肿瘤微环境中的趋化因子受体7介导的人类结肠癌细胞淋巴结转移机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外研究次级淋巴组织趋化因子/趋化因子受体7对稳定转染SW480细胞株的基质金属蛋白酶9表达调控
     目的在稳定转染CCR7-shRNA质粒细胞株SW480/CCR7ˉ和阴性对照质粒细胞株SW480/control中检测次级淋巴组织趋化因子(secondary lymphoid tissue chemokine, SLC/CCL21)对基质金属蛋白酶9(matrix metalloproteinases 9, MMP-9)蛋白水平和酶活性的调控,分析次级淋巴组织趋化因子/趋化因子受体7(CC chemokine receptor 7,CCR7)对MMP-9的影响。
     方法0ng/ml和100ng/ml CCL21处理SW480/CCR7"和SW480/control细胞24小时后,酶联免疫吸附试验测定细胞上清中的MMP-9蛋白水平;明胶酶谱法检测其酶活性。
     结果100ng/ml CCL21能够明显刺激SW480/control细胞中MMP-9蛋白水平和酶活性升高,差异有统计学意义(P<0.05);在抑制CCR7表达的SW480/CCR7ˉ细胞中,CCL21的刺激作用则不明显,CCR7基因沉默能够阻断CCL21诱导的MMP-9上调。
     结论CCL21通过作用于肿瘤细胞表面的CCR7能够诱导人结肠癌细胞株SW480MMP-9表达上调。
     第二部分体内研究CCL21/CCR7对结肠癌MMP-9表达调节和淋巴结转移的影响
     目的在裸鼠移植瘤模型中研究CCR7的表达沉默对肿瘤组织中MMP-9的蛋白水平和酶活性的影响;对肿瘤生长和淋巴结转移的影响以及对裸鼠生存期的影响。
     方法按照种植SW480/CCR7-和SW480/control细胞将裸鼠分为SW480/CCR7-和SW480/control组。采用活体荧光成像技术观察裸鼠移植瘤的生长和荧光强度;使用酶联免疫吸附试验检测移植瘤组织中的MMP-9蛋白水平;明胶酶谱检测其活性;使用免疫组织化学方法检测淋巴结转移;使用Kaplan-Meier进行生存分析。
     结果SW480/control组肿瘤体积大于SW480/CCR7-组(P<0.05);SW480/control组肿瘤组织MMP-9蛋白水平和酶活性明显高于SW480/CCR7-组(P<0.05);SW480/CCR7-组肿瘤淋巴结转移少于SW480/control组(P<0.05);SW480/CCR7-组动物生存期长于SW480/control组(P<0.05)。
     结论CCR7表达沉默能够抑制结肠癌的MMP-9产生和淋巴结转移。
     第三部分原代培养人类骨髓间充质干细胞对SW480细胞增殖和侵袭的影响
     目的原代培养人骨髓间充质干细胞(human bone marrow mesenchymal stem cells, hBMSCs)并鉴定;检测间充质干细胞中CCR7的表达;初步探讨人类骨髓间充质于细胞对结肠癌细胞SW480生长和侵袭的影响。
     方法结合密度梯度离心法和贴壁法原代培养人骨髓间充质干细胞;使用流式细胞分析检测细胞表面分子标志;使用诱导分化试验来鉴定细胞的分化潜能;使用免疫荧光染色和免疫印迹法分析检测细胞的CCR7表达;使用MTT法和Transwell小室检测人类骨髓间充质干细胞对结肠癌细胞SW480生长和侵袭的影响。
     结果成功培养人骨髓间充质干细胞;其表面分子标志为CD34ˉ、CD45ˉ、CD44+、CD90+;骨髓间充质干细胞能够在条件培养基的作用下向脂肪细胞和成骨细胞分化;骨髓间充质干细胞有CCR7的表达;骨髓间充质干细胞的条件培养基能够刺激SW480的生长(P<0.05);共培养骨髓间充质干细胞和SW480细胞能够刺激肿瘤细胞的侵袭增强(P<0.05)。
     结论骨髓间充质干细胞表达CCR7蛋白并能够刺激结肠癌SW480细胞增殖和侵袭。
     第四部分体内研究CCR7介导的人类骨髓间充质干细胞对结肠癌淋巴结转移的影响
     目的在裸鼠移植瘤模型上研究人类骨髓间充质干细胞对结肠癌淋巴结转移的影响;并探讨CCR7在其中的作用机制。
     方法按照种植SW480/CCR7ˉ,SW480/control, SW480/CCR7-+hBMSCs和SW480/control+hBMSCs细胞将裸鼠分为SW480/CCR7-, SW480/control, SW480/CCR7-+hBMSCs和SW480/control+hBMSCs组;采用活体荧光成像技术观察裸鼠移植瘤的生长和荧光强度;使用免疫组织化学方法检测淋巴结转移;使用Kaplan-Meier生存曲线进行生存分析。
     结果SW480/control+hBMSCs组肿瘤大小和淋巴结转移高于SW480/control组(P<0.05);SW480/CCR7-+hBMSCs组肿瘤大小和淋巴结转移高于SW480/CCR7组,生存期则较短(P<0.05)。
     结论人类骨髓间充质干细胞可以通过CCR7介导刺激结肠癌淋巴结转移。
Part I Effect of CCL21/CCR7 on MMP-9 expression in the stable transfected SW480 cell line with the CCR7 shRNA vector in vitro
     Objective To investigate effect of CCL21/CCR7 on MMP-9 expression in the stable transfected SW480 cell line with CCR7 shRNA vector (SW480/CCR7-) and negative control vector (SW480/control)
     Methods SW480/CCR7-and SW480/control cells were treated with Ong/ml and 100ng/ml CCL21 for 24 hours. Levels of MMP-9 protein and MMP-9 activity were analyzed by enzyme linked immunosorbent assay and gelatin zymography.
     Results 100ng/ml CCL21 could significantly regulate MMP-9 protein levels and activity in SW480/control (P<0.05).The effect of CCL21 was not obvious in SW480/CCR7- cells (P>0.05).CCR7 gene silencing blocked MMP-9 production induced by CCL21.
     Conclusion CCL21/CCR7 could induce production of MMP-9 in human colon cancer cell line SW480.
     Part II Effect of CCR7 gene silencing on MMP-9 expression and lymph node metastasis of colon cancer in vivo
     Objective To investigate effect of CCR7 gene silencing on MMP-9 expression in cancerous tissues, the growth and lymph node metastasis of colon cancer and the survival of nude mice in a xenografted mouse model.
     Methods The mice were divided into SW480/CCR7" group treated with SW480/CCR7-cells and SW480/control group treated with SW480/control cells. The growth of colon cancer was observed by using whole body fluorescence imaging. Levels of MMP-9 protein and activity in xenografted tissues were analyzed by enzyme linked immunosorbent assay and gelatin zymography. Lymph node metastasis was detected by immunohistochemistry analysis. Kaplan-Meier survival analysis evaluated the survival of nude mice.
     Results The MMP-9 protein levels and activity in SW480/control group cancerous tissues were significantly higher than SW480/CCR7- group (P<0.05).The xenografts in SW480/control group had greater tumor size and more lymph node metastases than SW480/CCR7- group (P<0.05).The mice in SW480/control group had shorter survival as compared with SW480/CCR7" group (P<0.05).
     Conclusion Silencing expression of CCR7 could inhibit MMP-9 production and lymph node metastasis of colon cancer.
     PartⅢEffect of human bone marrow mesenchmal stem cells on the proliferation and invasion of colon cancer cell line SW480
     Objective To culture and identify human bone marrow mesenchymal stem cells (hBMSCs); to detect expression of CCR7 in hBMSCs; to evaluat effect of hBMSCs on the proliferation and invasion of colon cancer cell line SW480.
     Methods hBMSCs were primary cultured by density gradient centrifugation and adherent from human bone marrow. The cell surface molecular markers were identified by flow cytometry. Differentiation culture of hBMSCs for mesenchymal lineage was achieved when cells were treated with adipogenic differentiation medium and osteogenic differentiation medium for two weeks. Expression of CCR7 was analyzed by immunofluorescence and western blotting in hBMSCs. Effect of hBMSCs on the proliferation and invasion of colon cancer cell line SW480 was evaluated by MTT and invasion assay
     Results hBMSCs were sucessfully cultured. Cells surface molecular markers were CD34", CD45-, CD44+and CD90+. They had the ability of adipogenic differentiation and osteogenic differentiation. CCR7 expressed in hBMSCs. The conditioned medium of hBMSCs could stimulate the growth of SW480 cells (P<0.05). Co-culture of hBMSCs and SW480 could stimulate tumor cells invasion (P<0.05).
     Conclusion Human bone marrow mesenchymal stem cells had expression of CCR7 protein. They could stimulate the proliferation and invasion of SW480 cells.
     Part IV Effect of human bone marrow mesenchymal stem cells on the lymph node metastasis of colon cancer by CCR7-mediated mechanism in vivo
     Objective To evaluate effect of human bone marrow mesenchymal stem cells on the lymph node metastasis of colon cancer; to discuss the role of CCR7 in this process of lymph node metastasis which hBMSCs interacted with colon cancer cells.
     Method The mice were divided into SW480/CCR7-, SW480/control, SW480/CCR7-+hBMSCs and SW480/control+hBMSCs group. The growth of colon cancer was observed by using whole body fluorescence imaging. Lymph node metastasis was detected by immunohistochemistry analysis. Kaplan-Meier survival analysis evaluated the survival of nude mice.
     Results The mice in SW480/control+hBMSCs group had greater tumor size, more lymph node metastases than SW480/control group (P<0.05). The mice in SW480/CCR7-+hBMSCs group had greater tumor size, more lymph node metastases and shorter survival than SW480/CCR7- group (P<0.05).
     Conclusion The human bone marrow mesenchymal stem cells could stimulate cancer cells growth and lymph node metastasis by CCR7-mediated molecular mechanism.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden:Globocan 2000. Int J Cancer 2001; 94:153-156.
    2. Cohen AM, Tremiterra S, Candela F, Thaler HT, Sigurdson ER. Prognosis of node-positive colon cancer. Cancer 1991; 67:1859-61.
    3. Greene FL, Stewart AK, Norton HJ. A new TNM staging strategy for node-positive (stage III) colon cancer:an analysis of 50,042 patients. Ann Surg 2002; 236:416-21
    4. Greene FL, Stewart AK, Norton HJ. New tumor-node-metastasis staging strategy for node-positive (stage III) rectal cancer:an analysis. J Clin Oncol 2004; 22:1778-84.
    5. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med 2005; 352:476-87.
    6. O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004; 96: 1420-5.
    7. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005; 352:1851-60.
    8. Compton C, Fenoglio-Preiser CM, Pettigrew N, Fielding LP. American Joint Committee on Cancer Prognostic Factors Consensus Conference:Colorectal Working Group. Cancer 2000; 88:1739-57.
    9. Wolpin BM, Meyerhardt JA, Mamon HJ, Mayer RJ. Adjuvant treatment of colorectal cancer. CA Cancer J Clin 2007; 57:168-85.
    10. Fidler IJ. The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited. Nat Rev Cancer 2003; 3:453-8.
    11. Tse JC, Kalluri R. Mechanisms of metastasis:epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 2007; 101:816-29.
    12. Li H, Fan X, Houghton J. Tumor microenvironment:the role of the tumor stroma in cancer. J Cell Biochem 2007; 101:805-15.
    13. Baggiolini M, Dewald B, Moser B. Human chemokines:an update. Annu Rev Immunol 1997; 15:675-705.
    14. Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338:436-45.
    15. Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity. Immunity 2000; 12:121-7.
    16. Kriehuber E, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194:797-808.
    17. Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 1998; 273:7118-22.
    18. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001; 93:1638-43.
    19. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410:50-6
    20. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002; 62: 2937-41.
    21. Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer:correlation with lymph node metastasis. Int J Cancer 2003; 105:186-9.
    22. Stein JV, Soriano SF, M'Rini C, et al. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway. Blood 2003; 101:38-44.
    23. Debes GF, Hopken UE, Hamann A. In vivo differentiated cytokine-producing CD4(+)
    T cells express functional CCR7. J Immunol 2002; 168:5441-7.
    24. Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases:a tail of a frog that became a prince. Nat Rev Mol Cell Biol 2002; 3:207-14.
    25. Baker EA, Leaper DJ. The plasminogen activator and matrix metalloproteinase systems in colorectal cancer:relationship to tumour pathology. Eur J Cancer 2003; 39: 981-8.
    26. Zeng ZS, Huang Y, Cohen AM, Guillem JG. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 1996; 14:3133-40.
    27. Parsons SL, Watson SA, Collins HM, Griffin NR, Clarke PA, Steele RJ. Gelatinase (MMP-2 and-9) expression in gastrointestinal malignancy. Br J Cancer 1998; 78: 1495-502.
    28. Zucker S, Lysik RM, DiMassimo BI, et al. Plasma assay of gelatinase B:tissue inhibitor of metalloproteinase complexes in cancer. Cancer 1995; 76:700-8.
    29. Himelstein BP, Lee EJ, Sato H, Seiki M, Muschel RJ. Tumor cell contact mediated transcriptional activation of the fibroblast matrix metalloproteinase-9 gene: involvement of multiple transcription factors including Ets and an alternating purine-pyrimidine repeat. Clin Exp Metastasis 1998; 16:169-77.
    30. Crowe DL, Tsang KJ, Shemirani B. Jun N-terminal kinase 1 mediates transcriptional induction of matrix metalloproteinase 9 expression. Neoplasia 2001; 3:27-32.
    31. Sanceau J, Boyd DD, Seiki M, Bauvois B. Interferons inhibit tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 activation via interferon regulatory factor-1 binding competition with NF-kappa B. J Biol Chem 2002; 277:35766-75.
    32. Crowe DL, Brown TN. Transcriptional inhibition of matrix metalloproteinase 9 (MMP-9) activity by a c-fos/estrogen receptor fusion protein is mediated by the proximal AP-1 site of the MMP-9 promoter and correlates with reduced tumor cell invasion. Neoplasia 1999; 1:368-72.
    33. Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res 1998; 58:1135-9.
    34. Shimizu S, Nishikawa Y, Kuroda K, et al. Involvement of transforming growth factor betal in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells. Cancer Res 1996; 56:3366-70.
    35. McCawley LJ, Li S, Wattenberg EV, Hudson LG. Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem 1999; 274:4347-53.
    36. Gu X, Niu J, Dorahy DJ, Scott R, Agrez MV. Integrin alpha(v)beta6-associated ERK2 mediates MMP-9 secretion in colon cancer cells. Br J Cancer 2002; 87:348-51.
    37. Niu J, Gu X, Turton J, Meldrum C, Howard EW, Agrez M. Integrin-mediated signalling of gelatinase B secretion in colon cancer cells. Biochem Biophys Res Commun 1998; 249:287-91.
    38. Legrand C, Gilles C, Zahm JM, et al. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 1999; 146:517-29.
    39. Weaver AM. Invadopodia:specialized cell structures for cancer invasion. Clin Exp Metastasis 2006; 23:97-105.
    40. Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL:suppression by interferons. Leukemia 2002; 16:791-8.
    41. Redondo-Munoz J, Jose Terol M, Garcia-Marco JA, Garcia-Pardo A. Matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration. Blood 2008; 111:383-6.
    42. Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp
    Pharmacol 2007:263-83.
    43. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-7.
    44. Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106:419-27.
    45. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27-35.
    46. Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006; 80:267-74.
    47. Kyriakou CA, Yong KL, Benjamin R, et al. Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. J Gene Med 2006; 8:253-64.
    48. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6:a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24:986-91.
    49. Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55:663-7.
    50. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-63.
    51. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180:2581-7.
    1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics,2000. CA Cancer J Clin 2000; 50:7-33.
    2. August DA, Ottow RT, Sugarbaker PH. Clinical perspective of human colorectal cancer metastasis. Cancer Metastasis Rev 1984; 3:303-24.
    3. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2:563-72.
    4. Wong CW, Lee A, Shientag L, et al. Apoptosis:an early event in metastatic inefficiency. Cancer Res 2001; 61:333-8.
    5. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4:540-50.
    6. Zlotnik A. Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 2006; 13:191-9.
    7. Zlotnik A. Chemokines and cancer. Int J Cancer 2006; 119:2026-9.
    8. Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 2005; 11:1743-50.
    9. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer 2005; 116: 726-33.
    10. Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188:373-86.
    11. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells:critical role in migration from the tumor site to draining lymph nodes. Cancer Res 2000; 60:2209-17.
    12. Yu S, Duan J, Zhou Z, et al. A critical role of CCR7 in invasiveness and metastasis of SW620 colon cancer cell in vitro and in vivo. Cancer Biol Ther 2008; 7:1037-43.
    13. Fridman R, Toth M, Chvyrkova I, Meroueh SO, Mobashery S. Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 2003; 22:153-66.
    14. Zeng ZS, Huang Y, Cohen AM, Guillem JG. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 1996; 14:3133-40.
    15. Zucker S, Lysik RM, DiMassimo BI, et al. Plasma assay of gelatinase B:tissue inhibitor of metalloproteinase complexes in cancer. Cancer 1995; 76:700-8.
    16. Lubbe WJ, Zhou ZY, Fu W, et al. Tumor epithelial cell matrix metalloproteinase 9 is a target for antimetastatic therapy in colorectal cancer. Clin Cancer Res 2006; 12: 1876-82.
    17. Lubbe WJ, Zuzga DS, Zhou Z, et al. Guanylyl cyclase C prevents colon cancer metastasis by regulating tumor epithelial cell matrix metalloproteinase-9. Cancer Res 2009; 69:3529-36.
    18. Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL:suppression by interferons. Leukemia 2002; 16:791-8.
    19. Redondo-Munoz J, Jose Terol M, Garcia-Marco JA, Garcia-Pardo A. Matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration. Blood 2008; 111:383-6.
    20. Stein JV, Soriano SF, M'Rini C, et al. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway. Blood 2003; 101:38-44.
    21. Debes GF, Hopken UE, Hamann A. In vivo differentiated cytokine-producing CD4(+) T cells express functional CCR7. J Immunol 2002; 168:5441-7.
    22. Shimizu S, Nishikawa Y, Kuroda K, et al. Involvement of transforming growth factor betal in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells. Cancer Res 1996; 56:3366-70.
    23. McCawley LJ, Li S, Wattenberg EV, Hudson LG. Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem 1999; 274:4347-53.
    1. Hannon GJ. RNA interference. Nature 2002,418:244-251.
    2. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494-498.
    3. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001; 93:1638-43.
    4. Sobrero A, Kerr D, Glimelius B, et al. New directions in the treatment of colorectal cancer:a look to the future. Eur J Cancer 2000; 36:559-66.
    5. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med 2005; 352:476-87.
    6. Niederhuber JE. Colon and rectum cancer. Patterns of spread and implications for workup. Cancer 1993; 71:4187-92.
    7. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol 1995; 13:8-10.
    8. Rot A, von Andrian UH. Chemokines in innate and adaptive host defense:basic chemokinese grammar for immune cells. Annu Rev Immunol 2004; 22:891-928.
    9. Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188:373-86.
    10. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells:critical role in migration from the
    tumor site to draining lymph nodes. Cancer Res 2000; 60:2209-17.
    11. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410:50-6.
    12. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003; 167:1676-86.
    13. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int J Cancer 2005; 116:726-33.
    14. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002; 62: 2937-41.
    15. Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res 2003; 9:3406-12.
    16. Zlotnik A. Chemokines and cancer. Int J Cancer 2006; 119:2026-9.
    17. Shiozawa J, Ito M, Nakayama T, Nakashima M, Kohno S, Sekine I. Expression of matrix metalloproteinase-1 in human colorectal carcinoma. Mod Pathol 2000; 13: 925-33.
    18. Poulsom R, Pignatelli M, Stetler-Stevenson WG, et al. Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 1992; 141:389-96.
    19. Barozzi C, Ravaioli M, D'Errico A, et al. Relevance of biologic markers in colorectal carcinoma:a comparative study of a broad panel. Cancer 2002; 94:647-57.
    20. Moran A, Iniesta P, de Juan C, et al. Stromelysin-1 promoter mutations impair gelatinase B activation in high microsatellite instability sporadic colorectal tumors. Cancer Res 2002; 62:3855-60.
    21. Hasegawa S, Koshikawa N, Momiyama N, et al. Matrilysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer 1998; 76:812-6.
    22. Lubbe WJ, Zhou ZY, Fu W, et al. Tumor epithelial cell matrix metalloproteinase 9 is a target for antimetastatic therapy in colorectal cancer. Clin Cancer Res 2006; 12: 1876-82.
    23. Yang W, Arii S, Gorrin-Rivas MJ, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer 2001; 91:1277-83.
    24. Leeman MF, McKay JA, Murray GI. Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal cancer. J Clin Pathol 2002; 55:758-62.
    25. Legrand C, Gilles C, Zahm JM, et al. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 1999; 146:517-29.
    26. Weaver AM. Invadopodia:specialized cell structures for cancer invasion. Clin Exp Metastasis 2006; 23:97-105.
    27. Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL:suppression by interferons. Leukemia 2002; 16:791-8.
    28. Redondo-Munoz J, Jose Terol M, Garcia-Marco JA, Garcia-Pardo A. Matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration. Blood 2008; 111:383-6.
    29. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol Microbiol Scand 1969; 77:758-60
    30. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer:trials and tribulations. Science 2002; 295:2387-92.
    31. Fridman R, Toth M, Chvyrkova I, Meroueh SO, Mobashery S. Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 2003; 22:153-66.
    32. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature 2002; 418:38-9.
    33. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435:839-43.
    34. Yang M, Baranov E, Moossa AR, Penman S, Hoffman RM. Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA 2000; 97: 12278-82.
    35. Hoffman RM. Whole-body fluorescence imaging with green fluorescence protein. Methods Mol Biol 2002; 183:135-48.
    36. Flatmark K, Maelandsmo GM, Martinsen M, Rasmussen H, Fodstad O. Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice. Eur J Cancer 2004; 40:1593-8.
    1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-7.
    2. Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 2005; 132:1127-36.
    3. Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106:419-27.
    4. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27-35.
    5. Mishra PJ, Humeniuk R, Medina DJ, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68:4331-9.
    6. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-63.
    7. Direkze NC, Hodivala-Dilke K, Jeffery R, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004; 64:8492-5.
    8. Guo X, Oshima H, Kitmura T, Taketo MM, Oshima M. Stromal fibroblasts activated by tumor cells promote angiogenesis in mouse gastric cancer. J Biol Chem 2008; 283: 19864-71.
    9. Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21:1079-88.
    10. Villaron EM, Almeida J, Lopez-Holgado N, et al. Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 2004; 89:1421-7.
    11. Rubio D, Garcia-Castro J, Martin MC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65:3035-9.
    12. Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104:3581-7.
    13. Sigurjonsson OE, Guethmundsson KO, Guethmundsson S. [Mesenchymal stem cells. A review.]. Laeknabladid 2001; 87:627-32.
    14. Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11:1155-64.
    15. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65:3307-18.
    16. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4:267-74.
    17. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8:315-7.
    18. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180:2581-7.
    19. Mishra PJ, Glod JW, Banerjee D. Mesenchymal stem cells:flip side of the coin. Cancer Res 2009; 69:1255-8.
    1 Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55:663-7.
    2 Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-63.
    3 Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1:46-54.
    4 Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101:2999-3001.
    5 Mishra PJ, Glod JW, Banerjee D. Mesenchymal stem cells:flip side of the coin. Cancer Res 2009; 69:1255-8.
    6 Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62:3603-8.
    7 Birnbaum T, Roider J, Schankin CJ, et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 2007; 83: 241-7.
    8 Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006; 80:267-74.
    9 Kyriakou CA, Yong KL, Benjamin R, et al. Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. J Gene Med 2006; 8:253-64.
    10 Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6:a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24:986-91.
    11 Xu WT, Bian ZY, Fan QM, Li G, Tang TT. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 2009; 281:32-41.
    12 Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102:3837-44.
    13 Fierro FA, Sierralta WD, Epunan MJ, Minguell JJ. Marrow-derived mesenchymal stem cells:role in epithelial tumor cell determination. Clin Exp Metastasis 2004; 21: 313-9.
    14 Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 2007; 21:3763-70.
    15 Corcoran KE, Trzaska KA, Fernandes H, et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One 2008; 3:e2563.
    16 Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180:2581-7.
    17 Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002; 2:573-83.
    18 He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94:819-25.
    19 Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7:192-8.
    20 Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20:672-82.
    21 Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7:186-91
    22 Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61:1786-90.
    23 Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. Pathology: cancer cells compress intratumour vessels. Nature 2004; 427:695.
    24 Wong SY, Haack H, Crowley D, Barry M, Bronson RT, Hynes RO. Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res 2005; 65:9789-98.
    25 Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438:946-53.
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    2. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6:392-401.
    3. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59:5002-11.
    4. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121:335-48.
    5. Szlosarek PW, Grimshaw MJ, Wilbanks GD, et al. Aberrant regulation of argininosuccinate synthetase by TNF-alpha in human epithelial ovarian cancer. Int J Cancer 2007; 121:6-11.
    6. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression:potential targets of anti-cancer therapy. Eur J Cancer 2006; 42:717-27.
    7. Ben-Baruch A. Host microenvironment in breast cancer development:inflammatory cells, cytokines and chemokines in breast cancer progression:reciprocal tumor-microenvironment interactions. Breast Cancer Res 2003; 5:31-6.
    8. Azenshtein E, Luboshits G, Shina S, et al. The CC chemokine RANTES in breast carcinoma progression:regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002; 62:1093-102.
    9. Robinson SC, Scott KA, Balkwill FR. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol 2002; 32:404-12.
    10. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193:727-40.
    11. Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW. Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 2002; 62:7042-9.
    12. Lu B, Finn OJ. T-cell death and cancer immune tolerance. Cell Death Differ 2008; 15: 70-9.
    13. O'Connell J, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184:1075-82.
    14. Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immune system by converting CD4+CD25-T cells into CD4+CD25+ T regulatory cells:role of tumor-derived TGF-beta. J Immunol 2007; 178:2883-92.
    15. Allavena P, Sica A, Vecchi A, Locati M, Sozzani S, Mantovani A. The chemokine receptor switch paradigm and dendritic cell migration:its significance in tumor tissues. Immunol Rev 2000; 177:141-9.
    16. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7:211-7.
    17. Remmel E, Terracciano L, Noppen C, et al. Modulation of dendritic cell phenotype and mobility by tumor cells in vitro. Hum Immunol 2001; 62:39-49.
    18. Shurin MR, Shurin GV, Lokshin A, et al. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells:friends or enemies? Cancer Metastasis Rev 2006; 25:333-56.
    19. Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007:263-83.
    20. Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006; 80:267-74.
    21. Kyriakou CA, Yong KL, Benjamin R, et al. Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. J Gene Med 2006; 8:253-64.
    22. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6:a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24:986-91.
    23. Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55:663-7.
    24. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-63.
    25. Kirkham N, Price ML, Gibson B, Leigh IM, Coburn P, Darley CR. Type VII collagen antibody LH 7.2 identifies basement membrane characteristics of thin malignant melanomas. J Pathol 1989; 157:243-7.
    26. Wetzels RH, Robben HC, Leigh IM, Schaafsma HE, Vooijs GP, Ramaekers FC. Distribution patterns of type VII collagen in normal and malignant human tissues. Am J Pathol 1991; 139:451-9.
    27. Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V, Cress AE. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol 1995; 146:1498-507.
    28. Rabinovitz I, Mercurio AM. The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 1997; 139:1873-84.
    29. Mook OR, Frederiks WM, Van Noorden CJ. The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 2004; 1705:69-89.
    30. Bates RC, Mercurio AM. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 2005; 4:365-70.
    31. Bates RC, Pursell BM, Mercurio AM. Epithelial-mesenchymal transition and colorectal cancer:gaining insights into tumor progression using LIM 1863 cells. Cells
    Tissues Organs 2007; 185:29-39.
    32. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004; 4:118-32.
    33. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7:131-42.
    34. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76-83.
    35. Avizienyte E, Fincham VJ, Brunton VG, Frame MC. Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 2004; 15: 2794-803.
    36. Minard ME, Ellis LM, Gallick GE. Tiaml regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastasis 2006; 23:301-13.
    37. Bellovin DI, Simpson KJ, Danilov T, et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 2006; 25:6959-67.
    38. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24:5764-74.
    39. Bates RC, DeLeo MJ,3rd, Mercurio AM. The epithelial-mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 2004; 299:315-24.
    40. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 2006; 174:175-83.
    41. Yang L, Lin C, Zhao S, Wang H, Liu ZR. Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up-regulating
    cyclin D1 and c-Myc expression. J Biol Chem 2007; 282:16811-9.
    42. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-betal mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27-36.
    43. Liao D, Johnson RS. Hypoxia:a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 2007; 26:281-90.
    44. Mizukami Y, Kohgo Y, Chung DC. Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 2007; 13:5670-4.
    45. Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res 2007; 100:782-94.
    46. Fujisaki K, Mitsuyama K, Toyonaga A, Matsuo K, Tanikawa K. Circulating vascular endothelial growth factor in patients with colorectal cancer. Am J Gastroenterol 1998; 93:249-52.
    47. Akbulut H, Altuntas F, Akbulut KG, et al. Prognostic role of serum vascular endothelial growth factor, basic fibroblast growth factor and nitric oxide in patients with colorectal carcinoma. Cytokine 2002; 20:184-90.
    48. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2:727-39.
    49. Wilting J, Hawighorst T, Hecht M, Christ B, Papoutsi M. Development of lymphatic vessels:tumour lymphangiogenesis and lymphatic invasion. Curr Med Chem 2005; 12: 3043-53.
    50. Sundar SS, Ganesan TS. Role of lymphangiogenesis in cancer. J Clin Oncol 2007; 25: 4298-307.
    51. Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium:a new frontier of metastasis research. Nat Cell Biol 2002; 4:E2-5.
    52. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438:946-53.
    53. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 2001; 98:12677-82.
    54. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196:1497-506.
    55. Cao R, Bjorndahl MA, Religa P, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004; 6:333-45.
    56. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A 2002; 99:8868-73.
    57. Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 2005; 24:2885-95.
    58. Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005; 105:4642-8.
    59. Sundlisaeter E, Dicko A, Sakariassen PO, Sondenaa K, Enger PO, Bjerkvig R. Lymphangiogenesis in colorectal cancer-prognostic and therapeutic aspects. Int J Cancer 2007; 121:1401-9.
    60. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101: 168-72.
    61. Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest 2005; 115:2316-9.
    62. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. Pathology: cancer cells compress intratumour vessels. Nature 2004; 427:695.
    63. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002; 296:1883-6.
    64. He Y, Rajantie I, Pajusola K, et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 2005; 65:4739-46.
    65. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol 2004; 14:181-5.
    66. Mehlen P, Puisieux A. Metastasis:a question of life or death. Nat Rev Cancer 2006; 6: 449-58.
    67. Gassmann P, Haier J. The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 2008; 25:171-81.
    68. Weiss L, Nannmark U, Johansson BR, Bagge U. Lethal deformation of cancer cells in the microcirculation:a potential rate regulator of hematogenous metastasis. Int J Cancer 1992; 50:103-7.
    69. Weiss L. Biomechanical destruction of cancer cells in the heart:a rate regulator for hematogenous metastasis. Invasion Metastasis 1988; 8:228-37.
    70. Wang HH, McIntosh AR, Hasinoff BB, et al. B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity:a natural hepatic defense against metastasis. Cancer Res 2000; 60:5862-9.
    71. Edmiston KH, Shoji Y, Mizoi T, Ford R, Nachman A, Jessup JM. Role of nitric oxide and superoxide anion in elimination of low metastatic human colorectal carcinomas by unstimulated hepatic sinusoidal endothelial cells. Cancer Res 1998; 58:1524-31.
    72. Kluger HM, Chelouche Lev D, Kluger Y, et al. Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease. Cancer Res 2005; 65:5578-87.
    73. Gout S, Tremblay PL, Huot J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis 2008; 25:335-44.
    74. Im JH, Fu W, Wang H, et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 2004; 64: 8613-9.
    75. Khatib AM, Auguste P, Fallavollita L, et al. Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 2005; 167:749-59.
    76. Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A, Brodt P. The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 2007; 170:1781-92.
    77. Walzog B, Gaehtgens P. Adhesion Molecules:The Path to a New Understanding of Acute Inflammation. News Physiol Sci 2000; 15:107-13.
    78. Enns A, Gassmann P, Schluter K, et al. Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg 2004; 8:1049-59; discussion 60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700