low frequency variability in globally integrated tropical cyclone power dissipation [J]. Geophys. Res. Lett.,33, L11705, doi:10.1029/2006GL026167.
    75. Sugi, M., A. Noda, and N. Sato,2002:Influence of global warming on tropical cyclone climatology:an experiment with the JMA global model [J]. J. Meteorol. Soc. Japan,80(3): 249-272, Doi:10.2151/jmsj.80.249.
    76. Tang, B. H., and J. D. Neelin,2004:ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett.,31, L24204, doi:10.1029/2004GL021072.
    77. Trenberth, K. E.,2005:Uncertainty in Hurricanes and global warming, Science,308, 1753-1754.
    78. Trenberth, K. E., C. A. Davis, and J. Fasullo,2007:Water and energy budgets of hurricanes: Case studies of Ivan and Katrina, Geophys. Res. Lett.,112, L14S08, doi:10.1029/2006JD008303.
    79. Trenberth, K. E., and J. Fasullo,2007:Water and energy budgets of hurricanes and implications for climate change, Geophys. Res. Lett.,112, L14S08, doi:10.1029/2006JD008304.
    80. Tsutsui, J.,2002:Implications of anthropogenic climate change for tropical cyclone activity: a case study with the NCAR CCM2 [J]. J Meteorol. Soc. Japan,80(1): 45-65.Doi:10.2151/jmsj.80.45.
    81. Wallace J M, D S. Gutzler,1981:Teleconnections in the geopotential height during the Northern Hemisphere winter. Mon Weather Rev,126(4):791-805.
    82. Wallace J M, D. W. J. Thompson,2002:The Pacific center of action of the Northern Hemisphere annular mode:real or artifact? J Climate,15(14):1987-1991 [DOI]
    83. Walsh, K. J. E., and B. F. Ryan,2000:Tropcial cyclone intensity increase near Australia as a result of climate change [J]. J. Climate,13(16):3029-3036.
    84. Walsh, K. J. E., K.-C. Nguyen, and J. L. McGregor,2004:Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia [J]. Clim. Dyn.,22(1):47-56, Doi:10.1007/s00382-003-0362-0.
    85. Wang, B., and J. C. L. Chan,2002:How strong ENSO events affect tropical storm activity over the western North Pacific.J. Climate,15,1643-1658.
    86. Wang, C. Z., D. B. Enfield, S. K. Lee, and C. W. Landsea,2006:Influences of the Atlantic Warm Pool on Western Hemisphere Summer Rainfall and Atlantic Hurricanes, J. Climate,15, 3011-3028.
    87. Wang, B., and Y. Wang,1996:Temporal structure of the SOI as revealed by waveform and wavelet analysis. J. Climate,9,1586-1598.
    88. Wang, B., R. Wu, and T. Li,2003:Atmosphere-Warm Ocean interaction and its impact on Asian-Australian Monsoon variation, J. Climate,16,1195-1211.
    89. Webster, P. J., G. J. Holland, J. A. Curry, H. R. Chang,2005:Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, Science,309,1844-1846.
    90. Webster, P. J., J. A. Curry, J. Liu, G. J. Holland,2006:Response to Comment on "Changes in Tropical Cyclone Number, Duration, and Intensity in a Wanning Environment", Science,311, 1713c.
    91. Whitney, L. D., and J. Hobgood,1997:The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10,2921-2930.
    92. Wu, L. G, and B. Wang,2004:Assessing impacts of global warming on tropical cyclone tracks,J.Climate,17,1686-1698.
    93. Wu, G, and N.-C. Lau,1992:A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Rev.,120,958-977.
    94. Vecchi, G. A., and B. J.Soden,2007:Increased Tropical Atlantic Wind Shear in Model Projection of Global Warming, Geophys. Res. Lett.,34, L08702, doi:10.1029/2006GL028905.
    95. Vimont D J, J. P. Kossin,2007:The Atlantic meridional mode and hurricane activity[J]. Geophys Res Lett,34, L07709, doi10.1029/2007GL029683.
    96. Xie, S. P., H. Annamalai, F. A. Schott and J. P. Mcceray JR.,2002:Structure and mechanisms of south Indian ocean climate variability, J. Climate,15,864-878.
    97. Xie L, T. Yan., L. J., Pietrafesa,2005:Cliamtology and interannual variability of North Atlantic hurricane tracks[J].J Climate,18(24):5370-5381.
    98.陈光华,黄荣辉,2006:西北太平洋暖池热状态对热带气旋活动的影响.热带气象学报,22(6):527~532。
    99.陈光华,黄荣辉,2009:西北太平洋低频振荡对热带气旋生成的动力作用及其物理机制,大气科学,33(2)205-214。
    100.陈联寿,1965:盛夏亚洲中高纬流型与西太平洋台风路径的关系。35(4):476-485。
    101.储惠芸,王元,伍荣生,2007:上层海洋热力异常对西北太平洋热带气旋气候特征的影响,南京大学学报,43(6),581-588。
    102.范可,2007:北太平洋海冰,一个西北太平洋台风生成频次的预测因子?[J].中国科学D辑:地球科学,37(6):851-856。
    103.范可,2007:西北太平洋台风生成频次的新预测因子和新预测模型,地球物理学报,37(9),1260-1266。
    104.高建芸,张秀芝,江志红,游立军,西北太平洋季风槽异常与热带气旋活动,海洋学报,30(3),35-46。
    105.何敏,宋文玲,陈兴芳,1999:厄尔尼诺和反厄尔尼诺事件与西北太平洋台风活动。热带气象学报,15(1):17-25.
    106.何诗秀,张宝严,傅秀琴,1986:西北太平洋盛夏台风频数与大尺度环流条件的关系。热带气象,2(3):251-256。
    107.黄荣辉,陈光华,2007:西北太平洋热带气旋移动路径的年际变化及其机理研究,气象学报,65(5),683-694。
    108.黄勇,李崇银,王颖,2009:西北太平洋热带气旋变化特征及其与海表温度关系的进一步研究,热带气象学报,25(3),273-280。
    109.李崇银,1987:厄尔尼诺影响台风活动的研究。气象学报,45(2): 229-236。
    110.李春晖,刘春霞,程正泉,2007:近50年南海热带气旋时空分别特征及其海洋影响因子,热带气象学报,23(4),341-347。
    111.李宪之,1956:台风生成的综合学说。气象学报,27(2):87-89。
    112.李曾中,1986:越赤道气流与中国天气关系的初步统计分析。4(1):11-14。
    113.卢秋珍,胡邦辉,王学忠,苏宏琛,张惠君,2007:西北太平洋台风活动的年代际变化与大尺度环流因子的关系,热带气象学报,23(6),629-635。
    114.林惠娟,张耀存,2004:影响我国热带气旋活动的气候特征及其与太平洋海温的关系。热带气旋学报,20(2):218-224。
    115.商树荣,蒋尚城,2002:卫星双通道反演的赤道纬向环流的气候特征及与ENSO关系的研究。热带气象学报,,18(1):56-64。
    116.陶诗言,徐淑英,郭其蕴,1962:夏季东亚热带和副热带地区经向和纬向环流型的特征。气象学报,32(1):91-103。
    117.干会军,范可,2006:西北太平洋台风生成频次与南极涛动的关系[J]。科学通报,51(24):2910-2914。
    118.王会军,范可,孙建奇,郎咸平,林美静,2007:关于西太平洋台风气候变异和预测的若干研究进展,大气科学,31(6),1076-1081。
    119.王会军,孙建奇,范可,2007:北太平洋涛动与台风和飓风频次的关系研究,地球科学,37,966-973。
    120.王磊,陈光华,黄荣辉,2009:近30a登陆我国的西北太平洋热带气旋活动的时空变化特征,南京气象学院学报,32(2),182-188。
    121.王磊,陈光华,黄荣辉,2009:西北太平洋准双周振荡对热带气旋活动的影响,大气科学,33(3),416-424。
    122,王咏梅,李维京,任福民,王小玲,2007:影响中国台风的气候特征及其与环境场关系的研究,热带气象学报,23(6),538-544。
    123.王作述,何诗秀,方宗义等,1982:西北太平洋ITCZ多台风发生的初步研究。1(2):132-139。
    124.肖子牛,梁红丽,李崇银,2009,夏季西北太平洋和南中国海台风生成与前期冬春主要环境条件的关系,气象学报,67(1),90-99。
    125.谢义炳,陈受钧,郭肖蓉,1965:10-12月低纬度东南亚和西太平洋上空环流场特征。气象学报,35(3):338-342。
    126.徐建民,谷美荣,1978:北半球夏季西太平洋热带地区的环流特征及其与台风发生的关系。大气科学,2,174-178。
    127.薛根元,王志福,周丽峰,诸晓明,朱持则,2007:登陆东南沿海热带气旋的异常特征及其成因的研究,地理物理学报,50(5),1362-1372。
    128.杨亚新,江静,2008:赤道中东太平洋表层水温异常与热带气旋活动的统计关系,气象科学,28(6),637-643。
    129.杨宇星,黄菲,王东晓,2007,印度洋-太平洋暖池变异的研究,海洋湖沼,38,296-303.
    130.周学鸣,魏应植,吴陈锋,2006:夏季西太平洋台风频数异常与ENSO事件的关系大气环流异常特征,热带气象学报,22(1),34-40。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700