太湖地区水稻土有机碳空间表征尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳库在保持土壤肥力、提高土壤质量以及减缓气候变化中均起着重要作用,因此,土壤有机碳储量及源汇问题一直是国内外研究的热点问题。水稻土是自然土壤在人为水耕熟化过程中形成的特殊的人为湿地土壤,属《中国土壤系统分类》中独特的水耕人为土亚纲,是国际上公认为中国特色的土壤。根据《全国第二次土壤普查数据》,中国水耕地土壤的有机碳含量平均是旱耕地的137%,水稻土水耕熟化过程中有机碳的积累是普遍趋势。在农业土壤固碳潜力中,水稻土明显占较高的份额。因而对水稻土有机碳储量的准确估算和空间表征分布进行研究,对中国水稻生产经营方式下农业的碳汇效应在全球农业与碳循环中具有重要意义。
     对于土壤数据的空间表征,随着观察尺度变化,其比例尺和精度也在变化。在离散采样点数据有限的情况下,如何对区域尺度水稻土储量和空间分布进行精确表征有待进一步研究。利用土壤图可以实现对水稻土有机碳储量和空间分布的表征,但目前关于制图尺度对水稻土有机碳储量估算的影响还不十分清楚。空间插值技术和土壤类型法均可以实现土壤数据由点到面的尺度转换,但在区域尺度土壤属性由点到面的尺度转换中,哪种方法较好有待进一步探讨。本文以太湖地区水稻土为研究对象,基于“土壤类型GIs连接法”,将全国第二次土壤普查的1107个水稻土剖面数据分别连接到6个不同制图比例尺(1:5万、1:20万、1:50万、1:100万、1:400万、1:1400万)土壤图,建立了6个不同制图尺度的太湖地区水稻土剖面数据库,研究了制图尺度的变化对水稻土有机碳储量的估算和表征影响,并将土壤类型法与GIs技术整合来预测水稻土有机碳的空间分布,从而实现水稻土有机碳数据由点到面的尺度转换。主要结论研究如下:
     (1)太湖地区不同制图尺度水稻土(0~100 cm)有机碳储量的估算结果有一定差异。从区域尺度来看,水稻土有机碳储量随制图比例尺的下降,呈现先上升,后下降再上升的变化规律;从不同地形区来看,在不同制图尺度下,四大土区所占研究区水稻土有机碳储量的排序:低洼圩田土区>冲积平原土区>太湖平原土区>低山丘陵土区。
     (2)不同制图尺度水稻土有机碳总储量的估算结果主要受潴育型水稻土、潜育型水稻土、脱潜型水稻土和渗育型水稻土控制,这4个水稻土亚类的碳储量占不同制图尺度碳储量的83%以上。但不同制图尺度影响最大的是潜育型水稻土和潴育型水稻土,尤其在1:1400万制图尺度下这两个水稻土亚类的有机碳量明显高于其它尺度,这主要是由于土壤图比例尺减小的土壤图图斑概化过程所导致的。从1:5万到1:20万主要受青泥土图斑概化的影响,从1:50万到1:100万主要受以黄泥土为主的土属图斑概化的影响,而从1:400万到1:1400万水稻土碳储量的变化主要由于脱潜型水稻土、渗育型水稻土、漂洗型水稻土和淹育型水稻土的制图单元均被概化到潴育型水稻土和潜育型水稻土制图单元。
     (3)在制图尺度由1:5万降低至1:1400万的过程中,水稻土有机碳储量、密度及面积均有较大变化,图斑概化过程对有机碳储量估算结果影响较大。对有机碳储量的估算,在考虑估算结果的同时也要考虑有机碳的空间分布,1:5万土壤数据库有最为详尽的有机碳属性数据和空间数据,利用“PKB”连接法,与其它5个制图尺度相比,不仅能够充分反应水稻土的有机碳的空间分布,更能够精确的估算水稻土有机碳储量。
     (4)利用普通克里格法、泛克里格法、“PKB”法三种方法对太湖地区长兴县水稻土有机碳密度空间分布(0~100 cm)的预测中,“PK_B”法的预测效果最好,对总方差的解释程度为87%,预测结果的平均绝对误差及均方根误差也最小,对有机碳密度的空间分布表达较为细致,能很好的反应该地区丘陵、平原之间的差异及其它地形单元内的局部变异;其次是普通克里格法,泛克里格法的预测结果最不理想,这两种方法只能从宏观上反映水稻土有机碳密度的空间分布,平滑效应强烈。
Soil organic carbon (soil organic carbon, SOC) play an important role in conserving soil fertility, improve soil quality, and changing global climate. SOC stocks and carbon fixation is a global environmental problem which has been given wide attention. Paddy soil is hydroponic natural soil in the artificial aging process of the formation of a special man-made wetland soil, is a Chinese Soil Taxonomy. In a unique man-made hydroponics soil subclass, is internationally recognized as the soil with Chinese characteristics. According to the second national soil survey data, the Chinese water organic carbon content of cultivated soil is dry an average of 137% of cultivated land, paddy soil during the maturation hydroponics organic carbon accumulation is a common trend. In the agricultural soil carbon sequestration potential in paddy soil significantly higher share of the total. Therefore, accurately quantifying SOC stock and describing its spatial distribution in large regional-scale is considered essential to modeling the global carbon cycle and helpful to slow the pace of climate change.
     The precision of spatial characterization of soil attribute is commonly affected by the map scale. Spatial patterns of SOC can be captured by assigning soil attribute data to polygons of a digital soil map. However, the specific influences of map scale on SOC estimates remain unclear. And the interpolation method as another possible way of scale transfer from discrete sampling points to regional scale that needs to be considered when making decisions. In this study, effects of soil mapping scale on the estimates of SOC storage (to a depth of 100 cm) in taihu region were discussed based on 1107 soil profiles and soil maps with six scales ranging from 1:50,000 to 1:14,000,000. Moreover, universal kriging (UK), ordinary kriging (OK), pedological professional knowledge-based (PKB) method along with the auxiliary topographic factors extracted from geographic coordinates were applied to predict the spatial patterns of SOC density (to a depth of 100 cm) for changxing county.
     Digital soil map of different mapping scale had different influence on the estimation of SOC storage. And SOC density values of the main soil types had fundamental influences on the SOC storage estimates. From the point of view of soil region, the SOC stocks increased at first then fell at 1:1,000,000 soil map, then decreased as the map scale decreased.
     From the point of view of soil terrain, in different mapping scales, four soil area in the study area of paddy soil organic carbon storage in the order:polder soil region> alluvial plain soil region> Taihu lake plain soil region>Low mountain and hilly soil region.
     Estimates of SOC stock should consider not only the total SOC stock but also the SOC stock at different spatial locations; from this point of view, the 1:50,000 scale soil map has the most detailed spatial information of SOC among the five soil map scales considered in this study, and the PKB method can reflect the spatial variability of SOCD within a map unit to some degree.Therefore, the 1:50,000 soil map combined with the PKB method is probably the best one for SOC stock estimates in Taihu Lake region.
     The total SOC storage of the Taihu Lake region was mainly controlled by the hydromorphic paddy soil, the gleyed paddy soil, the degleyed paddy soil and the percolated paddy soil, for the SOC storage of these four paddy soil subtypes accounted for more than 83% of the total SOC storage under each mapping scale. The gleyed paddy soil and the hydromorphic paddy soil had the greatest influence on different mapping scale and their SOC storage under the 1:14,000,000 mapping scale was apparently higher than any other scale. Such influence of soil map scale on estimation of SOC stocks in taihu region is resulted mainly from the map generalization process.
     After three methods were applied to predict the spatial patterns of SOC density (to a depth of 100 cm), the results showed that mean absolute error (MAE) and root mean square error (RMSE), is the smallest and 87% of the total variation can be explained by PKB method, it is the best one for predicting the spatial patterns of SOC density in taihu region.The OK method resulted in a lower MAE, RMSE and a wider range of SOC density compared with UK method. Moreover, the SOC density map can reflect not only the differences between the peaks and river valleys, but also the variations among different land use types.
引文
[1]Batjes N H. Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South America[J]. Geoderma,2000,97(1-2):135-144
    [2]Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47:151-163
    [3]Bhupinderpal-Singh, Hedley M J, Saggar S, et al. Chemical fractionation to characterize changes in sulphur and carbon in soil caused by management[J]. European Journal of Soil Science,2004, 55:79-90
    [4]Bloscht G, Sivapalan M. Scale issues in hydrological modeling:a review[J]. Hydrological Processes,1995,9(3-4):251-290
    [5]Bohn H L. Estimate of organic carbon in world soils[J]. Soil Science Society of America Journal,1976,40:468-470
    [6]Bohn H L. Estimate of organic carbon in world soils[J]. Soil Science Society of America Journal,1976,46:1118-1119
    [7]Bolin B. Change of land biota and their importance for the carbon cycle[J]. Science,1977,196: 613-615
    [8]Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties, I The semi-variogram and punctual kriging[J]. Journal of Soil Science,1980a,31(2):315-331
    [9]Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties, II Block kriging[J]. Journal of Soil Science,1980b,31(2):333-341
    [10]Burrough P A. Multiscale sources of spatial variation in soil:I. Application of fractal concept to nested levels of soil variations. Journal of Soil Sciences,1983,34:577-597
    [11]Caniego F J, Espejo R, et al. Multifractal scaling of soil spatial variability[J]. Ecological Modelling,2005,182:291-303
    [12]Chevallier T, Voltz M, Blanchart E, et al. Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol (Martinique) [J]. Geoderma 2000,94 (1):43-58
    [13]Davies B E, Gamm S A. Trend surface analysis applied to soil reaction values from Kent, England[J]. Geoderma,1969,3(3):223-231
    [14]Dooge J C I. Scale issues in Hydrology[M]. In:N. Buras (Editor), Reflections on Hydrology, Science and Practice:American Geophysical Union, Washington D C,1997:85-143
    [15]Edmonds W J, Campbell J B. Spatial estimates of soil temperature[J]. Soil Science,1984,138: 203-208
    [16]Emery X. Ordinary multigaussian kriging for mapping conditional probabilities of soil properties[J]. Geoderma,2006,132:75-88
    [17]Eswaran H, Berg E V D, Reich P. Organic carbon in soil of the world[J]. Soil Science Society of America Journal,1993,57:192-194
    [18]Frogbrook Z L, Oliver M A. Comparing the spatial predictions of soil organic matter determined by two laboratory methods[J]. Soil Use and Management 2001,17:235-244
    [19]Galbraith J M, P J A Kleinman, R B Bryant. Sources of uncertainty affecting soil organic carbon estimates in northern New York[J]. Soil Sci. Soc. Am. J.,2003,67:1206-1212
    [20]Goodchild M. F, Quattrochi D A. Scale, mltiscaling, remote sensing and GIS[M]. In:Quattrochi D A, Goodchild M F, et al. Scale in Remote Sensing and GIS. Boca Raton:CRC Lewis Publishers,1997:223-317
    [21]Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. Journal of Hydrology,2000,228:113-129
    [22]Goovaerts P. Geostatistical modeling of uncertainty in soil science[J]. Geoderma,2001,103: 3-26
    [23]Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties[J]. Biology and Fertility of Soils.1998,27:315-334
    [24]Goovaerts P. Geostatistics for natural resources evaluation[M]. New York:Oxford Univ.Press, 1997:483
    [25]Goovaerts P. Geostatistics in soil science:State-of-the-art and perspectives[J]. Geoderma,1999, 89(1-2):1-45
    [26]Goulard M, Voltz M. Linear coregionalization model:tools for estimation and choice of cross-variogram matrix[J]. Mathematical Geology,1992,24:269-286
    [27]Gregorich E G, Carter M R, Angers D A, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science,1994,74:367-385
    [28]Hengl T, Heuvelink GB M, Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging[J]. Geoderma,2004,120:75-93
    [29]Homann P S, P Sollins, M Fiorella, et al. Regional soil organic carbon storage estimates for western Oregon by multiple approaches [J]. Soil Sci. Soc. Am. J.,1998,62:789-796
    [30]Houghton R A, et al. Changes in the storage of terrestrial carbon since 1950[J]. Soils and globe change,1995:45-65
    [31]IGBP Terrestrials Carbon Working Group. The terrestrial carboncycle:Implications for the Kyoto Protocol [J]. Science,1998,280:1393-1394
    [32]IPCC, Climate Change 2007:Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [CoreWritingTeam, R.K. Pachauri and A. Reisinger (Editors)]. IPCC, Geneva, Switzerland. 2007:104
    [33]Joni R, Annelies G, Bruno D V, et al. Spatial structures of soil organic carbon in tropical forests—A case study of Southeastern Tanzania [J]. Elsevier,2009,19:19-27
    [34]Kern J S. Spatial patterns of soil organic carbon in the contiguous United States[J]. Soil Sci. Soc. Am. J.,1994,58:439-455
    [35]Kirschbaum M U F. The temperature dependence of soil organic matter decomposition andthe effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry,1995, 27(6):753-760
    [36]Kiss J J, Jong E, Martz L W, The distribution of fallout Cesium-137 in southern Saskatchewan, Canada[J]. Journal of Environmental Quality,1988,17:445-452
    [37]Lal R. World soils and greenhouse effect[J].IGBP Global Change Newsletter,1999,37:4-5
    [38]Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004a,304:1623-1627
    [39]Lal R. Soil carbon sequestration to mitigate climate change[J]. Geoderma,2004b,123:1-22
    [40]Lam N, Quattrochi D A. On the issues of scale, resolution, and fractral analysis in the mapping sciences[J]. Prof Geogr,1992,44:88-98
    [41]McBratney A B, Webster R. Optimal interpolation and isarithmic mapping of soil properties:V. Co-regionalization and multiple sampling strategy[J]. Journal of Soil Science,1983,34:137-162
    [42]McBratney A B, Mendonc S M, Minasny B. On digital soil mapping[J]. Geoderma,2003,117: 3-52
    [43]McGrath D, Zhang, C S. Spatial distribution of soil organic carbon concentrations in grassland of Ireland[J]. Applied Geochemistry,2003,18:1629-1639
    [44]Mueller T G, Pierce F J. Soil Carbon Maps:enhancing spatial estimates with simpleterrain attributes at multiple scales[J]. Soil Sci. Soc. Am. J.,2003,67:258-267
    [45]Ni J. Carbon storage in terrestrial ecosystems of China:Estimates at different spatial resolutions and their responses to climate change[J]. Climatic Change,2001,49 (3):339-358
    [46]Pan G X, LiLQ, Lao W S, et al. Topsoil organic carbon storage and sequestration potential of Chinese paddy soils[J]. Global Change Biology,2003,10:79-92
    [47]Pan G X, Li L Q, Zhang Q, et al. Organic carbon stock in topsoil of Jiangsu province, China, and the recent trend of carbon sequestration[J]. Journal of Environmental Sciences,2005,17(1):1-7
    [48]Phillips J D. The relative importance of intrinsic and extrinsic factors in pedodiversity. Annals of the Association of American Geographers,2001,91:609-621
    [49]Post W M, Emanuel W R, Zink P J, et al. Soil carbon pools and world life zone[J]. Nature, 1982,298:156-159
    [50]Ramanathan V, Cicerone R J, Singh H B, et al. Trace gas trends and their potential role in climate change[J]. Journal of Geophysical Research,1985,90:5547-5566
    [51]Robert L.Buckley Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling, System [N]. U. S. Department of Commerce (National Technical Information Service),2001:100-119
    [52]Robinson T P, Metternicht G. Testing the performance of spatial interpolation techniques for mapping soil properties[J]. Computers and Electronics in Agriculture,2006,50:97-108
    [53]Roy N, Tamura A, Nelson et al. An investigation of the validity and usefulness of trend analysis for field plot data[J]. Agronomy Journal,1988,80:712-718
    [54]Rubey W W. Geologic history of sea water[J]. Bulletin of the geological society of America, 1951,62:1111-1148
    [55]Saldana A, Stein A, Zinck J A. Spatial variability of soil properties at different scales within three terraces of the Henare River (Spain) [J]. Catena,1998(33):139-153.
    [56]Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature,1990,348:232-234
    [57]Schulze R. Transcending scales of space and time in impact studies of climate and climatechange on agro-hydrological responses[J]. Agriculture, Ecosystems & Environment,2001,82:185-212
    [58]Shi X Z, Yu D S, Warner E D. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system[J]. Soil Survey Horizons,2004,45(4): 129-136
    [59]Shimel D S. Terrestriall ecosystem and the carbon cycle[J]. Global Change Biology,1995,1: 77-91
    [60]Stevenson F J, Cole M A. Cycles of Soil:Carbon, Nitrogen, Phosphorus, Micronutrients [M](Second Edition). New York:John Wiley & Sons, Inc.,1999
    [61]Trianfilis J, Odeh I O A, McBratney A B. Five geostatistical models to predict soil salinity fromelectromagnetic introduction data across irrigated cotton[J].Soil Science Society of America Journal,2001,65:869-878
    [62]Turner M G, Dale V H, Gardner R H. Predicting across scales:theory development and testing[J]. Landscape Ecology,1989,3:245-252
    [63]Vauclin M, Vieira S R, Vachaud G, et al. The use of cokriging with limited field soil observations[J]. Soil Science Society of America Journal,1983,47:175-184
    [64]Webster R, Burgess T M. Optimal interpolation and isarithmic mapping of soil properties, Ⅲ Changing drift and universal kriging[J]. Journal of Soil Science,1980,31:505-524
    [65]Webster R, Oliver M A. Optimal interpolation and isarithmic mapping of soil properties, Ⅵ Disjunctive kriging mapping the conditional probability [J]. Journal of Soil Science,1989,40: 497-512
    [66]Western A W, Bloschl G, Grayson R B. Geostatistical characterisation of soil moisture patterns in the Tarrawarra a catchment[J]. Journal of Hydrology,1998,205 (1-2):20-37
    [67]Yu D S, Shi X Z, Wang H J, et al. National scale analysis of soil organic carbon storage in china based on Chinese soil taxonomy[J]. Pedosphere,2007b,17(1):11-18
    [68]Zhang C S, McGrath D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma,2004,119:261-275
    [69]Zhang Y, Zhao Y C, Shi X Z, et al. Variation of soil organic carbon estimates in mountain regions:A case study from Southwest China[J]. Geoderma,2008,146(3-4):449-456
    [70]Zhao Y C, Shi X Z, Yu D S, et al. Effects of map scale on estimation of soil organic carbon stocks, a case study of Hebei province, China[J]. Soil Science Society of America Journal,2006, 70(4):1377-1386
    [71]蔡祖聪.中国稻田甲烷排放研究进展[J].土壤,1999,5:266-269
    [72]陈淑媛.趋势面方法在大气污染物观测与分析中的作用.环境科学研究,1995,4:55-58
    [73]方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库[M].见:温室气体浓度和排放监测及相关过程(王庚晨、温璞玉主编).北京:中国环境科学出版社,1996,109-128
    [74]方元,吴志峰,陈利燕,等.空间分析方法在土壤变异研究中的应用[J].农机化研究,2006,4:170-173
    [75]龚子同.中国土壤系统分类:理论、方法、实践[M].北京:科学出版社,1999:109-199
    [76]华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1992:214-243
    [77]解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43
    [78]金峰,杨浩,蔡祖聪.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528
    [79]李庆逵.中国水稻土[M].北京:科学出版社,1992:1-514
    [80]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18
    [81]刘庆花,史学正,于东升,等.中国水稻土有机和无机碳的空间分布特征[J].生态环境,2006, ]5(4):659-664
    [82]马李,孙鹏森,马履.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报,2001,23(4):1-5.
    [83]潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题[J].南京农业大学学报,2002,25(3):]00-109
    [84]潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):608-618.
    [85]潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332
    [86]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998,1-746
    [87]苏理宏,李小文,黄裕霞.遥感尺度问题研究进展[J].地球科学进展,2001,16(4):544-548
    [88]孙维侠,史学正,于东升,等.土壤有机碳的剖面分布特征及其密度估算方法研究-以我国东北地区为例[J]_土壤,2003,35(3):236-241
    [89]谭万能,李志安,邹碧,等.地统计学方法在土壤学中的应用[J].热带地理,2005,25(4):307-311
    [90]汤国安,杨昕ArcGIS地理信息系统空间分析实验教程[M].科学出版社,2006:363-367
    [91]田均良,李雅琦,陈代中.中国黄土元素背景值分异规律研究[J].环境科学学报,1991,11(3):253-262
    [92]王丹丹.东北地区土壤碳氮的空间变异及其影响因子的幅度效应[D].南京:中国科学院南京土壤研究所,2009:6-22
    [93]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356
    [94]王绍强,朱松丽.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544
    [95]王心枢,李廷芳.北京平原地区土壤铜背景图的计算机绘制[J].环境科学学报,1985,5(4):439-447
    [96]王周龙,刘晓枚,王大鹏,等.太湖流域地理数据库构建[J].水资源保护,2007,23(4):59-61
    [97]文启孝.土壤有机质研究方法[M].北京:农业出版社,1984:316-318
    [98]徐琪,陆彦椿,刘元昌.中国太湖地区水稻土[M].上海科学技术出版社,1980:37-40
    [99]徐琪.论水稻土肥力进化与土壤质量—以太湖地区为例[J].长江流域资源与环境,2001,10(4):323-328
    [100]许信旺,潘根兴.中国水稻土碳循环研究进展[J].生态环境,2005,14(6):961-966
    [101]杨茹玮.水稻土有机碳区域尺度的演变模拟与模型适宜性评价[D].南京:南京农业大学,2006
    [102]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究 [J].应用生态学报,2005,16(12):2279-2283
    [103]张黎明.太湖地区水稻土有机碳演变模拟的尺度效应研究[D].南京:南京农业大学,2009:5-10
    [104]张琪,李恋卿,潘根兴,等.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-241
    [105]张勇,史学正,赵永存,等.滇黔桂地区土壤有机碳储量与影响因素研究[J].环境科学,2008,29(8):2314-23]9
    [106]张勇.滇黔桂地区土壤有机碳空间表征的尺度效应研究[D].南京:中国科学院南京土壤研究所,2008:3-11
    [107]赵春生,张佳宝.土壤特性空间变异研究的定量方法[J].土壤学报,1995,23(5):45-53
    [108]赵莉敏,史学正,黄耀,等.太湖地区表层土壤养分空间变异的影响因素研究[J].土壤,2008,40(6):1008-1012
    [109]赵士鹏,金伦.中国土壤表层钙元素背景值的地域最佳估值研究[J].环境科学学报,1992,12(2):168-173
    [110]赵永存,史学正,于东升,等.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报,2005,42(3):379-385
    [111]赵永存.土壤属性表征的空间尺度效应和不确定性研究—以河北省土壤有机碳为例[D].南京:中国科学院南京土壤研究所,2005:4-15
    [112]周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):233-242
    [113]朱琰.太湖流域实时洪水预报调度系统研究[D].南京:河海大学,2003:15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700