慢性阻塞性肺病急性加重期的生物标志物组群研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢性阻塞性肺病蛋白质组学相关文献回顾
     目的:蛋白质组学方法用于研究细胞、活检组织、体液中的蛋白组分,广泛用于深入探索人类疾病机制,寻找用于诊断、治疗、预后的特异性的新型生物标志物,以及研发药物靶位等方面。本文第一部分研究意在通过回顾以往慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD)的蛋白质组学报道,从中总结已有的候选生物标志物。
     方法:利用文献检索,回顾以往基于蛋白质组学方法的COPD报道。归纳总结这些报道涉及的研究对象、研究方法、候选生物标志物等内容。同时比较部分候选生物标志物在其他慢性肺部疾病的变化。
     结果:通过文献检索,得到符合纳入标准的文献共8篇。所涉及的研究对象,除COPD外,还包括正常非吸烟人群,健康吸烟者,α1胰蛋白酶缺陷者,支气管哮喘,肺囊性纤维化,特发性肺间质纤维化,支气管扩张等。所选用的研究标本来源于肺组织活检标本,支气管肺泡灌洗液,痰液或血液。使用的蛋白质组学实验手段包括双向电泳,反向高效液相色谱,串联质谱法,基质辅助激光解离质谱法,表面增强激光解吸电离质谱法等。在不同标本中发现的大量候选生物标志物可归属于氧化-抗氧化系统,蛋白酶-抗蛋白酶系统,炎症介质以及肺部特异性蛋白等。
     结论:单一蛋白难以作为生物标志物,而由多个蛋白组成的生物标志物组群则可更好的反映复杂疾病的状态。蛋白质组学在COPD研究中,特别是挖掘生物标志物方面独具优势,但仍需建立标准化体系,规范组学研究,并最大限度的联系临床资料;利用生物信息学工具将临床资料和蛋白质组学结果相联系,以期建立数字化模式监测COPD的进程和预后。
     第二部分COPD及急性加重期病例血浆炎性生物标志物组群的定性研究
     目的:COPD不断增长的死亡率与症状急性加重(chronic obstructive pulmonary disease in acute exacerbatioins, AECOPD)的频率和严重程度有关。系统性炎症在COPD/AECOPD中发挥重要作用。在第一部分研究中发现,目前蛋白质组学中存在的问题之一是如何将组学的结果与临床信息相结合。因而本文第二部分研究意在通过蛋白质组学方法检测多种炎性介质,并利用新方法将组学结果和临床信息结合,以期从新角度发现候选生物标志物组群。
     方法:收集健康正常人、COPD以及AECOPD患者的血液标本,利用抗体芯片,定性检测507个血浆炎症因子。设计一套用于评价COPD及AECOPD病例病情的临床评分系统(DESS),包括主要症状、体征、实验室检查等临床信息,用于评估患者疾病的严重程度。将芯片检测的差异蛋白与DESS评分结合进行相关性分析。
     结果:20个炎症因子在3组人群间存在显著差异(p<0.05)。其中Cerberus1, Growth Hormone R, IL-1F6, IL-17B R, IL-17D, IL-19, Lymphotoxin β,MMP-10, Thrombopoietin和TLR4与患者DESS评分相关(p<0.05)。在AECOPD患者中存在系统性炎症的下调反应。
     结论:20个炎症因子可能组成检测COPD/AECOPD的候选生物标志物组群。将临床信息量化并与组学结果结合的方法,为筛选疾病特异性和疾病阶段特异性的生物标志物提供了新的研究模式。
     第三部分COPD及急性加重期病例血浆趋化因子组群动态变化的研究
     目的:第三部分意在利用蛋白质组学方法定量检测COPD/AECOPD循环中趋化因子的动态变化。并继续使用第二部分中的评分系统,对AECOPD患者进行动态评分,以期发现与AECOPD病程进展相关的候选生物标志物组群。
     方法:收集健康正常人、COPD以及AECOPD患者的血液标本。AECOPD患者分别在确诊时、治疗中及症状好转后采集血液标本。利用多重趋化因子抗体芯片,定量检测血浆中40个趋化因子。将芯片检测的差异蛋白与DESS评分结合进行相关性分析。
     结果:在40个趋化因子中,30个在COPD和健康正常人间存在统计学差异(p<0.05),16个在AECOPD和健康正常人间存在统计学差异(p<0.05)。13个趋化因子,包括BTC,IL-9, IL-18Bpa, CCL22, CCL23, CCL25, CCL28, CTACK, LIGHT, MSPa, MCP-3, MCP-4和OPN,在三组间均存在差异。部分趋化因子的表达量与DESS评分间存在关联(p<0.05)。
     结论:13个趋化因子可能组成监测AECOPD发生和治疗进展的候选生物标志物组群。第二部分中的研究方法,为筛选疾病特异性和疾病阶段特异性的生物标志物提供了新的研究模式。
Part Ⅰ Proteomics-based biomarkers in chronic obstructive pulmonary disease
     Objective:The proteomic analysis highlights ways to identify novel biomarkers for diagnosis, therapy and prognosis in COPD. Human samples have been used for COPD proteomic research, each with its own merits and demerits. In first part of this thesis, we aimed at discussing the feasibility of clinical studies on COPD proteomics and the potential panels of candidate biomarkers detected in human samples that are sensitive to the progress of COPD, disease-specific to COPD and associated with the status of the patients.
     Methods:Human COPD studies based on proteomics were searched and reviewed. Study subjects, methods, potential biomarkers in all these reports were summarized and analyzed. Some biomarkers indicated in COPD were also compared to those in other chronic pulmonary diseases.
     Results:Altogether8studies were included. Among these studies, healthy controls, healthy smokers, and patients with al-antitrypsin deficiency, asthma, cystic fibrosis, IPF and bronchiectasis were also recruited for comparison purpose. Samples were collected from biopsy, BALF, induced sputum and blood. Several proteomics methods were employed, such as2-DE, RP-HPLC, tandom-MS/MS, MALDI, SELDI. Potential biomarkers played critical roles in oxidization, inflammation, and remodeling.
     Conclusions:Biomarker patterns were better to indicate status of disease than single protein. It is important to clarify the source of the samples, the efficiency and quality when dealing with large amount of candidates and the specificity of biomarkers according to the severity, therapeutic effects, progress and prognosis of the disease. There is also an urgent need to establish a method to combine clinical information with omics data.
     Part Ⅱ Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation
     Objective:Systemic inflammation has been considered as one of major pathophysiologic alterations in AECOPD. This part aimed at developing disease-specific biomarker evaluation by integrating proteomic profiles of inflammatory mediators in AECOPD with clinical and biological informatics.
     Methods:Plasma samples from18subjects including healthy people or patients with stable COPD or AECOPD were collected to measure507inflammatory mediators using antibody microarray. Clinical informatics was achieved by a Digital Evaluation Score System (DESS) for assessing severity of patients.
     Results:20mediators were significantly different between3groups (p<0.05), of which, Cerberus1, Growth Hormone R, IL-1F6, IL-17B R, IL-17D, IL-19, Lymphotoxin-β, MMP-10, Thrombopoietin and TLR4were correlated with DESS scores (p<0.05). There was a down-regulation of systemic inflammatory responses in AECOPD.
     Conclusion:The integration of proteomic profile with clinical informatics as part of clinical bioinformatics is important to screen disease-specific and disease-staged biomarkers.
     Part Ⅲ Selection of disease-specific dynamic biomarkers by integrating inflammatory mediators with clinical informatics in patients with AECOPD
     Objective:The present part aimed at developing a new protocol of specific biomarker evaluation by integrating proteomic profiles of inflammatory mediators with clinical informatics in patients with AECOPD, in order to understand the biological function and signal networks.
     Methods:Plasma of healthy non-smokers or patients with stable COPD was collected, as well as AECOPD patients on days1and3of the admission and discharging day (day7-10). Chemokine concentration was measured using a chemokine multiplex antibody array. Clinical informatics was achieved by DESS for assessing severity of patients. Chemokine data was compared among different groups and its correlation with DESS variables was performed by SPSS software.
     Results:Of40inflammatory mediators,30showed statistically significant difference between COPD patients and healthy controls,16between AECOPD patients and controls.13chemokines, including BTC, IL-9, IL-18Bpa, CCL22, CCL23, CCL25, CCL28, CTACK, LIGHT, MSPa, MCP-3, MCP-4and OPN, showed statistically significance between AECOPD patients and both COPD and controls. Correlation was indicated among most DESS variables and most chemokines (p<0.05).
     Conclusion:There is a disease-specific profile of inflammatory mediators in COPD and AECOPD patients which may have a potential diagnostics together with clinical informatics of patients. Our preliminary study suggested that integration of proteomics with clinical informatics can be a new way to validate and optimize disease-special biomarkers.
引文
[1]Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper [J]. Eur Respir J,2004,23(6): 932-946.
    [2]Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD) [J]. Lancet,2004,364(9434):613-620.
    [3]Lopez AD, Murray CC. The global burden of disease,1990-2020 [J]. Nat Med, 1998,4(11):1241-1243.
    [4]Fang X, Wang X, Bai C. COPD in China:the burden and importance of proper management [J]. Chest,2011,139(4):920-929.
    [5]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease [J]. N Engl J Med,2004,350(26):2645-2653.
    [6]Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary [J]. Am J Respir Crit Care Med,2007,176(6):532-555.
    [7]Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease [J]. Lancet,2011,378(9795):1015-1026.
    [8]Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease [J]. N Engl J Med,2009,360(23):2445-2454.
    [9]Marko-Varga G, Lindberg H, Lofdahl CG, et al. Discovery of biomarker candidates within disease by protein profiling:principles and concepts [J]. J Proteome Res,2005,4(4):1200-1212.
    [10]Collins SR, Miller KM, Maas NL, et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map [J]. Nature,2007,446(7137):806-810.
    [11]Nurse P, Hayles J. The cell in an era of systems biology [J]. Cell,2011,144(6): 850-854.
    [12]Chen H, Wang D, Bai C, et al. Proteomics-based biomarkers in chronic obstructive pulmonary disease [J]. J Proteome Res,2010,9(6):2798-2808.
    [13]Schwarz E, Leweke FM, Bahn S, et al. Clinical bioinformatics for complex disorders:a schizophrenia case study [J]. BMC Bioinformatics,2009,10 Suppl 12(S6.
    [14]Chen H, Wang X. Significance of bioinformatics in research of chronic obstructive pulmonary disease [J]. J Clin Bioinforma,2011,1(35):35-43.
    [15]Boulesteix AL, Porzelius C, Daumer M. Microarray-based classification and clinical predictors:on combined classifiers and additional predictive value [J]. Bioinformatics,2008,24(15):1698-1706.
    [16]Sun Y, Goodison S, Li J, et al. Improved breast cancer prognosis through the combination of clinical and genetic markers [J]. Bioinformatics,2007,23(1):30-37.
    [17]Daemen A, Gevaert O, De Bie T, et al. Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer [J]. Pac Symp Biocomput,2008,166-177.
    [18]Plymoth A, Yang Z, Lofdahl CG, et al. Rapid proteome analysis of bronchoalveolar lavage samples of lifelong smokers and never-smokers by micro-scale liquid chromatography and mass spectrometry [J]. Clin Chem,2006, 52(4):671-679.
    [19]Plymoth A, Lofdahl CG, Ekberg-Jansson A, et al. Protein expression patterns associated with progression of chronic obstructive pulmonary disease in bronchoalveolar lavage of smokers [J]. Clin Chem,2007,53(4):636-644.
    [20]Plymoth A, Lofdahl CG, Ekberg-Jansson A, et al. Human bronchoalveolar lavage: biofluid analysis with special emphasis on sample preparation [J]. Proteomics,2003, 3(6):962-972.
    [21]Kelsen SG, Duan X, Ji R, et al. Cigarette smoke induces an unfolded protein response in the human lung:a proteomic approach [J]. Am J Respir Cell Mol Biol, 2008,38(5):541-550.
    [22]Ohlmeier S, Vuolanto M, Toljamo T, et al. Proteomics of Human Lung Tissue Identifies Surfactant Protein A as a Marker of Chronic Obstructive Pulmonary Disease [J]. J Proteome Res,2008,
    [23]Lee EJ, In KH, Kim JH, et al. Proteomic analysis in lung tissue of smokers and COPD patients [J]. Chest,2009,135(2):344-352.
    [24]Rutgers SR, Timens W, Kaufmann HF, et al. Comparison of induced sputum with bronchial wash, bronchoalveolar lavage and bronchial biopsies in COPD [J]. Eur Respir J,2000,15(1):109-115.
    [25]Wattiez R, Hermans C, Cruyt C, et al. Human bronchoalveolar lavage fluid protein two-dimensional database:study of interstitial lung diseases [J]. Electrophoresis,2000,21(13):2703-2712.
    [26]Casado B, Iadarola P, Luisetti M, et al. Proteomics-based diagnosis of chronic obstructive pulmonary disease:the hunt for new markers [J]. Expert Rev Proteomics, 2008,5(5):693-704.
    [27]Paggiaro PL, Chanez P, Holz O, et al. Sputum induction [J]. Eur Respir J Suppl, 2002,37(3s-8s.
    [28]Antoniou KM, Alexandrakis M, Tzanakis N, et al. Induced sputum versus bronchoalveolar lavage fluid in the evaluation of patients with idiopathic pulmonary fibrosis [J]. Respiration,2005,72(1):32-38.
    [29]Tsiligianni J, Tzanakis N, Kyriakou D, et al. Comparison of sputum induction with bronchoalveolar lavage cell differential counts in patients with sarcoidosis [J]. Sarcoidosis Vasc Diffuse Lung Dis,2002,19(3):205-210.
    [30]Sobiecka M, Kus J, Demkow U, et al. Induced sputum in patients with interstitial lung disease:a non-invasive surrogate for certain parameters in bronchoalveolar lavage fluid [J]. J Physiol Pharmacol,2008,59 Suppl 6(645-657.
    [3 l]Mroz RM, Chyczewska E, Korniluk M, et al. Comparison of cellular composition of induced sputum, bronchial washings and bronchoalveolar lavage fluid in sarcoidosis, hypersensitivity pneumonitis and COPD [J]. Pneumonol Alergol Pol, 2002,70(9-10):468-477.
    [32]Bon JM, Leader JK, Weissfeld JL, et al. The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease [J]. PLoS One,2009,4(8):e6865.
    [33]Rose K, Bougueleret L, Baussant T, et al. Industrial-scale proteomics:from liters of plasma to chemically synthesized proteins [J]. Proteomics,2004,4(7):2125-2150.
    [34]Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary [J]. Am J Respir Crit Care Med,2001,163(5):1256-1276.
    [35]Hirsch J, Hansen KC, Burlingame AL, et al. Proteomics:current techniques and potential applications to lung disease [J]. Am J Physiol Lung Cell Mol Physiol,2004, 287(1):Ll-23.
    [36]Wattiez R, Hermans C, Bernard A, et al. Human bronchoalveolar lavage fluid: two-dimensional gel electrophoresis, amino acid microsequencing and identification of major proteins [J]. Electrophoresis,1999,20(7):1634-1645.
    [37]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology [J]. Mass Spectrom Rev,2004,23(1):34-44.
    [38]Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer [J]. Clin Chem,2002,48(8): 1296-1304.
    [39]Jr GW, Cazares LH, Leung SM, et al. Proteinchip(R) surface enhanced laser desorption/ionization (SELDI) mass spectrometry:a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures [J]. Prostate Cancer Prostatic Dis,1999,2(5/6):264-276.
    [40]Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry [J]. Electrophoresis,2000, 21(6):1164-1177.
    [41]Diamandis EP. Point:Proteomic patterns in biological fluids:do they represent the future of cancer diagnostics? [J]. Clin Chem,2003,49(8):1272-1275.
    [42]Kriegova E, Melle C, Kolek V, et al. Protein profiles of bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis [J]. Am J Respir Crit Care Med,2006, 173(10):1145-1154.
    [43]Aivado M, Spentzos D, Alterovitz G, et al. Optimization and evaluation of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) with reversed-phase protein arrays for protein profiling [J]. Clin Chem Lab Med,2005,43(2):133-140.
    [44]Banks RE, Stanley AJ, Cairns DA, et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry [J]. Clin Chem,2005,51(9):1637-1649.
    [45]Semmes OJ, Feng Z, Adam BL, et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer:I. Assessment of platform reproducibility [J]. Clin Chem, 2005,51(1):102-112.
    [46]Karsan A, Eigl BJ, Flibotte S, et al. Analytical and preanalytical biases in serum proteomic pattern analysis for breast cancer diagnosis [J]. Clin Chem,2005,51(8): 1525-1528.
    [47]Diamandis EP. Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems [J]. J Natl Cancer Inst,2004,96(5):353-356.
    [48]Gray RD, MacGregor G, Noble D, et al. Sputum proteomics in inflammatory and suppurative respiratory diseases [J]. Am J Respir Crit Care Med,2008,178(5): 444-452.
    [49]Merkel D, Rist W, Seither P, et al. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification [J]. Proteomics,2005,5(11):2972-2980.
    [50]Bai Y, Galetskiy D, Damoc E, et al. High resolution mass spectrometric alveolar proteomics:identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients [J]. Proteomics,2004,4(8):2300-2309.
    [51]Witt M, Fuchser J, Baykut G. Fourier transform ion cyclotron resonance mass spectrometry with NanoLC/microelectrospray ionization and matrix-assisted laser desorption/ionization:analytical performance in peptide mass fingerprint analysis [J]. J Am Soc Mass Spectrom,2003,14(6):553-561.
    [52]Conrads TP, Anderson GA, Veenstra TD, et al. Utility of accurate mass tags for proteome-wide protein identification [J]. Anal Chem,2000,72(14):3349-3354.
    [53]Albach C, Damoc E, Denzinger T, et al. Identification of N-glycosylation sites of the murine neural cell adhesion molecule NCAM by MALDI-TOF and MALDI-FTICR mass spectrometry [J]. Anal Bioanal Chem,2004,378(4): 1129-1135.
    [54]Damoc E, Youhnovski N, Crettaz D, et al. High resolution proteome analysis of cryoglobulins using Fourier transform-ion cyclotron resonance mass spectrometry [J]. Proteomics,2003,3(8):1425-1433.
    [55]Vignali DA. Multiplexed particle-based flow cytometric assays [J]. J Immunol Methods,2000,243(1-2):243-255.
    [56]Marko-Varga G, Fehniger TE. Proteomics and disease--the challenges for technology and discovery [J]. J Proteome Res,2004,3(2):167-178.
    [57]Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress [J]. J Biol Chem,1997,272(33):20313-20316.
    [58]Rahman I. The role of oxidative stress in the pathogenesis of COPD:implications for therapy [J]. Treat Respir Med,2005,4(3):175-200.
    [59]Wallace AM, Sandford AJ, English JC, et al. Matrix metalloproteinase expression by human alveolar macrophages in relation to emphysema [J]. Copd,2008,5(1): 13-23.
    [60]Sloane AJ, Lindner RA, Prasad SS, et al. Proteomic analysis of sputum from adults and children with cystic fibrosis and from control subjects [J]. Am J Respir Crit Care Med,2005,172(11):1416-1426.
    [61]Sepper R, Prikk K. Proteomics:is it an approach to understand the progression of chronic lung disorders? [J]. J Proteome Res,2004,3(2):277-281.
    [62]Bracke K, Cataldo D, Maes T, et al. Matrix metalloproteinase-12 and cathepsin D expression in pulmonary macrophages and dendritic cells of cigarette smoke-exposed mice [J]. Int Arch Allergy Immunol,2005,138(2):169-179.
    [63]Wang Z, Zheng T, Zhu Z, et al. Interferon gamma induction of pulmonary emphysema in the adult murine lung [J]. J Exp Med,2000,192(11):1587-1600.
    [64]Burnett D, Crocker J, Stockley RA. Cathepsin B-like cysteine proteinase activity in sputum and immunohistologic identification of cathepsin B in alveolar macrophages [J]. Am Rev Respir Dis,1983,128(5):915-919.
    [65]Hoshino T, Kato S, Oka N, et al. Pulmonary inflammation and emphysema:role of the cytokines IL-18 and IL-13 [J]. Am J Respir Crit Care Med,2007,176(1): 49-62.
    [66]Kang MJ, Homer RJ, Gallo A, et al. IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation [J]. J Immunol,2007,178(3):1948-1959.
    [67]Geraghty P, Greene CM, O'Mahony M, et al. Secretory leucocyte protease inhibitor inhibits interferon-gamma-induced cathepsin S expression [J]. J Biol Chem, 2007,282(46):33389-33395.
    [68]Piccioni PD, Kramps JA, Rudolphus A, et al. Proteinase/proteinase inhibitor imbalance in sputum sol phases from patients with chronic obstructive pulmonary disease. Suggestions for a key role played by antileukoprotease [J]. Chest,1992, 102(5):1470-1476.
    [69]Yousefi S, Cooper PR, Mueck B, et al. cDNA representational difference analysis of human neutrophils stimulated by GM-CSF [J]. Biochem Biophys Res Commun, 2000,277(2):401-409.
    [70]Zheng T, Zhu Z, Wang Z, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase-and cathepsin-dependent emphysema [J]. J Clin Invest,2000,106(9):1081-1093.
    [71]de Garavilla L, Greco MN, Sukumar N, et al. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase:molecular mechanisms and anti-inflammatory activity in vivo [J]. J Biol Chem,2005,280(18):18001-18007.
    [72]Maryanoff BE, de Garavilla L, Greco MN, et al. Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation [J]. Am J Respir Crit Care Med,2010,181(3):247-253.
    [73]Thurmond RL, Sun S, Karlsson L, et al. Cathepsin S inhibitors as novel immunomodulators [J]. Curr Opin Investig Drugs,2005,6(5):473-482.
    [74]Hiemstra PS, van Wetering S, Stolk J. Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease:effects on pulmonary epithelium [J]. Eur Respir J,1998,12(5):1200-1208.
    [75]Pastva AM, Wright JR, Williams KL. Immunomodulatory roles of surfactant proteins A and D:implications in lung disease [J]. Proc Am Thorac Soc,2007,4(3): 252-257.
    [76]Kishore U, Greenhough TJ, Waters P, et al. Surfactant proteins SP-A and SP-D: structure, function and receptors [J]. Mol Immunol,2006,43(9):1293-1315.
    [77]Hu Q, Zhang H, Xiong S, et al. The alteration and significance of surfactant protein A in rats chronically exposed to cigarette smoke [J]. J Huazhong Univ Sci Technolog Med Sci,2008,28(2):128-131.
    [78]Honda Y, Takahashi H, Kuroki Y, et al. Decreased contents of surfactant proteins A and D in BAL fluids of healthy smokers [J]. Chest,1996,109(4):1006-1009.
    [79]Betsuyaku T, Kuroki Y, Nagai K, et al. Effects of ageing and smoking on SP-A and SP-D levels in bronchoalveolar lavage fluid [J]. Eur Respir J,2004,24(6): 964-970.
    [80]Sims MW, Tal-Singer RM, Kierstein S, et al. Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels:a cross-sectional study [J]. Respir Res,2008,9(13.
    [81]Hirama N, Shibata Y, Otake K, et al. Increased surfactant protein-D and foamy macrophages in smoking-induced mouse emphysema [J]. Respirology,2007,12(2): 191-201.
    [82]Behera D, Balamugesh T, Venkateswarlu D, et al. Serum surfactant protein-A levels in chronic bronchitis and its relation to smoking [J]. Indian J Chest Dis Allied Sci,2005,47(1):13-17.
    [83]Kobayashi H, Kanoh S, Motoyoshi K. Serum surfactant protein-A, but not surfactant protein-D or KL-6, can predict preclinical lung damage induced by smoking [J]. Biomarkers,2008,13(4):385-392.
    [84]Lomas DA, Silverman EK, Edwards LD, et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD [J]. Eur Respir J,2009, 34(1):95-102.
    [85]Sin DD, Leung R, Gan WQ, et al. Circulating surfactant protein D as a potential lung-specific biomarker of health outcomes in COPD:a pilot study [J]. BMC Pulm Med,2007,7(13.
    [86]Mori M, Morishita H, Nakamura H, et al. Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth [J]. Am J Respir Cell Mol Biol,2004,30(4):459-469.
    [87]Budde IK, Aalberse RC. Histamine-releasing factors, a heterogeneous group of different activities [J]. Clin Exp Allergy,2003,33(9):1175-1182.
    [88]Bucki R, Levental I, Kulakowska A, et al. Plasma gelsolin:function, prognostic value, and potential therapeutic use [J]. Curr Protein Pept Sci,2008,9(6):541-551.
    [89]Candiano G, Bruschi M, Pedemonte N, et al. Gelsolin secretion in interleukin-4-treated bronchial epithelia and in asthmatic airways [J]. Am J Respir Crit Care Med,2005,172(9):1090-1096.
    [90]Silva E, Bourin S, Sabounchi-Schutt F, et al. A quantitative proteomic analysis of soluble bronchoalveolar fluid proteins from patients with sarcoidosis and chronic beryllium disease [J]. Sarcoidosis Vasc Diffuse Lung Dis,2007,24(1):24-32.
    [91]Minarowska A, Minarowski L, Karwowska A, et al. The activity of cathepsin D in saliva of cystic fibrosis patients [J]. Folia Histochem Cytobiol,2007,45(3): 165-168.
    [92]Chilosi M, Zamo A, Doglioni C, et al. Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis [J]. Respir Res,2006,7(95.
    [93]Konishi K, Gibson KF, Lindell KO, et al. Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med,2009, 180(2):167-175.
    [94]McMorran BJ, Patat SA, Carlin JB, et al. Novel neutrophil-derived proteins in bronchoalveolar lavage fluid indicate an exaggerated inflammatory response in pediatric cystic fibrosis patients [J]. Clin Chem,2007,53(10):1782-1791.
    [95]Chen CI, Schaller-Bals S, Paul KP, et al. Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis [J]. J Cyst Fibros,2004, 3(1):45-50.
    [96]Rottoli P, Magi B, Perari MG, et al. Cytokine profile and proteome analysis in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis [J]. Proteomics,2005,5(5): 1423-1430.
    [97]Rottoli P, Magi B, Cianti R, et al. Carbonylated proteins in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis [J]. Proteomics,2005,5(10):2612-2618.
    [98]Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, et al. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease [J]. Thorax,2005,60(11):925-931.
    [99]Hurst JR, Donaldson GC, Perera WR, et al. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2006,174(8):867-874.
    [100]Sapey E, Stockley RA. COPD exacerbations.2:aetiology [J]. Thorax,2006, 61(3):250-258.
    [101]Wouters EF, Groenewegen KH, Dentener MA, et al. Systemic inflammation in chronic obstructive pulmonary disease:the role of exacerbations [J]. Proc Am Thorac Soc,2007,4(8):626-634.
    [102]Pinto-Plata VM, Livnat G, Girish M, et al. Systemic cytokines, clinical and physiological changes in patients hospitalized for exacerbation of COPD [J]. Chest, 2007,131(1):37-43.
    [103]Pinto-Plata V, Toso J, Lee K, et al. Profiling serum biomarkers in patients with COPD:associations with clinical parameters [J]. Thorax,2007,62(7):595-601.
    [104]Wedzicha JA, Seemungal TA, MacCallum PK, et al. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels [J]. Thromb Haemost,2000,84(2):210-215.
    [105]Eagan TM, Ueland T, Wagner PD, et al. Systemic inflammatory markers in COPD:results from the Bergen COPD Cohort Study [J]. Eur Respir J,2010,35(3): 540-548.
    [106]Gosselink JV, Hayashi S, Elliott WM, et al. Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2010,181(12):1329-1335.
    [107]Marshall E. Human genome 10th anniversary. Waiting for the revolution [J]. Science,2011,331(6017):526-529.
    [108]Agusti AG, Noguera A, Sauleda J, et al. Systemic effects of chronic obstructive pulmonary disease [J]. Eur Respir J,2003,21(2):347-360.
    [109]Celli BR, Cote CG, Lareau SC, et al. Predictors of Survival in COPD:more than just the FEV1 [J]. Respir Med,2008,102 Suppl 1(S27-35.
    [110]MacBeath G. Protein microarrays and proteomics [J]. Nat Genet,2002,32 Suppl(526-532.
    [111]Schols AM, Buurman WA, Staal van den Brekel AJ, et al. Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease [J]. Thorax,1996,51(8):819-824.
    [112]Kythreotis P, Kokkini A, Avgeropoulou S, et al. Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease [J]. BMC Pulm Med,2009,9(11.
    [113]Gan WQ, Man SF, Senthilselvan A, et al. Association between chronic obstructive pulmonary disease and systemic inflammation:a systematic review and a meta-analysis [J]. Thorax,2004,59(7):574-580.
    [114]Thorleifsson SJ, Margretardottir OB, Gudmundsson G, et al. Chronic airflow obstruction and markers of systemic inflammation:results from the BOLD study in Iceland [J]. Respir Med,2009,103(10):1548-1553.
    [115]de Torres JP, Casanova C, Pinto-Plata V, et al. Gender differences in plasma biomarker levels in a cohort of COPD patients:a pilot study [J]. PLoS One,2011, 6(1):e16021.
    [116]Laan M, Linden A. The IL-17 family of cytokines--applications in respiratory medicine and allergology [J]. Recent Pat Inflamm Allergy Drug Discov,2008,2(2): 82-91.
    [117]Pridgeon C, Bugeon L, Donnelly L, et al. Regulation of IL-17 in chronic inflammation in the human lung [J]. Clin Sci (Lond),2011,120(12):515-524.
    [118]Starnes T, Broxmeyer HE, Robertson MJ, et al. Cutting edge:IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis [J]. J Immunol,2002,169(2):642-646.
    [119]Higgins SC, Jarnicki AG, Lavelle EC, et al. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis:role of IL-17-producing T cells [J]. J Immunol,2006,177(11):7980-7989.
    [120]Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+T cell responses after vaccination and during Mycobacterium tuberculosis challenge [J]. Nat Immunol,2007,8(4):369-377.
    [121]Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients [J]. Clin Exp Immunol,2009,157(2):316-324.
    [122]Dinarello C, Arend W, Sims J, et al. IL-1 family nomenclature [J]. Nat Immunol,2010,11(11):973.
    [123]Towne JE, Garka KE, Renshaw BR, et al. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs [J]. J Biol Chem,2004,279(14):13677-13688.
    [124]Costelloe C, Watson M, Murphy A, et al. IL-1F5 mediates anti-inflammatory activity in the brain through induction of IL-4 following interaction with SIGIRR/TIR8 [J]. J Neurochem,2008,105(5):1960-1969.
    [125]Johnston A, Xing X, Guzman AM, et al. IL-1F5,-F6,-F8, and -F9:a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression [J]. J Immunol,2011,186(4):2613-2622.
    [126]Blumberg H, Dinh H, Trueblood ES, et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation [J]. J Exp Med,2007, 204(11):2603-2614.
    [127]Schwarzbich MA, Gutknecht M, Salih J, et al. The immune inhibitory receptor osteoactivin is upregulated in monocyte-derived dendritic cells by BCR-ABL tyrosine kinase inhibitors [J]. Cancer Immunol Immunother,2011,61(2):193-202.
    [128]Wang MH, Julian FM, Breathnach R, et al. Macrophage stimulating protein (MSP) binds to its receptor via the MSP beta chain [J]. J Biol Chem,1997,272(27): 16999-17004.
    [129]Takano Y, Sakamoto O, Suga M, et al. Elevated levels of macrophage-stimulating protein in induced sputum of patients with bronchiectasis [J]. Respir Med,2000,94(8):784-790.
    [130]Wang MH, Dlugosz AA, Sun Y, et al. Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes [J]. Exp Cell Res,1996, 226(1):39-46.
    [131]OToole JM, Rabenau KE, Burns K, et al. Therapeutic implications of a human neutralizing antibody to the macrophage-stimulating protein receptor tyrosine kinase (RON), a c-MET family member [J]. Cancer Res,2006,66(18):9162-9170.
    [132]Gunella G, Bardelli C, Amoruso A, et al. Macrophage-stimulating protein differently affects human alveolar macrophages from smoker and non-smoker patients: evaluation of respiratory burst, cytokine release and NF-kappaB pathway [J]. Br J Pharmacol,2006,148(4):478-489.
    [133]Ohga E, Matsuse T, Teramoto S, et al. Activin receptors are expressed on human lung fibroblast and activin A facilitates fibroblast-mediated collagen gel contraction [J]. Life Sci,2000,66(17):1603-1613.
    [134]Lagna G, Ku MM, Nguyen PH, et al. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors [J]. J Biol Chem,2007,282(51): 37244-37255.
    [135]Aldred MA, Comhair SA, Varella-Garcia M, et al. Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension [J]. Am J RespirCrit Care Med,2010,182(9):1153-1160.
    [136]Hsing CH, Li HH, Hsu YH, et al. The distribution of interleukin-19 in healthy and neoplastic tissue [J]. Cytokine,2008,44(2):221-228.
    [137]Hsing CH, Chiu CJ, Chang LY, et al. IL-19 is involved in the pathogenesis of endotoxic shock [J]. Shock,2008,29(1):7-15.
    [138]Ermert M, Pantazis C, Duncker HR, et al. In situ localization of TNFalpha/beta, TACE and TNF receptors TNF-R1 and TNF-R2 in control and LPS-treated lung tissue [J]. Cytokine,2003,22(3-4):89-100.
    [139]Lesley J, Gal I, Mahoney DJ, et al. TSG-6 modulates the interaction between hyaluronan and cell surface CD44 [J]. J Biol Chem,2004,279(24):25745-25754.
    [140]Wisniewski HG, Hua JC, Poppers DM, et al. TNF/IL-1-inducible protein TSG-6 potentiates plasmin inhibition by inter-alpha-inhibitor and exerts a strong anti-inflammatory effect in vivo [J]. J Immunol,1996,156(4):1609-1615.
    [141]Cao TV, La M, Getting SJ, et al. Inhibitory effects of TSG-6 Link module on leukocyte-endothelial cell interactions in vitro and in vivo [J]. Microcirculation,2004, 11(7):615-624.
    [142]Cao G, Lu H, Feng J, et al. Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population [J]. Jpn J Clin Oncol,2008,38(4): 308-316.
    [143]Wolber EM, Dame C, Fahnenstich H, et al. Expression of the thrombopoietin gene in human fetal and neonatal tissues [J]. Blood,1999,94(1):97-105.
    [144]Haznedaroglu IC, Atalar E, Ozturk MA, et al. Thrombopoietin inside the pulmonary vessels in patients with and without pulmonary hypertension [J]. Platelets, 2002,13(7):395-399.
    [145]Huang RP, Huang R, Fan Y, et al. Simultaneous detection of multiple cytokines from conditioned media and patient's sera by an antibody-based protein array system [J]. Anal Biochem,2001,294(1):55-62.
    [146]Wang X, Adler KB, Chaudry IH, et al. Better understanding of organ dysfunction requires proteomic involvement [J]. J Proteome Res,2006,5(5): 1060-1062.
    [147]He Z, Chen Y, Chen P, et al. Local inflammation occurs before systemic inflammation in patients with COPD [J]. Respirology,2010,15(3):478-484.
    [148]Kato H, Nishimura T, Ikeda N, et al. Developments for a growing Japanese patient population:facilitating new technologies for future health care [J]. J Proteomics,2011,74(6):759-764.
    [149]Auffray C, Adcock IM, Chung KF, et al. An integrative systems biology approach to understanding pulmonary diseases [J]. Chest,2010,137(6):1410-1416.
    [150]Valipour A, Schreder M, Wolzt M, et al. Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease [J]. Clin Sci (Lond),2008,115(7): 225-232.
    [151]Aldonyte R, Jansson L, Piitulainen E, et al. Circulating monocytes from healthy individuals and COPD patients [J]. Respir Res,2003,4(11.
    [152]Liu SF, Chin CH, Wang CC, et al. Correlation between serum biomarkers and BODE index in patients with stable COPD [J]. Respirology,2009,14(7):999-1004.
    [153]Ray CA, Bowsher RR, Smith WC, et al. Development, validation, and implementation of a multiplex immunoassay for the simultaneous determination of five cytokines in human serum [J]. J Pharm Biomed Anal,2005,36(5):1037-1044.
    [154]Elshal MF, McCoy JP. Multiplex bead array assays:performance evaluation and comparison of sensitivity to ELISA [J]. Methods,2006,38(4):317-323.
    [155]Trune DR, Larrain BE, Hausman FA, et al. Simultaneous measurement of multiple ear proteins with multiplex ELISA assays [J]. Hear Res,2010,
    [156]Riva A, Nuzzo A, Stefanelli M, et al. An automated reasoning framework for translational research [J]. J Biomed Inform,2010,43(3):419-427.
    [157]Celli BR. Predictors of mortality in COPD [J]. Respir Med,2010,104(6): 773-779.
    [1]Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper [J]. Eur Respir J,2004,23(6): 932-946.
    [2]Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD) [J]. Lancet,2004,364(9434):613-620.
    [3]Lopez AD, Murray CC. The global burden of disease,1990-2020 [J]. Nat Med, 1998,4(11):1241-1243.
    [4]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease [J]. N Engl J Med,2004,350(26):2645-2653.
    [5]Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary [J]. Am J Respir Crit Care Med,2007,176(6):532-555.
    [6]Henderson AJ. Bronchoalveolar lavage [J]. Arch Dis Child,1994,70(3): 167-169.
    [7]Walz A, Peveri P, Aschauer H, et al. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes [J]. Biochem Biophys Res Commun,1987,149(2):755-761.
    [8]Yoshimura T, Matsushima K, Oppenheim JJ, et al. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes:partial characterization and separation from interleukin 1 (IL 1) [J].J Immunol,1987,139(3):788-793.
    [9]Luster AD. Chemokines--chemotactic cytokines that mediate inflammation [J]. N Engl J Med,1998,338(7):436-445.
    [10]De Boer WI. Cytokines and therapy in COPD:a promising combination? [J]. Chest,2002,121(5 Suppl):209S-218S.
    [11]Qiu Y, Zhu J, Bandi V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2003,168(8):968-975.
    [12]Gonsiorek W, Fan X, Hesk D, et al. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist [J]. J Pharmacol Exp Ther, 2007,322(2):477-485.
    [13]Hammond ME, Lapointe GR, Feucht PH, et al. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors [J]. J Immunol,1995,155(3): 1428-1433.
    [14]Johnston SL, Papi A, Bates PJ, et al. Low grade rhino virus infection induces a prolonged release of IL-8 in pulmonary epithelium [J]. J Immunol,1998,160(12): 6172-6181.
    [15]Newcomb DC, Sajjan US, Nagarkar DR, et al. Cooperative effects of rhinovirus and TNF-{alpha} on airway epithelial cell chemokine expression [J]. Am J Physiol Lung Cell Mol Physiol,2007,293(4):L1021-1028.
    [16]Peng H, Chen P, Cai Y, et al. Endothelin-1 increases expression of cyclooxygenase-2 and production of interlukin-8 in hunan pulmonary epithelial cells [J]. Peptides,2008,29(3):419-424.
    [17]de Boer WI, Sont JK, van Schadewijk A, et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD [J]. J Pathol,2000, 190(5):619-626.
    [18]Schulz C, Kratzel K, Wolf K, et al. Activation of bronchial epithelial cells in smokers without airway obstruction and patients with COPD. [J]. Chest,2004,125(5): 1706-1713.
    [19]Profita M, Chiappara G, Mirabella F, et al. Effect of cilomilast (Ariflo) on TNF-alpha, IL-8, and GM-CSF release by airway cells of patients with COPD [J]. Thorax,2003,58(7):573-579.
    [20]Tsai JR, Chong IW, Chen CC, et al. Mitogen-activated protein kinase pathway was significantly activated in human bronchial epithelial cells by nicotine. [J]. DNA Cell Biol,2006,25(5):312-322.
    [21]Bowman EP, Campbell JJ, Druey KM, et al. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members [J]. J Biol Chem,1998,273(43):28040-28048.
    [22]Bautista MV, Chen Y, Ivanova VS, et al. IL-8 regulates mucin gene expression at the posttranscriptional level in lung epithelial cells. [J]. J Immunol,2009,183(3): 2159-2166.
    [23]Hollander C, Sitkauskiene B, Sakalauskas R, et al. Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma [J]. Respir Med,2007,101(9):1947-1953.
    [24]Beeh KM, Kornmann O, Buhl R, et al. Neutrophil chemotactic activity of sputum from patients with COPD:role of interleukin 8 and leukotriene B4 [J]. Chest,2003, 123(4):1240-1247.
    [25]Gorska K, Krenke R, Domagala-Kulawik J, et al. Comparison of cellular and biochemical markers of airway inflammation in patients with mild-to-moderate asthma and chronic obstructive pulmonary disease:an induced sputum and bronchoalveolar lavage fluid study [J]. J Physiol Pharmacol,2008,59 Suppl 6(271-283.
    [26]Hacievliyagil SS, Gunen H, Mutlu LC, et al. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. [J]. Respir Med,2006,100(5):846-854.
    [27]Fuke S, Betsuyaku T, Nasuhara Y, et al. Chemokines in bronchiolar epithelium in the development of chronic obstructive pulmonary disease [J]. Am J Respir Cell Mol Biol,2004,31(4):405-412.
    [28]Yamamoto C, Yoneda T, Yoshikawa M, et al. Airway inflammation in COPD assessed by sputum levels of interleukin-8 [J]. Chest,1997,112(2):505-510.
    [29]Bhowmik A, Seemungal TA, Sapsford RJ, et al. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations [J]. Thorax, 2000,55(2):114-120.
    [30]Chin CL, Manzel LJ, Lehman EE, et al. Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. [J]. Am J Respir Crit Care Med,2005,172(1):85-91.
    [31]Drost EM, Skwarski KM, Sauleda J, et al. Oxidative stress and airway inflammation in severe exacerbations of COPD [J]. Thorax,2005,60(4):293-300.
    [32]Aaron SD, Angel JB, Lunau M, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2001,163(2):349-355.
    [33]Vernooy JH, Kucukaycan M, Jacobs JA, et al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease:soluble tumor necrosis factor receptors are increased in sputum [J]. Am J Respir Crit Care Med,2002,166(9): 1218-1224.
    [34]Pesci A, Balbi B, Majori M, et al. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease [J]. Eur Respir J,1998, 12(2):380-386.
    [35]Senior RM, Anthonisen NR. Chronic obstructive pulmonary disease (COPD) [J]. Am J Respir Crit Care Med,1998,157(4 Pt 2):S139-147.
    [36]Gompertz S, Hill AT, Bayley DL, et al. Effect of expectoration on inflammation in induced sputum in alpha-1-antitrypsin deficiency [J]. Respir Med,2006,100(6): 1094-1099.
    [37]Malerba M, Ricciardolo F, Radaeli A, et al. Neutrophilic inflammation and IL-8 levels in induced sputum of alpha-1-antitrypsin PiMZ subjects [J]. Thorax,2006, 61(2):129-133.
    [38]Iiboshi H, Ashitani J, Katoh S, et al. Long-term treatment with theophylline reduces neutrophils, interleukin-8 and tumor necrosis factor-alpha in the sputum of patients with chronic obstructive pulmonary disease [J]. Pulm Pharmacol Ther,2007, 20(1):46-51.
    [39]Betz R, Kohlhaufl M, Kassner G, et al. Increased sputum IL-8 and IL-5 in asymptomatic nonspecific airway hyperresponsiveness [J]. Lung,2001,179(2): 119-133.
    [40]Perng DW, Huang HY, Chen HM, et al. Characteristics of airway inflammation and bronchodilator reversibility in COPD:a potential guide to treatment [J]. Chest, 2004,126(2):375-381.
    [41]Ozol D, Aysan T, Solak ZA, et al. The effect of inhaled corticosteroids on bronchoalveolar lavage cells and IL-8 levels in stable COPD patients [J]. Respir Med, 2005,99(12):1494-1500.
    [42]Basyigit I, Yildiz F, Ozkara SK, et al. The effect of clarithromycin on inflammatory markers in chronic obstructive pulmonary disease:preliminary data [J]. Ann Pharmacother,2004,38(9):1400-1405.
    [43]Patel IS, Roberts NJ, Lloyd-Owen SJ, et al. Airway epithelial inflammatory responses and clinical parameters in COPD [J]. Eur Respir J,2003,22(1):94-99.
    [44]Mahler DA, Huang S, Tabrizi M, et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD:a pilot study [J]. Chest,2004,126(3): 926-934.
    [45]Aksoy MO, Yang Y, Ji R, et al. CXCR3 surface expression in human airway epithelial cells:cell cycle dependence and effect on cell proliferation [J]. Am J Physiol Lung Cell Mol Physiol,2006,290(5):L909-918.
    [46]Torvinen M, Campwala H, Kilty I. The role of IFN-gamma in regulation of IFN-gamma-inducible protein 10 (IP-10) expression in lung epithelial cell and peripheral blood mononuclear cell co-cultures [J]. Respir Res,2007,8(80.
    [47]Brozyna S, Ahern J, Hodge G, et al. Chemotactic mediators of Thl T-cell trafficking in smokers and COPD patients [J]. COPD,2009,6(1):4-16.
    [48]Ying S, O'Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease [J]. J Immunol,2008,181(4):2790-2798.
    [49]Spurrell JC, Wiehler S, Zaheer RS, et al. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhino virus infection. [J]. Am J Physiol Lung Cell Mol Physiol,2005,289(1):L85-95.
    [50]Porter JC, Falzon M, Hall A. Polarized localization of epithelial CXCL11 in chronic obstructive pulmonary disease and mechanisms of T cell egression [J]. J Immunol,2008,180(3):1866-1877.
    [51]Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2002, 165(10):1404-1409.
    [52]Shahabuddin S, Ji R, Wang P, et al. CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells:role of p38 MAPK and PI3K signaling pathways [J]. Am J Physiol Cell Physiol,2006,291(1):C34-39.
    [53]Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells [J]. Am J Respir Cell Mol Biol,2002,26(6):748-753.
    [54]Prause O, Laan M, Lotvall J, et al. Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-alpha- and interleukin-8 release in human bronchial epithelial cells [J]. Eur J Pharmacol,2003,462(1-3):193-198.
    [55]Geiser T, Dewald B, Ehrengruber MU, et al. The interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes [J]. J Biol Chem,1993,268(21):15419-15424.
    [56]Li Z, Alam S, Wang J, et al. Oxidized{alpha} 1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells:potential role in emphysema [J]. Am J Physiol Lung Cell Mol Physiol,2009,297(2):L388-400.
    [57]Traves SL, Culpitt SV, Russell RE, et al. Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD [J]. Thorax, 2002,57(7):590-595.
    [58]Cai S, Chen P, Zhu Y. Airway inflammation and macrophage inflammatory protein-1alpha, gelatinase B level in patients with COPD [J]. Zhonghua Jie He He Hu Xi Za Zhi,2001,24(7):429-432.
    [59]Barczyk A, Pierzchala W, Sozanska E. Levels of CC-chemokine (MCP-1 alpha, MIP-1 beta) in induced sputum of patients with chronic obstructive pulmonary disease and patients with chronic bronchitis [J]. Pneumonol Alergol Pol,2001, 69(1-2):40-49.
    [60]Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (This) and Th2s [J]. J Exp Med,1998,187(1):129-134.
    [61]Capelli A, Di Stefano A, Gnemmi I, et al. Increased MCP-1 and MIP-lbeta in bronchoalveolar lavage fluid of chronic bronchitics [J]. Eur Respir J,1999,14(1): 160-165.
    [62]Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease [J]. Lancet,2011,378(9795):1015-1026.
    [63]Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema [J]. PLoS Med, 2004,1(1):e8.
    [64]Di Stefano A, Capelli A, Lusuardi M, et al. Decreased T lymphocyte infiltration in bronchial biopsies of subjects with severe chronic obstructive pulmonary disease [J]. Clin Exp Allergy,2001,31(6):893-902.
    [65]Saetta M, Di Stefano A, Maestrelli P, et al. Airway eosinophilia in chronic bronchitis during exacerbations [J]. Am J Respir Crit Care Med,1994,150(6 Pt 1): 1646-1652.
    [66]Zhu J, Qiu YS, Majumdar S, et al. Exacerbations of Bronchitis:bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants [J]. Am J Respir Crit Care Med,2001,164(1):109-116.
    [67]Keatings VM, Collins PD, Scott DM, et al. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma [J]. Am J Respir Crit Care Med,1996,153(2):530-534.
    [68]Panina-Bordignon P, Papi A, Mariani M, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics [J]. J Clin Invest,2001,107(11):1357-1364.
    [69]Costa C, Rufino R, Traves SL, et al. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD [J]. Chest,2008,133(1):26-33.
    [70]Smyth LJ, Starkey C, Gordon FS, et al. CD8 chemokine receptors in chronic obstructive pulmonary disease [J]. Clin Exp Immunol,2008,154(1):56-63.
    [71]Miller M, Ramsdell J, Friedman PJ, et al. Computed tomographic scan-diagnosed chronic obstructive pulmonary disease-emphysema:eotaxin-1 is associated with bronchodilator response and extent of emphysema [J]. J Allergy Clin Immunol,2007, 120(5):1118-1125.
    [72]Nocker RE, Schoonbrood DF, van de Graaf EA, et al. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease [J]. Int Arch Allergy Immunol,1996,109(2):183-191.
    [1]Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper [J]. Eur Respir J,2004,23(6): 932-946.
    [2]Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD) [J]. Lancet,2004,364(9434):613-620.
    [3]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease [J]. N Engl J Med,2004,350(26):2645-2653.
    [4]Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary [J]. Am J Respir Crit Care Med,2007,176(6):532-555.
    [5]Lopez AD, Murray CC. The global burden of disease,1990-2020 [J]. Nat Med, 1998,4(11):1241-1243.
    [6]Fang X, Wang X, Bai C. COPD in China:the burden and importance of proper management [J]. Chest,2011,139(4):920-929.
    [7]Casado B, Iadarola P, Luisetti M, et al. Proteomics-based diagnosis of chronic obstructive pulmonary disease:the hunt for new markers [J]. Expert Rev Proteomics, 2008,5(5):693-704.
    [8]Chen H, Wang D, Bai C, et al. Proteomics-based biomarkers in chronic obstructive pulmonary disease [J]. J Proteome Res,2010,9(6):2798-2808.
    [9]Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary [J]. Am J Respir Crit Care Med,2001,163(5):1256-1276.
    [10]Gupta J, Bhadoria DP, Lal MK, et al. Association of the PIM3 allele of the alpha-1-antitrypsin gene with chronic obstructive pulmonary disease [J]. Clin Biochem,2005,38(5):489-491.
    [11]DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene [J]. Am J Hum Genet, 2009,85(4):493-502.
    [12]Arif E, Vibhuti A, Alam P, et al. Association of CYP2E1 and NAT2 gene polymorphisms with chronic obstructive pulmonary disease [J]. Clin Chim Acta,2007, 382(1-2):37-42.
    [13]Vibhuti A, Arif E, Mishra A, et al. CYP1A1, CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD [J]. Clin Chim Acta,2010, 411(7-8):474-480.
    [14]Zhan P, Wang J, Wei SZ, et al. TNF-308 gene polymorphism is associated with COPD risk among Asians:meta-analysis of data for 6,118 subjects [J]. Mol Biol Rep, 2011,38(1):219-227.
    [15]Saxena S, Kumar R, Madan T, et al. Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema [J]. Chest, 2005,128(3):1611-1619.
    [16]Arif E, Vibhuti A, Deepak D, et al. COX2 and p53 risk-alleles coexist in COPD [J]. Clin Chim Acta,2008,397(1-2):48-50.
    [17]Butler MW, Fukui T, Salit J, et al. Modulation of Cystatin A Expression in Human Airway Epithelium Related to Genotype, Smoking, COPD, and Lung Cancer [J]. Cancer Res,2011,71(7):2572-2581.
    [18]Vibhuti A, Arif E, Deepak D, et al. Genetic polymorphisms of GSTP1 and mEPHX correlate with oxidative stress markers and lung function in COPD [J]. Biochem Biophys Res Commun,2007,359(1):136-142.
    [19]Sadeghnejad A, Ohar JA, Zheng SL, et al. Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers [J]. Respir Res,2009, 10(21.
    [20]van Diemen CC, Postma DS, Vonk JM, et al. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population [J]. Am J Respir Crit Care Med,2005,172(3):329-333.
    [21]Arif E, Ahsan A, Vibhuti A, et al. Endothelial nitric oxide synthase gene variants contribute to oxidative stress in COPD [J]. Biochem Biophys Res Commun,2007, 361(1):182-188.
    [22]Sadeghnejad A, Meyers DA, Bottai M, et al. IL13 promoter polymorphism 1112C/T modulates the adverse effect of tobacco smoking on lung function [J]. Am J Respir Crit Care Med,2007,176(8):748-752.
    [23]Desai AA, Hysi P, Garcia JG. Integrating genomic and clinical medicine: searching for susceptibility genes in complex lung diseases [J]. Transl Res,2008, 151(4):181-193.
    [24]Patterson SD, Aebersold RH. Proteomics:the first decade and beyond [J]. Nat Genet,2003,33 Suppl(311-323.
    [25]Marko-Varga G, Fehniger TE. Proteomics and disease--the challenges for technology and discovery [J]. J Proteome Res,2004,3(2):167-178.
    [26]Lee EJ, In KH, Kim JH, et al. Proteomic analysis in lung tissue of smokers and COPD patients [J]. Chest,2009,135(2):344-352.
    [27]Sepper R, Prikk K. Proteomics:is it an approach to understand the progression of chronic lung disorders? [J]. J Proteome Res,2004,3(2):277-281.
    [28]Ohlmeier S, Vuolanto M, Toljamo T, et al. Proteomics of Human Lung Tissue Identifies Surfactant Protein A as a Marker of Chronic Obstructive Pulmonary Disease [J]. J Proteome Res,2008,
    [29]Gray RD, MacGregor G, Noble D, et al. Sputum proteomics in inflammatory and suppurative respiratory diseases [J]. Am J Respir Crit Care Med,2008,178(5): 444-452.
    [30]Bon JM, Leader JK, Weissfeld JL, et al. The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease [J]. PLoS One,2009,4(8):e6865.
    [31]York TP, van den Oord EJ, Langston TB, et al. High-resolution mass spectrometry proteomics for the identification of candidate plasma protein biomarkers for chronic obstructive pulmonary disease [J]. Biomarkers,2010,15(4):367-377.
    [32]Merkel D, Rist W, Seither P, et al. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification [J]. Proteomics,2005,5(11):2972-2980.
    [33]Bozinovski S, Hutchinson A, Thompson M, et al. Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2008,177(3):269-278.
    [34]Bandow JE, Baker JD, Berth M, et al. Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies--COPD biomarker discovery study [J]. Proteomics,2008,8(15):3030-3041.
    [35]Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics:a platform for studying drug toxicity and gene function [J]. Nat Rev Drug Discov,2002,1(2): 153-161.
    [36]McClay JL, Adkins DE, Isern NG, et al. (1)H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function [J]. J Proteome Res,2010,9(6):3083-3090.
    [37]de Laurentiis G, Paris D, Melck D, et al. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy [J]. Eur Respir J, 2008,32(5):1175-1183.
    [38]Trune DR, Larrain BE, Hausman FA, et al. Simultaneous measurement of multiple ear proteins with multiplex ELISA assays [J]. Hear Res,2010,
    [39]Elshal MF, McCoy JP. Multiplex bead array assays:performance evaluation and comparison of sensitivity to ELISA [J]. Methods,2006,38(4):317-323.
    [40]Ray CA, Bowsher RR, Smith WC, et al. Development, validation, and implementation of a multiplex immunoassay for the simultaneous determination of five cytokines in human serum [J]. J Pharm Biomed Anal,2005,36(5):1037-1044.
    [41]Farlow EC, Patel K, Basu S, et al. Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of non-small cell lung cancer [J]. Clin Cancer Res,2010,16(13):3452-3462.
    [42]Chen H, Song Z, Qian M, et al. Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients:a preliminary study [J]. J Cell Mol Med,2011, in press.
    [43]Bhattacharya S, Srisuma S, Demeo DL, et al. Molecular biomarkers for quantitative and discrete COPD phenotypes [J]. Am J Respir Cell Mol Biol,2009, 40(3):359-367.
    [44]Nurse P, Hayles J. The cell in an era of systems biology [J]. Cell,2011,144(6): 850-854.
    [45]Auffray C, Adcock IM, Chung KF, et al. An integrative systems biology approach to understanding pulmonary diseases [J]. Chest,2010,137(6):1410-1416.
    [46]Comandini A, Marzano V, Curradi G, et al. Markers of anti-oxidant response in tobacco smoke exposed subjects:a data-mining review [J]. Pulm Pharmacol Ther, 2010,23(6):482-492.
    [47]Maier D, Kalus W, Wolff M, et al. Knowledge management for systems biology a general and visually driven framework applied to translational medicine [J]. BMC Syst Biol,2011,5(38.
    [48]Paoletti M, Camiciottoli G, Meoni E, et al. Explorative data analysis techniques and unsupervised clustering methods to support clinical assessment of Chronic Obstructive Pulmonary Disease (COPD) phenotypes [J]. J Biomed Inform,2009, 42(6):1013-1021.
    [49]Kauffmann F. Post-genome respiratory epidemiology:a multidisciplinary challenge [J]. Eur Respir J,2004,24(3):471-480.
    [50]Studer SM, Kaminski N. Towards systems biology of human pulmonary fibrosis [J]. Proc Am Thorac Soc,2007,4(1):85-91.
    [51]Wang X. Role of clinical bioinformatics in the development of network-based Biomarkers [J]. J Clin Bioinforma,2011,1(1):28.
    [52]Chen H, Wang Y, Bai C, et al. Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation [J]. J Proteomics,2012, in press.
    [53]Plymoth A, Yang Z, Lofdahl CG, et al. Rapid proteome analysis of bronchoalveolar lavage samples of lifelong smokers and never-smokers by micro-scale liquid chromatography and mass spectrometry [J]. Clin Chem,2006, 52(4):671-679.
    [54]Reisdorph NA, Reisdorph R, Bowler R, et al. Proteomics methods and applications for the practicing clinician [J]. Ann Allergy Asthma Immunol,2009, 102(6):523-529.
    [55]Lin JL, Bonnichsen MH, Nogeh EU, et al. Proteomics in detection and monitoring of asthma and smoking-related lung diseases [J]. Expert Rev Proteomics, 2010,7(3):361-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700