辽宁省地质灾害的潜在性分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然灾害尤其是地质灾害是人类可持续发展中面临的一个巨大的挑战,中国地质灾害种类多、分布广、危害大。特别是在汛期,受气象因素的影响,崩塌、滑坡、泥石流等突发性地质灾害频发,占地质灾害总数的80%以上。据1995年至2002年以来的统计资料显示,全国每年仅因突发性地质灾害造成一千多人死亡,经济损失高达几十亿元。巨大的灾害损失,不仅直接造成了人民生命财产的损失,而且冲击了社会发展的各项事业。
     辽宁省位于我国东北地区南部,处在中朝准地台和天山—兴蒙地槽褶皱系两个一级大地构造单元内,地质环境复杂,自然变异强烈,地质灾害发生频繁多,为全国地质灾害重灾区。巨大而频繁的灾害,严重地威胁着人民的生命和财产安全。因此,进行辽宁省滑坡和泥石流地质灾害的潜在性研究具有重要的理论和实际意义。本文以GIS为平台,利用地统计方法、Yamamoto检测法、权重证据法和Random forest等分析了辽宁省地质灾害的潜在性分布。研究取得的主要成果如下:
     (1)利用地统计方法、Yamamoto检测法、气候倾向率和趋势系数方法研究辽宁省过去40年的气候的时空变化,并利用加拿大气候模拟和分析中心(CCCma, Canadian Centre for Climate Modelling and Analysis)推出的第二代全球气候耦合模型CGCM2数据研究未来100年辽宁省气候的时空变化,研究表明辽宁省的气候有暖干化趋势,暖化期主要体现在春冬两季,干旱期体现在夏冬两季。突变检测表明,辽宁省气温有突变,其中夏季突变最明显,而降水基本无突变。空间分析表明,辽宁省的年均温由西南向东北方向、年降水由东向西方向都有逐渐递减的趋势。同样气温和降水的趋势系数也存在空间变异性,并且四季变化不一致。未来降水增加的可能性较大。未来百年的气温变化趋势比较明显,一直呈增加的趋势。
     (2)以GIS为平台,通过空间叠加取样和Buffer方法等研究辽宁省地层岩性、地质构造、岩浆岩、植被土壤等因子和地质灾害的空间关系,并探寻引起地质灾害的地质条件主导因素。研究表明辽宁省地质条件与地质灾害的空间关系密切,凤城凸起的辽东裂谷的多旋回演化和裂谷内的断裂为泥石流提供了大量的松散碎屑物质;受构造控制的北镇凸起断块,区内北东及北北东向的极为发育断裂和两侧有一宽度较大的韧性剪切带为地质灾害的提供了良好的发育条件。同样,植被和土壤也与辽宁省滑坡泥石流灾害有着较密切的空间关系。
     (3)以GIS为平台,利用权重证据法对辽宁省地质灾害的敏感性评价表明:岩浆岩、地质岩性和植被类型对地质灾害的影响最大,权重证据法在辽宁省地质灾害的敏感性评价中效果较好。权重指数图显示辽东山区为辽宁省地质灾害的高敏感区,其次辽西山区和辽宁省东北部为地质灾害的次敏感区,中部平原为地质灾害的低敏感区,另外沈阳市区附近有较高的敏感区。
     (4)在敏感性评价的基础上,选用地震、降水和气温为诱发因子,利用权重证据法研究辽宁省目前的地质灾害危险性评价。同时,以CGCM2提供的未来的气候条件为基础,进行未来50年和100年的地质灾害危险性评价,并进行三个时段危险性分区图的对比分析。研究表明辽东山区是辽宁省地质灾害危险性最大的区域,而同样,在沈阳市区附近存在着一个较小的危险性较高的区域,其它的较高的危险性区域是辽西和辽宁省东北部。未来地质灾害发生概率较大的区域将逐渐增大。到2050辽西地质灾害发生概率较高区域将减少,而从辽东中部山区向外围扩展地质灾害发生概率较高区域将增多,同时,在辽宁省东北部危险性高值区域也将增加。而到2100年,辽宁省危险性高值增加区域主要在辽宁省东北部。
     (5)在辽宁省危险性评价的基础上,选择危险性较高的凤城市为研究对象,收集RS数据、高程数据、日降水数据(从1971到2000年),地质数据和土壤数据,利用Random forest方法进行了凤城市地质灾害降水预警预测,研究表明:Random forest方法较好地预测了凤城市的降水预警图,凤城市1和2日累计降水对预警预测具有指示意义。相对来说,西北部降水诱发地质灾害的阈值较小,东南部降水诱发地质灾害的阈值较大。
Natural disaster, especially the geologic hazard, is a great challenge in the processes of sustainable development of human being. The geologic hazards in China are is in a great variety, wide distribution and with great damage. In the flood season, driven by the climatic factors, avalanche, landslip, debris flow etc. are occurred frequently. These kinds of geologic hazard occupying above 80% of entire geologic hazard. According to the records of statistic data from 1995 to 2002, the geologic hazard would result in the death of more than 1 thousand people and losing of decades of billion Yuan per year, which would also have bad influence on all enterprise.
     Liaoning province is located in the south of Northeastern China, and is in the tectonic units between China-Korea paraplatform and Tianshan-Xingmeng geosyncline. There are complex geologic environment, high heterogeneity and various geologic hazard with wide distribution and big impaction. Since 1998 to 2002, there are 62 geologic hazards, which occurred in 13 cities. These had threaten the safety of people's life and property. Thus, it is very important to study the potential distribution of geologic hazard in Liaoning Province. This dissertation analysed the potential distribution of geologic hazard using geostatistic, Yamamoto detection, Weight of Evidence and Random Forest on the GIS platform, and drew these conclusions:
     (1) Geostatistic, Yamamoto detection, climate tendency rate and tendency coefficient were used to explore the spatial and temporal changes of the climate in last 40 years. The CGCM2 model, brought forward by Canadian Centre for Climate Modelling and Analysis was used to supply the future climate scinarios. The research showed that there are warming and drying tendency of Liaoning province in last 40 years. The warming tendency is obvious in spring and winter and drying tendency is obvious in summer and winter. Yamamoto detection showed that there are break in the temperature, especially in summer. There are no break in the precipitation. The spatial analysis showed that, the mean annual temperature have the tendency of degressive from southwest to northeast, and the annual precipitation have the dendency of degressive from east to west. There are spatial variability of the tendency coefficient of temperature and precipitation. In future 100 years, the precipitation and temperature would both increase.
     (2) Spatial overlap and Butter analysis were used to study the relationships of stratum lithology, geological structure, magma rock, vegetation and soil and geologic hazard, aiming to explore the driven factors of geologic hazard. Research showed that there are intimate spatial relationship between geologic structure and geologic hazards. Liaodong Rift and the fracture structures in the rift supplied a lot of relax and chipping material for debreis flow. Beizheng heave, controlled by geologic structure, also supplied the condition for geologic hazard. At the same time, vegetation and soil factors also have relation to the landslide and debris flow of Liaoning Province.
     (3) Weight of Evidence was used to study the sensitivity of geologic hazard of Liaoning Province. Resutls showed that, magma rock, stratum lithology and vegetation are the most three important factors controlling the geologic hazard. Weight index map showed that Liaodong Mountains were the highly sensitive area of Liaoning Province, Liaoxi Mountains were next, while the middle plain was the lowly sensitive area. In addition, there are a small highly sensitive area near shenyang city.
     (4) On the basis of sensitive assessment analysis, we use earthquake, precipitation and temperature as the main factos to assess the fatalness of the geologic hazard by weight of evidence. At the same time, based on the future climate scenarios supplied by CGCM2, we assess the fatalness of the geologic hazard in future 50 and 100 years, then we compared the fatalness of the geologic hazard in three periods. The results showed that Liaodong Mountain is the area with highest fatalness and there are also a small area near shenyang city with higher fatalness. Other area with higher fatalness were Liaoxi Mountains and the northeast part of Liaoning Province. The high fatalness area in future would increase, the area with high fatalness in Liaoxi Mountain would decrease, but the area with high fatalness in Liaodong mountian and northeastern part would increase in 2050 year. The area with high fatalness in northeastern part of Liaoning Province would increase in 2100 year.
     (5) On the basis of analysis the fatalness assessment, fengchen city, with higher fatalness was chosen as the study are in small scale. The TM image, elevation, day precipitation data (from 1971 to 2000), geologic data and soil data of this area were collected to predict the relationship between precipitation and occurrence rate of geologic hazard by Random Forest technique. The results showed that 1 day and 2 day cummulative precipitation have a directive meaning for geologic hazard. In total area, the cutoff value in northwest part is small, while it is big in southeast part of the area.
引文
[1]Calef MP, McGuire AD, Epstein HE, et al. Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach [J]. Journal of Biogeography 2005,32:863-878.
    [2]IPCC (2001) In:Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton JT, Ding Y, Griggs DJ et al.), Cambridge:Cambridge University Press.
    [3]方精云,唐艳鸿,林俊达,蒋高明.全球生态学-气候变化与生态响应[M].北京:高等教育出版社,海德堡:施普林格出版社,2002.
    [4]孙凤华,杨素英,陈鹏狮.东北地区近44年的气候暖干化趋势分析及可能影响[J].生态学杂志.2005,24(7):751~755.
    [5]国家气候变化对策协调小组办公室,中国21世纪议程管理中心.全球气候变化-人类面临的挑战[M].商务印书馆.2004.70-79
    [6]罗元华 张梁 张业成.地质灾害风险评估方法(地质出版社出版.北京)1998.8:1-4
    [7]《中国地质学》扩编委员会.中国地质学(据李四光原著扩编).地质出版社.北京.1999:733-743
    [8]云南滑坡泥石流研究,唐川朱静等著,商务印书馆,北京,2003.5:48-51
    [9]Gupta P, Anbalagan R.1997. slope stability of Theri Dam Reservoir Area, India, using landslide hazard zonation (LHZ) mapping. Quarterly Journal of Eng Geology,1997,30: 27-36.
    [10]A. K. Pachauri, P. V.Gupta, R. Chander.1998. Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology.1998,36(3-4)
    [11]A. Uromeihy, M.R. Mahdavifar,2000. Landslide hazard zonation of the Khorshrostam area, Iran. Bulletin of Engineering Geology and the Environment 2000,58:207-213.
    [12]A. Uromeihy, M.R. Mahdavifar,2001, Reply to Discussion on "Landslide hazard zonation of the Khorshrostam area, Iran"by A. Uromeihy and M.R. Mahdavifar, Bull Eng Geol Environ 58:207-213. Bulletin of Engineering Geology and the Environment, 2001,60:81
    [13]Candan Gokceoglu.2001. Discussion on "Landslide hazard zonation of the Khorshrostam area, Iran" by A. Uromeihy and M.R. Mahdavifar, Bull Eng Geol Environ 58:207-213. Bulletin of Engineering Geology and the Environment,2001,60:79-80.
    [14]P. Aleotti, R. Chowdhury.1999. Landslide hazard assessment:summary review and new perspectives. Bull Eng Geol Env,1999,58:21-44.
    [15]乔建平,张小刚,林立相.长江上游滑坡危险度区划.水土保持学报,1994,8(1):39-44.
    [16]沈芳,黄润秋,苗放,罗文强.1999区域地质环境评价与灾害预测的GIS技术.山地学报,1999,17(4);338-342.
    [17]沈芳,黄润秋,苗放,许强.2000x.地理信息系统与地质环境评价.地质灾害与环境保护,2000,11(1):6-10.
    [18]沈芳.2000b.山区流域地质环境评价与地质灾害预测的GIS系统:1学位论文].成都:成都理工大学,2000.
    [19]向喜琼,黄润秋.2000x.地质灾害风险评价与风险管理地质灾害与环境保护,2000,11(1):38-41.
    [20]向喜琼,黄润秋.2000b基于GIS的人工神经网络模型在地质灾害危险性区划中的应用.中国地质灾害与防治学报,2000,11(3):23-27.
    [21]向喜琼.2000c金沙江溪洛渡水电站近坝库岸地质灾害区域评价与预测的GIS系统:(学位论文1.成都:成都理工大学,2000
    [22]向喜琼,黄润秋,许强.2002x.区域地质灾害危险性评价系统的实现.地理学与国土研究,2002,18(3):76-78.
    [23]向喜琼,黄润秋.2002b.生态地质环境风险评价与管理初探.工程地质学报,2002,10(增刊):177-180.
    [24]王文俊,向喜琼,黄润秋,曹修定.2003a.区域崩塌滑坡的易发性评价—以四川省洪县为例‘中国地质灾害与防治学报,2003,14(2):31-34,38.
    [25]王文俊,刘志军,向喜琼2003b四川省琪县地质灾害特征及其防治措施分析.灾害学,2003,16(2):38-42.
    [26]王文俊.2003c.生态地质环境评价的基本原理及其应用—以长江上游安宁河流域为例:[学位论文].成都:成都理工大学,2003.
    [27]刘汉超,陈明东等.库区环境地质研究.成都:成都科技大学出版社,1993.
    [28]赵强,倪万魁.1996.用信息论方法对铜川市区斜坡稳定性评价预测.西安地质学院院报,1996,18(2):64-66.
    [29]柴贺军,黄润秋,刘汉超。1997.滑坡堵江危险度的分析与评价.中国地质灾害与防治学报,1997,8(4):1-8
    [30]程凌鹏.2001.三峡库区地质灾害空间预警研究一以重庆市渝北区为例:[学位论文1北京:中国地质大学(北京),2001.
    [31]唐川,Jorg Grunert.1998.滑坡灾害评价原理和方法研究.地理学报,1998,53(增刊):149-157.
    [32]张业成,张梁.1999.论地质灾害风险评价.地质灾害与环境保护,1999,7(3):1-6.
    [33]唐川,朱静,张翔瑞2001.GIS支持下的地震诱发滑坡危险区预测研究.地震研究,2001,24(1):73-81.
    [34]李雪梅.2001.滑坡影响因素的效果测度分析.中国地质灾害与防治学报,2001,12(1):82-85.
    [35]胡新丽,唐辉明.2002.GIS支持的斜坡地质灾害空间预测系统框架设计.地质科技情报,2002,21(1):99-103.
    [36]张春山,吴满路,张业成.2003a.地质灾害风险评价方法及展望.自然灾害学报,2003,12(1):96-102
    [37]张春山,张业成,马寅生.2003b.黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价.地质力学学报,2003,9(2):143-Ⅰ53.
    [38]马志江,陈汉林,杨树锋.2003.基于支持向量机理论的滑坡灾害预测—以浙江庆元地区为例.浙江大学学报(理学版),2003,30(5):592-596.
    [39]宋光齐.沐川县黄丹滑坡变形成因的再认识及防治方案[J].四川地质学报2002,(02)
    [40]宋光齐.雅江、康定地震次生地质灾害的预防[J].四川地质学报,2002,(01)
    [41]C.M弗莱施曼著,姚德基译.泥石流[M].北京:科学出版社,1986.242-262.
    [42]谭万沛.中国暴雨泥石流预报研究基本理论与现状[J].土壤侵蚀与水土保持学报,1996,2(1):88-95.
    [43]谭万沛,王成华,姚令侃等著.暴雨泥石流滑坡的区域预测与预报[M].成都:四川科学技术出版社,1994.1-279.
    [44]周必凡,李德基,罗德富等著.泥石流防治指南[M].北京:科学出版社,1991.185-190.
    [45]陈景武.云南东川蒋家沟泥石流暴发与暴雨关系的初步分析[A].中国科学院兰州冰川冻土研究所集刊(4)[C].北京:科学出版社,1985.88-96.
    [46]崔鹏,杨坤,陈杰.前期降雨对泥石流形成的贡献-以蒋家沟泥石流形成为例[J].中国水土保持科学,2003.1(1):11-15.
    [47]李昌志,刘兴年,曹叔尤等.前期降雨与不同沙源条件小流域产沙关系的对比研究[J].水土保持学报,2001.15(6):36-39.
    [48]姚令侃.用泥石流发生频率及暴雨频率推求临界雨量的探讨[J].水土保持学报, 1988,2(4):72-77.
    [49]谭炳炎.泥石流沟严重程度的数量化综合评判[[J]:水土保持通报,1986,6(1):51-57.
    [50]谭万沛,罗晓梅,王成华.暴雨泥石流预报程式[[J].自然灾害学报,2000,9(3):106-11Ⅰ
    [51]谭炳炎,段爱英.山区铁路沿线暴雨泥石流预报的研究[[J].自然灾害学报,1995,4(2):43-52.
    [52]魏永明,谢又予.降雨型泥石流(水石流)预报模型研究[[J].自然灾害学报,1997,6(4):48-50.
    [53]余斌,何淑芬,洪勇.泥石流流域降雨的产流与产沙研究[[J].水土保持学报,2001,15(3):72-75.
    [54]刘希林,唐川著.泥石流危险性评价(M].科学出版社,1995.1-93.
    [55]鲁小兵,李德基.基于神经网络的泥石流预测[[J].自然灾害学报,1996,5(3),47-50.
    [56]罗晓梅.GIS技术在暴雨泥石流减灾预报中的运用[[J].山地学报,1998,16(1):73-76.
    [57]唐川,朱大奎.基于GIS技术的泥石流风险评价研究[[J].地理科学,2002,22(3):300-304.
    [58]姚令侃.可拓学在泥石流预报减灾决策上的应用[J].系统工程理论与实践,1998,1.
    [59]晏同珍.水文工程地质与环境保护.武汉:中国地质大学出版社,1994.
    [60]晏同珍,殷坤龙.滑坡系统静动态规律及斜坡不稳定性时空定量预测.地球科学,1999(2)1
    [61]殷坤龙,柳源.滑坡灾害区划系统研究.中国地质灾害与防治学报,2000(11).
    [62]朱良峰,吴信才,殷地龙,刘修国.基于信息量模型的中国滑坡灾害风险区划研究.2004.26(3):51-56
    [63]胡守仁,余少波,戴葵.神经网络导论.北京:国防科技大学出版社,1997.
    [64]徐献铮,张百灵,韦岗等.神经网络理论与应用.华南理工大学出版社,1994
    [65]陈守余,周梅春.人工神经网络模拟实现与应用[M].武汉:中国地质大学出版社,2000.
    [66]飞思科技产品研发中心MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [67]王济川,郭志刚Logistic回归模型—方法与应用.北京:高等教育出版社,2001.
    [68]韩立岩,汪培庄.应用模糊数学(修订版).北京:首都经济贸易大学出版社,1998.
    [69]夏元友,朱瑞赓.岩质边坡稳定性多人多层次模糊综合评价系统研究.工程地质学报,1999.7
    [70]张欣海.斜坡稳定性空间预测的模糊破坏概率研究.矿山地质,1993(2)
    [71]杨华林,张斌.应用模糊学方法评价达川地区斜坡稳定性.四川地质学报,,2001(21)1:50-52.
    [72]张永波,时红.斜坡稳定性两级模糊综合评判.工程地质学报,2000(8)1:31-34.
    [73]靳泽先.模糊数学方法在边坡稳定性评价中的应用.水文地质工程地质,1987(6):32-35.
    [74]张年学等.长江三峡工程库区顺层岸坡研究.北京:地震出版社.1993.
    [75]钟敦伦,谢洪,王土革,韦方强等.北京山区泥石流.商务印书馆.北京2004.176-182
    [76]谢久兵.地质灾害风险评估模型研究.中国科学院研究生院博士学位论文.2006.06:99-101
    [77]C. J. van Westen,N.Rengers,M.T.J.Terlien, Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation, Ceol Rundsch (1997) 86:404-414.
    [78]P.Aleotti, R.Chowdhury, Landslide hazard assessment:summary review and new perspectives, Bull Eng Geol Env(1999) 58:21-44.
    [79]Cees J, van Westen, The Modelling of Landslide Hazards Using CIS, Surveys in Goephysics 21:241-255,2000.
    [80]M. Borga, G. Dal la Fontana, D. Da Ros, L. Marchi, Shallow landslide hazard assessment using a physically based model and digital elevation data, Environmental Geology 35(2-3) August 1998.
    [81]Saro Lee,Kyungduck Min, Statistical analysis of landslide susceptibility at Yongin,Korea, Environmental Geology (2001) 40:1095-1113.
    [82]Carrara A., Cardinali M,, Guzzetti F,Reichenbach P(1995)GIS technology techniques in mapping landslide hazard. In:Carrara A, Guzzetti F(eds)Geographical information systems in assessing natural hazards,Kuwer,Dordrecht,The Netherlands, pp 135-175.
    [83]R. Nagara jan, A. Roy, R. Yinod Rumar, A. Mukher jee, M. V. Khi re, lands 1 ide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon'regions, Bull Eng Geol Env (2000) 58:275-287
    [84]A.Uromeihy, M. R.Mahdavifar, Landslide hazard zonation of the Rhorshrostam area, Iran, Bull Eng Eeol Env(2000) 58:207-213.
    [85]Mario Mejia,Navarro,利用地理信息系统(GIS)进行地质灾害和风险评佑——研究方法和模型在哥伦比亚麦德林地区的应用,地质科学译丛,1995.9第12卷第3期.
    [86]郑世书,孙亚军,赵林,吴大新.GIS在殷庄煤矿微山湖下采区工作面涌水预测中的应用[J].中国矿业大学学报,1994,(02)
    [87]姜云,王兰生.山区城市地面岩体演化特征[J].成都理械学院学报,1997,(S1)
    [88]雷明堂,蒋小珍,李瑜.岩溶塌陷预测评价系统及其应用——以唐山岩溶塌陷为例 [J].中国岩溶,1997,(02)
    [89]雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J].中国地质灾害与防治学报,1998,(03)
    [90]雷明堂,蒋小珍,李瑜.岩溶塌陷试验、评估与管理方法研究[J].地质灾害与环境保护,2002,(01)
    [91]汪晶.风险评价技术的原理与进展[J].环境科学,1998,(02)
    [92]罗文强.斜坡稳定性概率理论和方法研究[J].岩石力学与工程学报,1999,(02)
    [93]唐川,德国波恩地区滑坡特征与危险性评价,水土保持学报,2000年3月第14卷第1期
    [94]刘荣高,李春来.应用遥感与地理信息系统评价公路地质背景的方法[J].地质地球化学,2001,(01)
    [95]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,(01)
    [96]武强,陈佩佩,张宇,董东林,王龙.我国城市地裂缝灾害问题与对策[J].中国地质灾害与防治学报,2002,(02)
    [97]汪洋.3S架构下的地质灾害灾情风险评佑原理方法与系统集成技术研究.重庆师范大学硕士学位论文.2004.4:2-5.
    [98]《辽宁国土资源》编委会.辽宁国土资源.辽宁人民出版社.沈阳.1987.1:7-26.
    [99]付建飞,王恩德,王毅.辽宁省滨海城市水资源可持续利用研究[J].东北大学学报(自然科学版)2005,26(8):787-789.
    [100]辽宁省地图集编委会.辽宁省自然地图集.1965.3:73-76.
    [101]孙凤华,杨素英,陈鹏狮.东北地区近44年的气候暖干化趋势分析及可能影响[J].生态学杂志.2005,24(7):751-755
    [102]Jones PD, Parker DE, Martin S. et al.1999. Surface air temperature and its changes over the past 150 years[J]. Rev. Geophysics.37(3):173~199.
    [103]Ratcliffe RA.1978. Variability of weather over approximately the last century [J]. Quart J. Roy. Meteor Soc.104(2):243~255.
    [104]Yamamoto R, Iwashima T, Sanga NK.1985. Climatic jump, a hypothesis in climate diagnosis[J]. Met. Soc. Japan.63(2):1157-1160.
    [105]Rossi R E, Mulla D J et al. Geostatistical tools for modeling and interpreting ecological spatial dependence [J]. Ecological Monographs,1992.62(2):277-314.
    [106]Boer GJ, Flato GM and Ramsden D. A transient climate change simulation with historical and projected greenhouse gas and aerosol forcing:projected climate for the 21st century[J]. Climate Dynamics.2000,16:427~451.
    [107]万波,钟以章.东北地区的新构造运动特征分析及新构造运动分区.东北地震研究.199713(4):64-75
    [108]王帅,王深法,俞建强.构造活动与地质灾害的相关性-浙西南山地滑坡、崩塌、泥石流的分布规律.山地学报.2002.20(1):47~52、
    [109]郑德文,张培震,万景林,袁道阳等.构造、气候与砾岩-以积石山和临夏盆地为例.2006.26(1):64-71
    [110]辽宁省地质矿产局.辽宁省区域地质志.地质出版社.1989.7:664-728
    [111]王东方,陈从云,杨森等.中朝陆台北缘大陆构造地质.地震出版社.1992.1:300-306
    [112]张汝源.构造应力场与滑坡、泥石流空间分布关系的研究.基坑与边坡工程.2000.3(2):34-37
    [113]王若柏,郭良迁,韩慕康,叶燕林.邻伦河北平原水系密度与隐伏活动构造的关系.地理学报.2002.57(3):284-292
    [114]尚海洋,张绍波,冯晓淼,金蓉.利用GIS分析辽宁省岫岩地区泥石流沟谷活动.西北师范大学学报(自然科学版).2005.41(1):41-43
    [115]王晓朋,潘懋,丛威青,徐岳仁.辽宁鞍山市岫岩县泥石流区域危险性评价.水文地质工程地质.2006.2:93-95
    [116]温铭生,李铁锋,王连俊.三峡库区滑坡灾害与地质环境关系分析.水文地质工程地质.20064:103-106
    [117]孙文斌,王晓峰,常征,陈洪洲,和跃时.我国东北地区地震时空演变特征及其动力学研究.东北地震研究.2005.21(2):1-8
    [118]彭建兵.中国活动构造与环境灾害研究中的若干重大问题.工程地质学报.2006.14(1):5-12
    [119]彭建兵,马润勇,邵铁全.构造地质与工程地质的基本关系.地学前缘.2004.11(4):535-549
    [120]彭建兵,马润勇,卢全中,李喜安,邵铁全.青藏高原隆升的地质灾害效应.地球科学进展.2004.19(3):457-466
    [121]李建忠,邹光富,冯心涛,朱同兴.珠穆朗玛峰地区新构造运动与环境地质灾害.地质灾害与环境保护.2004.15(2):6-11
    [122]康志成,李焯芬,马蔼乃等.中国泥石流研究.科学出版社.北京.2004.1:38-39
    [123]符文熹,聂德新,任光明,陈海军.中国泥石流发育分布特征研究.中国地质灾害与防治学报.1997.8(4):39-43
    [124]王深法,俞建强,陈和平,陆景冈.玄武岩台地滑坡与土壤发生学类型研究.浙江地 质.2002.18(2):76-81
    [125]李志洪,赵兰坡,窦森.土壤学.化学工业出版社.北京.2005.9:33-37
    [126]李德基.泥石流减灾理论与实践[].北京:科学出版社,1997.22~23
    [127]吴积善,田连权,康志成,等.泥石流及其综合治理[].北京:科学出版社,1993.251~257
    [128]王道杰,陈吕容,周麟,等.山地灾害治理中的生物工程存在的问题[].山地学报,2004,22(4):461~466
    [129]于贵瑞,谢高地,王秋凤,等.西部地区植被恢复重建中几个问题的思考[].自然资源学报,2002,17(2):216~220
    [130]张红兵,金德山.影响云南省滑坡泥石流活动德几个自然因素[].水文地质工程地质,2004(5):38~41
    [131]吴积善,康志成,田连权,等.云南蒋家沟泥石流观测研究[].北京:科学出版社,1990.237~250
    [132]陈金日.森林植被与泥石流活动[].见:中国科学院成都地理研究所.泥石流论文集.科学技术文献出版社重庆分社,1981.36-39
    [1331柳素清.四川喜德东沟流域植被对泥石流形成的抑制作用[].见:中国科学院成都地理研究所.泥石流论文集(1)[].科学技术文献出版社重庆分社,1981.40~42
    [134]罗德富,李木咸.泥石流与自然保护[].见:中国科学院成都地理研究所.泥石流论文集.科学技术文献出版社重庆分社,1981.50~53
    [135]李改堂.森林植被在涉县96.8特大洪灾中抗洪减灾作用的调查报告[].河北林业科技,1997(3):34~36,38
    [136]刘文耀,刘伦辉,邱学忠,等.云南南涧干热退化山地环境特征及其治理[].土壤侵蚀与水土保持学报,1999,5(2):87~91,95
    [137]马为民.植物工程技术在防治泥石流中的作用[].中国水土保持,2002,(5):27~28
    [138]沈有信,张彦东,刘文耀.泥石流多发干旱河谷区植被恢复研究[].山地学报,2002,20(2):188~193
    [139]陈晓清,韦方强,崔鹏,等.2003.云南新平2002-08-14特大滑坡泥石流灾害及防治对策[].山地学报.21(5):599~604
    [140]刘希林,王全才,张丹,等.四川凉山州普格县06.200泥石流灾害[].灾害学,2003,18(4):46~50
    [141]谢洪,韦方强,李泳,等.1999年委内瑞拉阿维拉山北坡入海型泥石流[].自然灾害学报,2002,11(1):117~122
    [142]陈晓清,崔鹏,韦方强.良好植被区泥石流防治初探[J].山地学报.2006.24(3):333~339
    [143]孙井华,冯其斌.低山高植被区泥石流的成因及防治[J].东北水利水电.1996.17: 17-18
    [144]Mehmet Lutfi suzen, Vedat Doyuran. A comparison of the GIS based landslide susceptibility assessment methods:multivariate versus bivariate. Enviornmental Geology.2004.45:665-679.
    [145]Saro Lee, Kyungduck Min. Statistical analysis of landslide susceptibility at Yongin, Korea. Enviornmental Geology.2001.40:1095-1113.
    [146]Einstein HH. Landslide risk assessment procedure. In Bonnard C (ed) Proceedings of the Fifth International Symposium on Landslides, vol 2:1075-1090.
    [147]Agterberg F P, Bonham-Carter G F, Wright D F. Statistical pattern integration for mineral exploration In Gaal, Gabor and Merriam Daniel F, eds. Computer application in resources estimation prediction and assessment for metal and petroleum Pergamon Press. Oxford.1990
    [148]Lee S, Choi J and Min K. Landslide susceptibility analysis and verification using the Bayesian probability model [J]. Environmental Geology,2003,43:120-131.
    [149]Gorsevski PV, Gessler PE and Jankowski P. Integrating a fuzzy k-means classfication and a Bayesian approach for spatial prediction of landslide hazard [J]. Journal of Geograph Systems,2003,5:223~251
    [150]Harris DV, Zurcher L, Stanley M et al. A comparative analysis of favorability mapping by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression [J]. Natural resources research,2003,12(4):241~255.
    [151]Alberti L De Amicis M Masetti M et al. Bayes'rule and GIS for evaluating sensitivity of groundwater to contamination In IAVG Annual Conference 2001
    [152]Bonham-Carter G F, Agterberg F P, Wright D F. Weights of evidence modeling a new approach to mapping mineral potential. Geological Survey of Canada, Paper89/9, 1989,171-183
    [153]宫清华,黄光庆,郭敏等.地质灾害预报预警的研究现状及发展趋势.世界地质.25(3):296-302.2006.
    [154]闻生.地质灾害预测预报的国内外现状.企业技术开发.25(8):36-39.
    [155]王尚庆,徐进军.滑坡灾害短期临滑预报监测新途径研究.灾害与防治工程.2006.2:1-5.
    [156]Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.,1984. Classification and Regression Trees. Wadsworth, Belmont.
    [157]Iverson LR and Prasad AM. Predicting abundance of 80 tree species following climate change in the eastern United States [J]. Ecological Monographs.1998,68(4):465-485.
    [158]Anita Prinzie*, Dirk Van den Poel.Random Forests for multiclass classification:Random MultiNomial Logit q. Expert Systems with Applications.1-12. 2007.
    [159]Prinzie, A.,& Van den Poel, D., Random Forests for multiclass classification: Expert Systems with Applications (2007), doi:10.1016/j.eswa.2007.01.029
    [160]P.M. Granitto, F. Gasperi a, F. Biasioli a, et al.Modern data mining tools in descriptive sensory analysis:A case study with a Random forest approach. Food Quality and Preference 18 (2007) 681-689.
    [161]Bart Larivie're, Dirk Van den Poel. Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications 29 (2005) 472-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700