CCR7的表达及与配体CCL19对鼠小胶质细胞生物学功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋化因子与表达于细胞表面的受体共同作用发挥其生物学功能。趋化因子受体均为G蛋白偶联受体,与趋化因子结合后,通过G蛋白变构而使受体磷酸化,进行信号转导。CCR7是由EBV诱导后发现的基因,被认为是EBV在B淋巴细胞上作用的调节因子。CCR7受体表达于各种淋巴组织,并激活T、B淋巴细胞。作为免疫系统中一个重要的归巢受体,CCR7不仅控制B细胞和T细胞归巢、DCs穿过高内皮静脉,而且还能把它们正确定位在外周淋巴器官的T、B细胞区。CCR7可能对趋化成熟DCs进入淋巴管非常重要。SLC是由淋巴管内皮细胞产生的,从淋巴管,DCs回流到本地LN,最终定位于T细胞区。这一最后定位过程可能被ELC控制,因为ELC被定居在此的成熟DCs产生。在免疫刺激或炎症刺激后,DCs从外周组织迁移到淋巴器官,提呈抗原。在此过程中由非成熟DCs转变为成熟DCs,在成熟过程中下调两个CC趋化因子受体:CCR1、CCR5,对其配体(HCC-1,MIP-1β)的趋化活性消失,但上调CCR7表达。对呈现在炎症位点或免疫位点的趋化因子的反应的抑制使其离开外周组织,对SLC、ELC的反应引导其定位到淋巴器官。由于CCR7重要性,研究者在不同的细胞对这一趋化因子受体进行大量研究,然而到目前为止,还没有关于小胶质细胞中CCR7表达情况的研究。近年来发现,CCL21与其中一个CXCR3互作诱导小胶质细胞的趋化。进一步研究发现,在CNS中这一信号系统不可能发挥重要作用。
     本试验用3d内gcd-10野生型小鼠作为实验材料,首次采用RT-PCR和Western blotting方法,发现活化的小胶质细胞表达CCR7,然而在静息状态下并不表达。LPS活化的原代小胶质细胞CCR7的表达量随时间和LPS处理剂量的变化而变化。同时,我们还发现Cell Debris处理的小胶质细胞中也有CCR7的表达,而IFN-γ激活的小胶质细胞并不表达。
     TGF-β1与多种细胞因子的产生有关:TGF-β1能抑制各种细胞因子的表达。本试验使用TGF-β1处理LPS活化的小胶质细胞发现,TGF-β1可明显抑制CCR7 mRNA的表达。本试验还使用了PI3K、MEK/ERK和p38信号通路的阻断剂LY294002、U0126和SB203580处理原代培养的小胶质细胞,结果没有检测到LY294002或SB203580影响CCR7 mRNA的表达,U0126上调CCR7的表达。
     本试验还检测了LPS处理的小胶质细胞TNF-α和iNOS mRNA表达。LPS活化的小胶质细胞表达前炎症因子TNF-α和iNOS mRNA,且TNF-αmRNA的表达早于iNOS mRNA。LPS处理6h,TNF-αmRNA在所选取的处理时间表达量最高,24h的表达量与处理前的表达水平相当;iNOS的表达峰值出现在LPS处理6h,并且直到24h iNOS mRNA仍然维持高水平表达
     活化的小胶质细胞表达CCR7促使我们研究该受体与其配体CCL19对细胞生物学功能的影响。结果表明,LPS处理的小胶质细胞的死亡率约为20%,当加入CCL19后,细胞死亡率降低到10%左右,提示CCL19能减少约50%LPS处理的小胶质细胞死亡率,因此CCL19与其受体作用可以降低细胞的死亡率。我们还发现,在LPS处理的小胶质细胞中加入CCL19后,可显著提高细胞的吞噬作用和胞内Ca~(2+)浓度。
     结论:LPS或Cell Debris活化的小胶质细胞表达CCR7,而处于静息状态的小胶质细胞并不表达该趋化因子受体;CCR7的配体MIP-3β可提高LPS处理的小胶质细胞的存活率、吞噬作用以及胞内Ca~(2+)浓度。
Chemokines deliver their activity by interacting with cell surface expressed chemokine receptors that belong to the family of seven transmembrane domain G protein-coupled rhodopsin-like receptors. CCR7 was identified as a gene induced by the Epstein-Barr virus (EBV), and is thought to be a mediator of EBV effects on B lymphocytes. Previous results told us that such receptor is expressed in various lymphoid tissues and activates B and T lymphocytes. Important functions of CCR7 have been shown to control the migration of memory T cells to inflamed tissues and stimulate dendritic cell maturation. Because of the importance of such receptor, many researchers have investigated CCR7 in many kinds of cells. However, no report has been made regarding the presence of CCR7, the receptor for CCL19 and CCL21 in microglia; instead, CCL21 is found to induce chemotactic behavior by interacting with CXCR3 in microglia. Moreover, recent studies have shown that it is highly unlikely that this signaling system plays a role in inflammation in the CNS.
     Experimental animals used in this study were gcd-10 wild type mouse. Our present results provide the first evidence that RT-PCR and Western blotting analysis showed CCR7 expression was detected in activated primary cultures of microglia, but not in the resting mocroglia. Primary cultures of microglia stimulated with LPS express CCR7 mRNA in time and dose-dependent way. CCR7 mRNA expression was also found in cultured microglia treated by cell debris. LPS, but not IFN-γinduced CCR7 expression in microglial cell. Similar to previous results, expression of CXCR3 mRNA was found in the cultured microglial cells.
     TGF-βM has known to be associated with production of various kinds of cytokines. TGF-β1 inhibits various kinds of cytokine mRNA expression. In present study, we found that LPS-induced expression CCR7 mRNA is almost suppressed by TGF-β1. However, LY294002, a PI3K inhibitor, has no effect on LPS-induced CCR7 mRNA expression in cultured microglia, suggesting that TGF-β1 shows its activity not through PI3K signal pathway. Previously, it has been reported that induction of CCR7 expression in thymocytes and RLm6 depends on activation of the MEK-ERK signaling pathway and an increase in intracellular Ca~(2+) levels. Here we examined the effect of U0126, an inhibitor of the extracellular signal-regulated kinase kinase (ERKK/MEK), on expression of CCR7 mRNA in activated microglia. Interestingly, however, CCR7 mRNA expression was up-regulated after adding the U0126. In the present study we also investigated other pathways such as p38, which is possibly responsible for the induction of CCR7 mRNA expression in the activated primary cultures of microglia. Our data indicated that CCR7 mRNA expression does not due to the activation of the ERKK/MEK or p38. Although the induction mechanism of CCR7 expression in activated microglia requires further investigation, the cell type, experimental condition-dependent effect and some other factors, such as NF-κB, the interplay of NF-κB with MAPKs or the interplay within the MAPKs, could be due to mechanism for the induction of CCR7 mRNA expression.
     Similar to previous results, TNF-αand iNOS mRNA expression were detected in LPS stimulated microglia.
     The findings that CCR7 mRNA is expressed in activated microglia led us to examine effects of its ligands. In the present study, we examined the effects of CCL19 on LPS-treated primary microglial cells culture. Percent of Cell death was almost 20% in LPS-treated cells. This percentage was consistently reduced to about 10% when the cells were cultured in the presence of 0.lμg/ml CCL19, implying that CCL19 reduced about 50% of dead cells. Our results clearly show that CCL19 is able to augment the function of phagocytosis for LPS-stimulated microglia. After adding the CCL19 in LPS-stimulated microglia, phagocytosis was augmented, indicating that the interaction between CCR7 and its ligand, CCL19 enhances phagocytosis of microglia. With the adding of CCL19 a transient increase in intracellular calcium was detected in the cultured microglia under activated condition but not under normal condition, indicating that level of Ca~(2+) influx can be elevated by CCL19 in activated microglia.
     In conclusion, CCR7 is barely expressed in microglia under normal conditions, but markedly up-regulated upon their activation. Indeed, its ligand CCL19 augmented phagocytosis in activated microglia, suggesting that under activated conditions the CCL19/CCR7 interaction becomes predominant, which may play a role in regulating chemokine receptors and cytokine production, cell survival, phagocytosis and transient increase in intracellular calcium.
引文
李怡,何成.胶质细胞介导性激素的神经系统作用.生理科学进展.2002,33:35-38.
    万选才,杨天祝,徐承熹主编.现代神经生物学.北京医科大学中国协和医科大学联合出版社1999,91-96.
    Adamson DC, Wildemann B, Sasaki M et al. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science, 1996, 274: 1917-1921.
    Aloisi F, De Simone R, Columba-Cabezas S et al. Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro-and antiinflammatory activities. J Neurosci Res, 1999, 56: 571-580.
    Anderson WR, Martella A, and Drake ZM. Correlative transmission and scanning electron microscopy study of microglia activated by interferon-gamma and tumor necrosis factor-alpha in vitro. Pathol Res Pract, 1995, 191: 1016-1022.
    Ashwell KW. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res Dev Brain Res, 1991, 58: 1-12.
    Bagasra O, Lavi E, Bobroski L et al. Cellular reservoirs of HIV-1 in the central nervous system of
    infected-individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS, 1996, 10: 573-585.
    Barger SW and Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature, 1997, 388: 878-881.
    Barton KD. The microglial cell. A historical review. J Neurol Sci, 1995, 134 Suppl: 57-68.
    Bartholdi D and Schwab ME. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci, 1997, 9: 1422-1438.
    Bauer J, Ruuls SR, Huitinga Ⅰ et al. The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J, 1996, 28: 83-97.
    Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med, 1997, 75: 165-173.
    Benveniste EN, Kwon J, Chung WJ et al. Diferential modulation of astrocyte cytokine gene expression by TGF-beta. J Immunol, 1994, 153: 5210-5221.
     Bernardo A and Minghetti L. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des, 2006, 12: 93-109.
    Bethea JR, Castro M, Keane RW et al. Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci, 1998, 18: 3251-3260.
    Bhat NR, Zhang P, Lee JC et al. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci, 1998, 18: 1633-1641.
    Bo L, Mork S, Kong PA et al. Detection of MHC class II-antigens on macrophage and microglia, but not astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol, 1994, 51: 135-146.
    Bo L, Peterson JW, Mork S et al. Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol, 1996, 55: 1060-1072.
    Bowser R and Reilly S. Expression of FAC1 in activated microglia during Alzheimer's disease. Neurosci Lett, 1998, 253: 163-166.
    Brown MC, Perry VH, Lunn ER et al. Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron, 1991, 6: 359-370.
    Bruccoleri A, Brown H, and Harry GJ. Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin. J Neurochem, 1998, 71: 1577- 1587.
    Bruce-Keller AJ. Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res, 1999,58: 191-201.
    Chao CC, Hu S, Molitor TW et al. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol, 1992, 149: 2736-2741.
    Chao CC, Hu S, and Peterson PK. Glia: the not so innocent bystanders. J Neurovirol, 1996, 2: 234-239.
    Chessell IP, Michel AD, and Humphrey PP. Properties of the pore-forming P2X7 purinoceptor in mouse NTW8 microglial cells. Br J Pharmacol, 1997, 121: 1429-1437.
    Chung IY, Norris JG, and Benveniste EN. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med, 1991, 173:801-811.
    Condorelli DF, Salin T, Dell'Albani P et al. Neurotrophins and their trk receptors in cultured cells of the glial lineage and in white matter of the central nervous system. J Mol Neurosci, 1995, 6: 237-248.
    Cuadros MA and Navascues J. The origin and diferentiation of microglial cells during development. Prog Neurobiol, 1998,56: 173-189.
    De Simone R, Giampaolo A, Giometto B et al. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol, 1995,54: 175-187.
    Dickson DW, Lee SC, Mattiace La et al. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia, 1993, 7: 75 - 83.
    Doranz BJ, Rucker J, Yi Y et al. A dual-tropic primary HIV-1 isolate that uses fusion and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996, 85:1149-1158.
    Dragic T, Litwin V, Allaway GP et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381: 667-673.
    
    Eder C. Ion channels in microglia (brain macrophages). Am J Physiol, 1998, 275: C327-C342.
    Ehrlich LC, Hu S, Peterson PK et al. IL-10 down-regulates human microglial IL-8 by inhibition of NF-kappaB activation. Neuroreport, 1998, 9: 1723-1726.
    Elkabes S, DiCicco-Bloom EM, and Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci, 1996, 16: 2508-2521.
    Elkabes S, Peng L, and Black IB. Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J Neurosci Res, 1998, 54: 117-122.
    Feng Y, Broder CC, Kennedy PE et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272: 872-877.
    Ferrari D, Chiozzi P, Falzoni S et al. Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med, 1997, 185: 579-582.
    Ferrari D, Villalba M, Chiozzi P et al. Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol, 1996, 156: 1531-1539.
    Fiebich BL, Butcher RD and Gebicke-Haerter PJ. Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. J Neuroimmunol, 1998, 92: 170-178.
    Ford AL, Goodsall AL, Hickey WF et al. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol, 1995, 154: 4309-4321.
    Frade JM and Barde YA. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron, 1998, 20: 35-41.
    Frei K, Lins H, Schwerdel C et al. Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol, 1994, 152: 2720-2728.
    Gebicke-Haerter PJ, Lieb K, IIIes P et al. Microglia: mechanisms of activation and significance in pathogenesis of neuropsychiatric illnesses. Nervenarzt, 1998, 69: 752-762.
    Gehrmann J, Bonnekoh P, Miyazawa T et al. Immunocytochemical study of an early microglial activation in ischemia. J Cereb Blood Flow Metab, 1992, 12: 257-269.
    Gehrmann J and Kreutzberg GW. Experimental models to study microglial in vivo. The activated microglia: an early response element in the injured CNS? Neuropathol Appl Neurobiol, 1994, 20: 180-182.
    Gehrmann J, Matsumoto Y, and Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev, 1995, 20: 269-287.
    Giese A, Brown DR, Groschup MH et al. Role of microglia in neuronal cell death in prion disease. Brain Pathol, 1998, 8: 449-457.
    Giulian D, Baker TJ, Shih LC et al. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med, 1986, 164: 594-604.
    Giulian D, Haverkamp LJ, Yu JH et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci, 1996, 16: 6021-6037.
    Gonzalez-Scarano F and Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci, 1999, 22: 219-240.
    Graeber MB. Microglia, macrophages and the blood-brain barrier. Clin Neuropathol, 1993, 12: 296-297.
    
    Graeber MB and Mehraein P. Microglial rod cells. Neuropathol Appl Neurobiol, 1994, 20: 178-180.
    Greenamyre JT, MacKenzie G, Peng T1 et al. Mitochondrial dysfunction in Parkinson's disease. Biochem Soc Symp, 1999, 66: 85-97.
    
    Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr, 2006, 83: 470S-474S.
    Haas S, Brockhaus J, Verkhratsky A et al. ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience, 1996, 75: 257-261.
    Hagberg H and Mallard C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol, 2005, 18: 117-123.
    Hailer NP, Vogt C, Korf HW et al. Interleukin-1 beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. Eur J Neurosci, 2005, 21: 2347-2360.
    Hanasaki K, Yokota Y, lshizaki J et al. Resistance to endotoxic shock in phospholipase A2 receptor-deficient mice. J Biol Chem, 1997,272: 32792-32797.
    
    Haydon PG. GLIA: listening and talking to the synapse. Nat Rev Neurosci, 2001, 2: 185-193.
    
    He J, Chen Y, Farzan M et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature, 1997, 385: 645-649.
    Heese K, Hock C, and Otten U. Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem, 1998, 70: 699-707.
    
    Jellinger KA. Cell death mechanisms in Parkinson's disease. J Neural Transm, 2000, 107: 1 - 29.
    
    Jordan FL and Thomas WE. Brain macrophages: questions of origin and interrelationship. Brain Res, 1988,472: 165-178.
    Jordan CA, Watkins BA, Kufta C et al. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol, 1991, 65: 736-742.
    Kahn MA, Kumar S, Liebl D et al. Mice lacking NT-3, and its receptor TrkC, exhibit profound deficiencies in CNS glial cells. Glia, 1999, 26: 153-165.
    Kaltschmidt C, Kaitschmidt B, Lannes-Vieira J et al. Transcription factor NF-kappa B is activated in microglia during experimental autoimmune encephalomylitis. J Neuroimmunol, 1994, 55: 99-106.
    Kaur C and Ling EA. Transient expression of transferrin receptors and localisation of iron in amoeboid microglia in postnatal rats. J Anat, 1995, 186: 165-173.
    Kettenmann H, Hoppe D, Gottmann K et al. Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res, 1990, 26: 278-287.
    Kim SU and de Vellis J. Microglia in health and disease. J Neurosci Res, 2005, 81 -.302-313.
    
    Kim WG, Mohney RR, Wilson B et al. Regional difference in susceptibility to lipopolysaccharide- induced neurotoxicity in the rat brain: role of microglia. J Neurosci, 2000, 20: 6309-6316.
    Klegeris A, Walker DG, and McGeer PL. Activation of macrophages by Alzheimer beta amyloid peptide. Biochem Biophys Res Commun, 1994, 199: 984-991.
    Kohsaka S, Hamanoue M, and Nakajima K. Functional implication of secretory proteases derivedfrom microglia in the central nervous system. Keio J Med, 1996, 45: 263-269.
    Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996, 19: 312-318.
    Lavi E, Das Sarma J, and Weiss SR. Cellular reservoirs for coronavirus infection of the brain in beta2-microglobulin knockout mice. Pathobiology, 1999, 67: 75-83.
    Le W, Rowe D, Xie W et al. Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson's disease. J Neurosci, 2001, 21: 8447-8455.
    Ledoux SP, Shen CC, Grishko VI et al. Glial cell-specific differences in response to alkylation damage. Glia, 1998, 24: 304-312.
    Lehrmann E, Christensen T, Zimmer J et al. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middlecerebral artery occlusion. J Comp Neurol, 1997, 386: 461-476.
    Li M, Sunamoto M, Ohnishi K et al. beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res, 1996, 720: 93-100.
    Ling EA and Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia, 1993, 7: 9- 18.
    Lockhart BP, Cressey KC, and Lepagnol JM. Suppression of nitric oxide formation by tyrosine kinase inhibitors in murine N9 microglia. Br J Pharmacol, 1998, 123: 879-889.
    Lodge PA and Sriram S. Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leukoc Biol, 1996, 60: 502-508.
    Loughlm AJ, Woodroofe MN, and Cuxner ML. Regulation of Fc receptor and major histocompatibility complex antigen expression on isolated rat microglia by tumor necrosis factor, interleukin-1 and lipopolysaccharide: effects on interferon-gamma induced activation. Immunology, 1992, 75: 170-175.
    Loughlm AJ, Woodroofe MN, and Cuxner ML. Modulation of interferon-gamma-induced major histocompatibility complex class II and Fc receptor expression on isolated microglia by transforming growth factor-beta 1, interleukin-4, noradrenaline and glucocorticoids.Immunology, 1993,9: 125-130.
    Malipiero UV, Frei K, and Fontana A. Production of hemopoietic colony-stimulating factors by astrocytes. J Immunol, 1990, 144: 3816-3821.
    Mangano FT, McAllister JP 2~(nd), and Jones HC. The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res, 1998, 20: 697-704.
    Matsumoto Y, Ohmori K, and Fujiwara M. Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J Neuroimmunol, 1992, 37: 23-33.
    Mayer AM. Therapeutic, implications of microglia activation by lipopolysaccharide and reactive oxygen species generation in septic shock and central nervous system pathologies: a review. Medicina (B Aires), 1998, 58: 377-385.
    McCombe PA, Harness J, and Pender MP. Effects of cyclosporin A treatment on clinical course and inflammatory cell apoptosis in experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. J Neuroimmunol, 1999, 97: 60-69.
    McDonald DR, Bamberger ME, Combs CK et al. beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THPl monocytes. J Neurosci, 1998, 18:4451-4460.
    McDnald DR, Brunden KR, and Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci, 1997, 17: 2284-2294.
    McGeer PL, Kawamata T, Walker DG et al. Microglia in degenerative neurological disease. Glia, 1993,7:84-92.
    McGeer PL, Itagaki S, Boyes BE et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology, 1988, 38: 1285-1291.
    McGuire SO, Ling ZD, Lipton JW et al. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol, 2001, 169: 219- 230.
    McRae A, Ling EA, Schubert P et al. Properties of activated microglia and pharmacologic interference by propentofylline. Alzheimer Dis Assoc Disord, 1998, Suppl 2: S15-20.
    Meda L, Cassatella MA, Szendrei GI et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature, 1995, 374: 647-650.
    Merrill JE and Benveniste EN. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci, 1996, 19:331-338.
    Milligan CE, Levitt P, and Cunningham TJ. Brain macrophages and microglia respond differently to lesions of the developing and adult visual system. J Comp Neurol, 1991, 314: 136-146.
    Minghetti L and Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol, 1998, 54: 99-125.
    Miwa T, Furukawa S, Nakajima K et al. Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J Neurosci Res, 1997, 50: 1023-1029.
    Moller T, Nolte C, Burger R et al. Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci, 1997, 17: 615-624.
    Mor G, Nilsen J, and Horvath T. Estrogen and microglia: A regulatory system that affects the brain. J Neurobiol. 1999, 40: 484-496.
    Muller-Ladner U, Jones JL, Wetsel RA et al. Enhanced expression of chemotactic receptors in multiple sclerosis lesions. J Neurol Sci, 1996, 144: 135-141.
    Nakajima K, Kikuchi Y, Ikoma E et al. Neurotrophins regulate the function of cultured microglia. Glia, 1998,24:272-289.
    Nakajima K and Kohsaka S. Functional roles of microglia in the brain. Neurosci Res, 1993, 17: 187-203.
    Nakajima K, Tohyama Y, Kurihara T et al. Enhancement of urokinase-type plasminogen activator (uPA) secretion, but not that of substrate plasminogen (PGn), by rat microglia stimulated with neuronal conditioned medium. Neurosci Lett, 2005, 378: 13-17.
    Ng YK and Ling EA. Induction of major histocompatibility class II antigen on microglial cells in postnatal and adult rats following intraperitoneal injections of lipopolysaccharide. Neurosci Res, 1997,28: 111-118.
    Nguyen KB, McCombe PA, and Pender MP. Increased apoptosis of T lymphocytes and macrophages in the central and peripheral nervous systems of Lewis rats with experimental autoimmune encephalomyelitis treated with dexamethasone. J Neuropathol Exp Neurol, 1997, 56: 58-69.
    Nolte C, Moller T, Walter T et al. Complement 5a controls motility of murine microglial cells invitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neurosci, 1996, 73: 1091-1107.
    Norton WT. Cell reactions following acute brain injury: a review. Neurochem Res, 1999, 24: 213-218.
    Nuovo GJ and Alfieri ML. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines. Mol Med, 1996, 2: 358-366.
    Nuovo GJ, Gallery F, MacConnell P et al. In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis-a RNA in the central nervous system. Am J Pathol, 1994,144:659-666.
    O'Neill LA and Kaltschmidt C. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci, 1997, 20: 252-258.
    Paresce DM, Chung H, and Maxfield FR. Slow degradation of aggregates of the Alzheimer's disease amyloid beta-protein by microglial cells. J Biol Chem, 1997, 272: 29390-29397.
    Paresce DM, Ghosh R, and Maxfield FR. Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron, 1996, 17: 553-565.
    Paris D, Town T, and Mullan M. Novel strategies for opposing murine microglial activation. Nerosci Lett, 2000, 278: 5-8.
    Prewitt CM, Niesman IR, Kane CJ et al. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol, 1997, 148: 433-443.
    Pyo H, Jou 1, Jung S et al. Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia. Neuroreport, 1998, 9: 871-874.
    Qiu WQ, Ye Z, Kholodenko D et al. Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem, 1997, 272: 6641-6646.
    Rabchevsky AG, Degos JD, and Dreyfus PA. Peripheral injections of Freund's adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis. Brain Res, 1999, 832: 84-96.
    Raivich G, Gehrmann J, and Kreutzberg GW. Increase of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor receptors in the regenerating rat facial nucleus. J Neurosci Res, 1991, 30: 682-686.
    Raivich G, Haas S, Werner A et al. Regulation of MCSF receptors on microglia in the normal and injured mouse central nervous system: a quantitative immunofluorescence study using confocal laser microscopy. J Comp Neurol, 1998, 395: 342-358.
    Raivich G, Moreno-Flores MT, Moller JC et al. Inhibition of posttraumatic microglial proliferation in a genetic model of macrophage colony-stimulating factor deficiency in the mouse. Eur J Neurosci, 1994,6: 1615-1618.
    Rezaie P and Male D. Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech, 1999, 45: 359-382.
    Rinaman L, Roesch MR, and Card JP. Retrograde transynaptic pseudorabies virus infection of central autonomic circuits in neonatal rats. Brain Res Dev Brain Res, 1999, 114: 207-216.
    Rogove AD, Siao C, Keyt B et al. Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci, 1999, 112: 4007-4016.
    Rogove AD and Tsirka SE. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol, 1998, 8: 19-25.
     Ruddle NH, Bergman CM, McGrath KM et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med, 1990, 172: 1193-1200.
    Sawada M, Kondo N, Suzumura A et al. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res, 1989, 491: 394-397.
    Schoen SW, Graeber MB, and Kreutzberg GW. 5'- Nucleotidase immunoreactivity of perineuronal microglia responding to rat facial nerve axotomy. Glia, 1992, 6: 314-317.
    Shaw JA, Perry VH, and Mellanby J. MHC class II expression by microglia in tetanus toxin-induced experimental epilepsy in the rat. Neuropathol Appl Neurobiol, 1994, 20: 392-398.
    Si Q, Nakamura Y, Ogata T et al. Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res, 1998, 812: 97-104.
    Slepko N and Levi G. Progressive activation of adult microglial cells in vitro. Glia, 1996, 16:241-246.
    Spleiss O, Appel K, Boddeke HW et al. Molecular biology of microglia cytokine and chemokine receptors and microglial activation. Life Sci, 1998, 62: 1707-1710.
    Stence N, Waite M, and Dailey ME. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia, 2001, 33: 256-266.
    Stoll G and Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol, 1999, 58: 233-247.
    Stolzing A, Wengner A, and Grune T. Degradation of oxidized extracellular proteins by microglia. Arch Biochem Biophys, 2002, 400: 171-179.
    Streit WJ, Graeber MB, and Kreutzberg GW. Functional plasticity of microglia: a review. Glia, 1988,1:301-307.
    Streit WJ and Sparks DL. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med, 1997, 75: 130-138.
    Streit WJ, Walter SA, and Pennell NA. Reactive microgliosis. Prog Neurobiol, 1999, 57: 563-581.
    
    Sudo S, Tanaka J, Toku K et al. Neurons induce the activation of microglial cells in vitro. Exp Neurol, 1998, 154:499-510.
    Suzumura A, Marunouchi T, and Yamamoto H. Morphological transformation of microglia in vitro. Brain Res, 1991,545:301-306.
    Suzumura A, Sawada M, Yamamoto H et al. Effects of colony stimulating factors on isolated microglia in vitro. J Neuroimmunol, 1990,30: 111-120.
    Tan J, Town T, Paris D et al. Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science, 1999, 286: 2352-2355.
    Tanaka J and Maeda N. Microglial ramification requires nondifusible factors derived from astrocytes. Exp Neurol, 1996, 137: 367-375.
    Taniwaki Y, Kato M, Araki T et al. Microglial activation by epileptic activities through the propagation pathway of kainic acid-induced hippocampal seizures in the rat. Neurosci Lett, 1996,217:29-32.
    Taupin V, Renno T, Bourbonniere L et al. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol, 1997, 27:905-913.
    Thakker-Varia S, Elkabes S, Schick C et al. Gene expression in activated brain microglia: identification of a proteinase inhibitor that increases microglial cell number. Brain Res Mol Brain Res, 1998,56:99-107.
    Thomas WE. Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev, 1992, 17:61-74.
    Thomas DM, Francescutti-Verbeem DM, and Kuhn DM. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J, 2006, 20: 515-517.
    Toggas SM, Masliah E, Rockenstein EM et al. Central nervous system damage produced by expression of the HIV-1 coat protein gpl20 in transgenic mice. Nature, 1994, 367: 188-193.
    Toku K, Tanaka J, Yano H et al. Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. J Neurosci Res, 1998, 53: 415-425.
    Trapp BD, Bo L, Mork S et al. Pathogenesis of tissue injury in MS lesions. J Neuroimmunol, 1999, 98: 49-56.
    Tweardy DJ, Glazer EW, Mott PL et al. Modulation by tumor necrosis factor-alpha of human astroglial cell production of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF). J Neuroimmunol, 1991, 32: 269-278.
    von Zahn J, Moller T, Kettenmann H et al. Microglial phagocytosis is modulated by pro- and anti-inflammatory cytokines. Neuroreport, 1997, 8: 3851-3856.
    Ward SA, Ransom PA, Booth PL et al. Characterization of ramified microglia in tissue culture: pinocytosis and motility. J Neurosci Res, 1991, 29: 13-28.
    White CA, McCombe PA, and Pender MP. Microglia are more susceptible than macrophages to apoptosis in the central nervous system in experimental autoimmune encephalomyelitis through a mechanism not involving Fas (CD95). lnt Immunol, 1998, 10: 935-941.
    Wiley CA, Achim CL, Christopherson C et al. HIV mediates a productive infection of the brain. AIDS, 1999, 13:2055-2059.
    Williams KC, Ulvestad E, and Hickey WF. Immunology of multiple sclerosis. Clin Neurosci, 1994, 2: 229-245.
    Zhang SC and Fedoroff S. Neuron-microglia interactions in vitro. Acta Neuropathol, 1996, 91: 385-395.
    Zhang SC and Fedoroff S. Modulation of microglia by stem cell factor. J Neurosci Res, 1998, 53: 29-37.
    Zhang J, Geula C, Lu C et al. Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Exp Neurol, 2003, 183: 469-481.
    Zietlow R, Dunnett SB, and Fawcett JW. The effect of microglia on embryonic dopaminergic neuronal survival in vitro: diffusible signals from neurons and glia change microglia from neurotoxic to neuroprotective. Eur J Neurosci, 1999, 11: 1657-1667.
    Aarvak T, Chabaud M, Kallberg E et al. Change in the Th1/Th2 phenotype of memory T-cell clones from rheumatoid arthritis synovium. Scand J Imounol, 1999, 50: 1-9.
    Ajuebor MN, Swain MG, and Perretti M. Chemokines as novel therapeutic targets in inflammatory diseases. Biochem Pharmacol, 2002, 63: 1191-1196.
    Akahoshi T, Wada C, Endo H et al. Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. Regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis Rheum, 1993, 36: 762-771.
    Baggiolini M. Chemokines and leucocyte raffic. Nature, 1998, 392: 565-568.
    Baggiolini M, Dewald B, Moser B et al. Human chemokines: an update. Annu Rev Immunol, 1997, 15: 675-705.
    Campbell JJ, Bowman EP, Murphy K et al. 6-C-kine(SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothetium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol, 1998, 141: 1053-1059.
    Campbell JD and HayGlass KT. T cell chemokine receptor expression in human Th1-and Th2 associated diseases. Arch Immunol Ther Exp(Warsz), 2000, 48: 451-456.
    Campbell J J, Pan J, and Butcher EC. Cutting edge: developmental switches in chemokine responses during T cell maturation. J Immunol, 1999, 163: 2353-2357.
    Cartier L, Hartley O, Dubois-Dauphin M et al. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev, 2005, 48: 16-42.
    Cohen MC and Cohen S. Cytokine function: a study in biologic diversity. Am J Clin Pathol, 1996, 105: 589-598.
    Desbaillets I, Diserens AC, Tribolet N et al. Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med, 1997, 186: 1201-1212.
    Ellingsen T, Buus A, Moller BK et al. In vitro migration of mononuclear cells towards synovial fluid and plasma from rheumatoid arthritis patients correlates to RANTES synovial fluid levels and to clinical pain parameters. Scand J Rheumatol, 2000, 29: 216-221.
    Endo H, Akahoshi T, Takagishi K et al. Elevation of in terleukin-8(IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res, 1991, 10: 245-252.
    Feng L. Role of chemokines in inflammation and immunoregulation. Immunol Res, 2000, 21: 203-210.
    
    Flanagan K and Kaufman HL. Chemokines and cancer. Cancer Invest. 2002, 20: 825-834.
    Flynn G, Maru S, Loughlin J et al. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol, 2003, 136: 84-93.
    
    Furie MB and Randolph GJ. Chemokines and tissue injury. Am J pathol, 1995, 146: 1287-1301.
    Gerard C and Rollins BJ. Chemokines and disease. Nat Immunol, 2001, 2: 108-115.
    Gunn MD, Tangemann K, Tam C et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA, 1998 95: 258-263.
    Hedrick JA and Zlotnik A. Identification and characterization of a novel beta chemokine containing six conserved cysteines. J Immunol, 1997, 159: 1589-1593.
    Hogan M, Sherry B, Ritchlin C et al. Differential expression of the small inducible cytokines GRO alpha and GRO beta by synovial fibroblasts in chronic arthritis: possible role in growth regulation. Cytokine, 1994, 6: 61-69.
    
    Horuk R. Chemokine receptors. Cytokine Growth Factor Rev, 2001, 12: 313-335.
    
    Hromas R, Kim CH, Klemsz M et al. Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J Immunol, 1997, 159: 2554-2558.
    
    Karpus WJ. Chemokines and central nervous system disorders. J Neurovirol, 2001, 7: 493-500.
    Keane MP and Strieter RM. Chemokine signaling in inflammation. Crit Care Med, 2000, 28 (4Suppl): N13-26.
    Kelner GS, Kennedy J, Bacon KB et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science, 1994, 266: 1395-1399.
    Kim CH and Broxmeyer HE. Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol, 1999, 65: 6-15.
    Kim CH, Rott L, Kunkel EJ et al. Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest, 2001, 108: 1331 -1339.
    Koch AE, Kunkel SL, Burrows JC et al. Synovial tissue macrophage as a source of the chemotactic cytokine IL-8. J Immunol, 1991, 147: 2187-2195.
    [1]Koch AE, Kunkel SL, Harlow LA et al. Macrophage inflammatory protein-1 alpha. A novelchemotactic cytokine for macrophages in rheumatoid arthritis. J Clin Invest, 1994, 93: 921-928.
    [2]Koch AE, Kunkel SL, Harlow LA et al. Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis. J Clin Invest, 1994, 94: 1012-1018.
    Koch AE, Kunkel SL, Harlow LA et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest, 1992, 90: 772-779.
    [1]Koch AE, Kunkel SL, Shah MR et al. Growth-related gene product alpha. A chemotactic cytokine for neutrophils in rheumatoid arthritis. J Immunol, 1995, 155: 3660-3666.
    [2]Koch AE, Kunkel SL, Shah MR et al. Macrophage inflammatory protein-1 beta: a C-C chemokine in osteoarthritis. Clin Immunol Immunopathol, 1995, 77: 307-314.
    Loetscher P, Uguccioni M, Bordoli L et al. CCR5 is characteristic of Th1 lymphocytes. Nature, 1998, 391:344-345.
    Luster AD. Chemodine-chemotactic cytokines that mediate inflammation. N Engl J Med, 1998, 338: 436-445.
    Mack M, Bruhl H, Gruber R et al. Predominance of mononuclear cells expressing the chemokine receptor CCR5 in synovial effusions of patients with different forms of arthritis. Arthritis Rheum, 1999,42:981-988.
    McQuibban GA, Gong JH, Tam EM et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science, 2000, 289: 1202-1206.
    Meda L, Baron P, Prat E et al. Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid [25-35]. J Neuroimmunol, 1999, 93: 45-52.
    Meucci O, Fatatis A, Simen AA et al. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci USA, 2000, 97: 8075-8080.
    Miossec P and van den Berg W. Thl/Th2 cytokine balance in arthritis. Arthritis Rheum, 1997, 40: 2105-2115.
    Murdoch C and Finn A. Chemokine receptors and their role in vascular biology. J Vasc Res, 2000, 37: 1-7.
    Nagira M, Imai T, Hieshima K et al. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. JBiol Chem, 1997,272: 19518-19524.
    Nelson PJ and Krensky AM. Chemokines, chemokine receptors, and allograft rejection. Immunity, 2001, 14:377-386.
    Oh JW, Schwiebert LM, and Benveniste EN. Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J Neurovirol, 1999, 5: 82-94.
    Olbrich H, Proudfoot AE, and Oppermann M. Chemokine-induced phosphorylation of CC chemokine receptor 5 (CCR5). J Leukoc Biol, 1999, 65: 281-285.
    Oppenheim JJ, Yang D, Biragyn A et al. Chemokine receptors on dendritic cells promote autoimmune reactions. Arthritis Res, 2002, 4 Suppl 3: S183-188.
    Peichl P, Ceska M, Effenberger F et al. Presence of NAP-1/IL-8 in synovial fluids indicates a possible pathogenic role in rheumatoid arthritis. Scand J Immunol, 1991, 34: 333-339.
    Ponath DP, Qin S, Post TW et al. Molecular cloning and charaterization of a human eotaxin receptor expressed seletively on eosinophils. J Exp Med, 1996, 183: 2437-2448.
    Premack BA and Schall TJ. Chemokine receptors: gateways to inflammation and infection. Nat Med, 1996,2: 1174-1178.
    Randolph DA, Huang G, Carruthers CJ et al. The role of CCR7 in TH1 and TH2 cell localization and delivery of B cell help in vivo. Science, 1999, 286: 2159-2162.
    Robinson E, Keystone EC, Schall TJ et al. Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol, 1995, 101: 398-407.
    
    Rollins BJ. Chemokines. Blood, 1997, 90: 909-928.
    Rossi D and Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol, 2000, 1.8: 217-242.
    [1]Sallusto F, Lenig D, Mackay CR et al. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med, 1998, 187: 875-883.
    [2]Sallusto F, Schaerli P, Loetscher P et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol, 1998, 28: 2760-2769.
    Samson M, LaRosa G, Libert F et al. The second extracellular loop of CCR5 is the major determinant of ligand specificity. J Biol Chew, 1997, 272: 24934-24941.
    Segerer S, Nelson PJ, and Schlondorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol, 2000, 11:152-176.
    Seitz M, Dewald B, Gerber N et al. Enhanced production of neutrophil-activating peptide-1/ interleukine-8 in rheumatoid arthritis. J Clin Invest, 1991, 87: 463-469.
    Shields PL, Morland CM, Salmon M et al. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J Immunol, 1999, 163: 6236-6243.
    Soriano SG, Amaravadi LS, Wang YFet al. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol, 2002, 125: 59-65.
    [1]Strieter RM, Polverini PJ, Arenberg Da et al. The role of CXC chemokines as regulators of angiogenesis. Shock, 1995, 4: 155-160.
    [2]Strieter RM, Polverini PJ, Kunkel SL et al. The functional role of the ELR motif in CXCchemokine-mediated angiogenesis. J Biol Chem, 1995, 270: 27348-27357.
    Syrbe U, Siveke J, and Hamann A. Thl/Th2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin Immunopathol, 1999, 21: 263-285.
    Tanabe S, Lu Z, Luo Y et al. Identification of a new mouse beta-chemokine, thymus-derived chemotactic agent 4, with activity on T lymphocytes and mesangial cells. J Immunol, 1997, 159:5671-5679.
    Van Damme J, Struyf S, and Wuyts A, The role of CD26/DPP IV in chemokine processing. Chem Immunol, 1999,72:42-56.
    Wang JM, Deng X, Gong W et al. Chemokines and their role in tumor growth and metastasis. J Immunol Methods, 1998,220: 1-17.
    Ward SG, Bacon K, and Westwick J. Chemokines and T Lymphocytes: More than an Attraction. Immunity, 1998,9: 1-11.
    Webb LM, Ehrengruber MU, Clark-lewis 1 et al. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA, 1993, 90: 7158-7162.
    Weber C, Weber KS, Klier C et al. Specialized roles of the chemokine receptors CCRl and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells. Blood, 2001, 97: 1144-1146.
    Xia MQ and Hyman BT. Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. J Neurovirol, 1999, 5: 32-41.
    Yanagawa Y and Onoe K. CCL19 induces rapid dendritic extension of murine dendritic cells. Blood, 2002, 100: 1948-1956.
    Yoshida R, Nagira M, Kitaura M et al. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem, 1998, 273: 7118-7122.
    Zlotnik A and Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12: 121-127.
    Bezzi P, Domercq M, Brambilla L et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci, 2001, 4: 702-710.
    Biber K, Dijkstra I, Trebst C et al. Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience, 2002, 112: 487-497.
    Castano A, Herrera A J, Cano J et al. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem, 1998, 70: 1584-1592.
    De Groot CJ, Hulshof S, Hoozemans JJ et al. Establishment of microglial cell cultures derived from postmortem human adult brain tissue: immunophenotypical and functional characterization. Microsc Res Tech, 2001, 4: 34-39.
    De Groot CJ, Montagne L, Janssen Ⅰ et al. Isolation and characterization of adult microglial cells and oligodendrocytes derived from postmortem human brain tissue. Brain Res Brain Res Protoc, 2000, 5: 85-94.
    Dobrenis K. Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods, 1998, 16: 320-344.
    Fleige G, Nolte C, Synowitz M et al. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia, 2001, 3: 489-499.
    Gehrmann J, Matsumoto Y, and Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev, 1995, 20: 269-287.
    Giulian D and Baker TJ. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci, 1986, 6: 2163-2178.
    Hao C, Richardson A, and Fedoroff S. Macrophage-like cells originate from neuroepithelium in culture: characterization and properties of the macrophage-like cells, Int J Dev Neurosci, 1991, 9: 1-14.
    Hess DC, Abe T, Hill WD et al. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol, 2004, 186: 134-144.
    Houalla T and Levine RL. The isolation and culture of microglia-like cells from the goldfish brain. J Neurosci Methods, 2003, 131: 121-131.
    Lombardi VR, Etcheverria I, Fernandez-Novoa L et al. In vitro regulation of rat derived microglia. Neurotox Res, 2003, 5: 201-212.
    McCarthy KD and de Vellis J. Preparation of separate astroglial and oligodendroglial cell culturesfrom rat cerebral tissue. J Cell Biol, 1980, 85: 890-902.
    Negishi T, Ishii Y, Kyuwa S et al. Primary culture of cortical neurons, type-1 astrocytes, and microglial cells from cynomolgus monkey (Macaca fascicularis) fetuses. J Neurosci Methods, 2003, 131: 133-140.
    Nakajima K, Honda S, Nakamura Y et al. Intact microglia are cultured and noninvasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials, 2001, 22: 1213-1223.
    Ponomarev ED, Shriver LP, Maresz K et al. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res, 2005, 81: 374-389.
    Ray NB, Power C, Lynch WP et al. Rabies viruses infect primary cultures of murine, feline, and human microglia and astrocytes. Arch Virol, 1997, 142: 1011-1019.
    Tanaka S, Suzuki K, Watanabe M et al. Upregulation of a new microglial gene, mrf-1, in response to programmed neuronal cell death and degeneration. J Neurosci, 1998, 18: 6358-6369.
    Vitry S, Bertrand JY, Cumano A et al. Primordial hematopoietic stem cells generate microglia but not myelin-forming cells in a neural environment. J Neurosci, 2003, 23: 10724-10731.
    Walker DG, Lue LF, and Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol Aging, 2001, 22: 957-966.
    张卫东,杨泓,王泽华.TNF-α基因转染增强树突细胞迁移及CCR7受体表达.华中科技大学学报(医学版),2004,4:133-135。
    Allavavena P, Sica A, Vecchi A et al. The chemokine receptors switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev, 2000, 177: 141-149.
    Baggiolini M. Chemokines and leukocyte traffic. Nature, 1998, 392: 565-568.
    Bajetto A, Bonavia R, Barbero S et al. Chemokines and their receptors in the central nervous system.Front Neuroendocrinol, 2001, 22: 147-184.
    Banchereau J and Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392: 245-252.
    Banisadr G, Rostene W, Kitabgi P et al. Chemokines and brain functions. Curr Drug Targets Inflamm Allergy, 2005, 4: 387-399.
    Biber K, Dijkstra I, Trebst C et al. Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neurosci, 2002, 112: 487-497.
    Biber K, Sauter A, Brouwer N et al. Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine (SLC). Glia, 2001, 34: 121-133.
    Caux C, Vanbervliet B, Massacrier C et al. Regulation of dendritic cell recruitment by chemokines. Transplantation, 2002, 73 (1 Suppl): S7-11.
    Chavarria A and Alcocer-Varela J. Is damage in central nervous system due to inflammation? Autoimmun Rev, 2004, 3: 251-260.
    Dieu MC, Vanbervliet B, Vicari A et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med, 1998, 188: 373-386.
     Drew PD and Chavis JA. The cyclopentone prostaglandin 15-deoxy-Delta(12,14) prostaglandin J2 represses nitric oxide, TNF-alpha, and IL-12 production by microglial cells. J Neuroimmunol, 2001, 115:28-35.
    Eugenin EA, Eckardt D, Theis M et al. Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc Natl Acad Sci USA, 2001, 98: 4190-4195.
    Fiebich BL, Butcher RD, and Gebicke-Haerter PJ. Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. J Neuroimmunol, 1998, 92: 170-178.
    Forster R, Schubel A, Breitfeld D et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell, 1999, 99: 23-33.
    Kremlev SG, Roberts RL, and Palmer C. Differential expression of chemokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol, 2004, 149: 1-9.
    Mashino K, Sadanaga N, Yamaguchi H et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Canc Res, 2002, 62: 2937-2941.
    Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001,410:50-56.
    Murphy PM, Baggiolini M, Charo IF et al. International union of pharmacology. XII. Nomenclature for chemokine receptors. Pharmacol Rev, 2000, 52: 145-176.
    Oh JW, Drabik K, Kutsch O et al. CXC chemokine receptor 4 expression and function in human astroglioma cells. J Immunol, 2001, 166: 2695-2704.
    Origasa M, Tanaka S, Suzuki K et al. Activation of a novel microglial gene encoding a lysosomal membrane protein in response to neuronal apoptosis. Mol Brain Res, 2001, 88: 1-13.
    Phillips R and Ager A. Activation of pertussis toxin-sensitive CXCL12 (SDF-1) receptors mediates transendothelial migration of T lymphocytes across lymph node high endothelial cells. Eur J Immunol, 2002, 32: 837-847.
    Ragozzino D. CXC chemokine receptors in the central nervous system: Role in cerebellar neuromodulation and development. J Neurovirol, 2002, 8: 559-572.
    Rollins BJ. Chemokines. Blood, 1997, 90: 909-928.
    Rossi D and Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol, 2000, 18:217-242.
    Saeki H, Moore AM, Brown MJ et al. Cutting edge: secondary lymphoid-tissue chemokine (SLC)and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol, 1999, 162: 2472-2475.
    Sallusto F, Lenig D, Forster R et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, 401: 708-712.
    Sallusto F, Lanzavecchia A, and Mackay CR. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today, 1998, 19: 568-574.
    Scandella E, Men Y, Gillessen S et al. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 2002, 100: 1354-1361.
    Schaerli P and Moser B. Chemokines: control of primary and memory T-cell traffic. Immunol Res, 2005,31:57-74.
    Schmausser B, Endrich S, Brandlein S et al. The chemokine receptor CCR7 is expressed on epithelium of non-inflamed gastric mucosa, Helicobacter pylori gastritis, gastric carcinoma and its precursor lesions and up-regulated by H. pylori. Clin Exp Immunol, 2005, 139: 323-327.
    Sozzani S, Allavena P, D'Amico G et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol, 1998, 161: 1083-1086.
    Ubogu EE, Cossoy MB, and Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci, 2006, 27: 48-55.
    Vicari AP, Vanbervliet B, Massacrier C et al. In vivo manipulation of dendritic cell migration and activation to elicit antitumour immunity. Novartis Found Symp, 2004, 256: 241-269.
    Yan C, Zhu ZG, Yu YY et al. Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol, 2004, 10: 783-790.
     Yoshida R, Nagira M, Kitaura M et al. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem, 1998, 273: 7118-7122.
    Zhong L, Granellrpiperno A, Choi Y et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol, 1999, 29: 964-972.
    Akashi S, Shimazu R, Ogata H et al. Cell surface expression and lipopolysaccharide signaling via the Toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol, 2000, 164: 3471-3475.
    Bardi G, Niggli V, and Loetscher P. Rho kinase is required for CCR7-mediated polarization and chemotaxis oft lymphocytes. FEBS Lett, 2003, 542: 79-83.
    Biber K, Sauter A, Brouwer N et al. Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine(SLC). Glia, 2001, 34: 121-133.
    Bodles AM and Barger SW. Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiol Aging, 2005, 26: 9-16.
    Chen RH, Ebner R, and Dorynck R. Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science, 1993, 260: 1335-1338.
    Ebner R, Chen RH, Shum L et al. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science, 1993,260: 1344-1348.
    Gioannini TL, Teghanemt A, Zhang DS et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. PNAS, 2004, 101: 4186-4191.
    Han 10, Kim HS, Kim HC et al. Synergistic expression of inducible nitric oxide synthase by phorbol ester and interferon-gamma is mediated through NF-kappaB and ERK in microglial cells. J Neurosci Res, 2003, 73: 659-669.
    Henrich-Noack P, Prehn JH, and Krieglstein J. TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke, 1996, 27: 1609-1615.
    Kehrl JH, Thevenin C, Rieckmann P et al. Transforming growth factor-beta suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J Immunol, 1991, 146:4016-4023.
    Kim WK, Hwang SY, Oh ES et al. TGF-betal represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol, 2004, 172: 7015-7023.
    Lee SJ and Lee S. Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy, 2002, 1: 181-191.
    Lyons RM and Moses HL. Transforming growth faclors and the regulation of cell proliferation. Eur J Biochem, 1990, 187: 467-473.
    
    Massague J. Receptors for the TGF-beta family. Cell,1992, 69: 1067-1070.
    
    Myoken Y, Kan M, Sato GH et al. Bifunctional effects of transforming growth factor-beta (TGF-beta) on endothelial cell growth correlate with phenotypes of TGF-beta binding sites. Exp Cell Res, 1990, 191: 299-304.
    Nakajima K and Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem, 2001, 130: 169-175.
    Ortaldo JR, Mason AT, O'Shea JJ et al. Mechanistic studies of transforming growth factor-beta inhibition of IL-2-dependent activation of CD3-large granular lymphocyte functions. Regulation of IL-2R beta (p75) signal transduction. J Immunol, 1991, 146: 3791-3798.
    Re F and Strominger JL. Separate functional domains of human MD-2 mediated Til-like receptor 4-binding and lipopolysaccharide responsiveness. J Immunol, 2003, 171: 5272-5276.
    Rodland KD, Muldoon LL, and Magun BE. Cellular mechanisms of TGF-beta action. J Invest Dermatol, 1990, 96: 33S-40S.
    Sato S, Nomura F, Kawai T et al. Synergy and cross-tolerance between Toll-like recepror (TLR) 2 and TLR4-mediated signaling pathway. J Immunol, 2000, 165: 7096-7101.
    Schwartz M. Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab, 2003, 23: 385-394.
    Song X, Tanaka S, Cox D et al. Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK. MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol, 2004, 75: 1147-1155.
    Sporn MB and Roberts AB. Transforming growth factor-beta: recent progress and new challenges. J Cell Biol, 1992, 119: 1017-1021.
    Sporn MB, Roberts AB, Wakefield LM et al. Transforming growth factor-beta: biological function and chemical structure. Science, 1986, 233: 532-534.
    
    Takeda K, Kaisho S, and Akira S. Toll-like receptor. Ann Rev Immunol, 2003, 21: 335-376.
    Wakefield LM, Winokur TS, Hollands RS et al. Recombinant latent transforming growth factor betal has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest, 1990, 86: 1976-1984.
    Wurfel MM, Monks BG, Ingalls RR et al. Targeted deletion of the lipopolysaccharid-binding protein gene leads to profound suppression of LPS receptors ex vivo, whereas in vivo responses renmain intact. J Exp Med, 1997, 186: 2015-2056.
    Banati RB, Gehrmann J, Schubert P et al. Cytotoxicity of microglia. Glia, 1993, 7: 111-118.
    Barnum SR, Jones JL, and Beneviste EN. Interleukin-1 and tumor necrosis factor-mediated regulation of C3 gene expression in human astrohlioma cells. Glia, 1993, 7: 225-236.
    Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis [see comments]. J Mol Med, 1997, 75: 165-173.
    Chao CC, Hu S, Molitor TW et al. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol, 1992, 149: 2736-2741.
    Ciccarelli R, Iorio P, Giuliani P et al. Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglcemia. Glia, 1998, 1: 93-98.
    Gehrmann J, Matsumoto Y, and Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev, 1995, 20: 269-287.
    Giulian D and Lachman LB. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science, 1985, 228: 497-499.
    Han IO, Kim KW, Ryu JH et al. p38 mitogen-activated protein kinase mediates lipopolysaccharide, not interferon-gamma, -induced inducible nitric oxide synthase expression in mouse BV2 microglial cells. Neurosci Lett, 2002, 325: 9-12.
    Liu B, Gao HM, Wang JY et al. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci, 2002, 962: 318-331.
    Lorton D, Kocsis JM, King L et al. beta-Amyloid induces increased release of interleukin-1 beta from lipopolysaccharide-activated human monocytes. J Neuroimmunol, 1996, 67: 21-29.
    Love S. Oxidative stress in brain ischemia. Brain Pathol, 1999, 9: 119-131.
    Mehlhorn G, Hollborn M, and Schliebs R. Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci, 2000, 18:423-431.
    Nagai A, Nakagawa E, Hatori K et al. Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis, 2001, 8: 1057-1068.
    
    Nakamura Y, Si QS, and Kataoka K. Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res, 1999,35:95-100.
    
    Paakkari 1 and Lindsberg P. Nitric oxide in the central nervous system. Ann Med, 1995, 27: 369-337.
    
    Spleiss O, Appel K, Boddeke HW et al. Molecular biology of microglia cytokine and chemokine receptors and microglial activation. Life Sci, 1998, 62: 1707-1710.
    Taupin V, Renno-T, and Bourbonniere L. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol, 1997, 27:905-913.
    Town T, Nikolic V and Tan J. The microglial "activation" continuum: from innate to adaptive responses. J Neuroinflammation, 2005,2: 24-33.
    Waetzig V and Herdegen T. Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci Lett, 2004, 361: 64-67.
    Westenbroek RE, Bausch SB, Lin RC et al. Upregulation of L-type Ca~(2+) channels in reactive astrocytes after brain in jury, hypomylination, and ischemia. J Neurosci, 1998, 2321-2334.
    Zhang ZG, Chopp M, and Powers C. Temporal profile of microglial response following transient (2h)middle cerebral artery occlusion. Brain Res, 1997, 744: 189-198.
    Allavena P, Sica A, Vecchi A et al. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev, 2000, 177: 141-149.
    Ard MD, Cole GM, Wei J et al. Scavenging of Alzheimer's amyloid beta-protein by microglia in culture. J Neurosci Res, 1996, 43: 190-202.
    Arvin B, Neville LF, Barone FC et al. The role of inflammation and cytokine in the brain. Neurosci Biobehav Rev, 1996, 20: 445-452.
    Banchereau J and Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392: 245-252.
    Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid beta-peptide enter the central system and reduce pathology in a mouse model of Alzheimer's disease. Nat Med, 2000, 6: 916-919.
    Biber K, Dijkstra I, Trebst C et al. Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neurosci, 2002, 112: 487-497.
    Biber K, Sauter A, Brouwer N et al. Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia, 2001, 34: 121-133.
    Christopherson K 2~(nd), Brahmi Z, and Hromas R. Regulation of naive fetal T-cell migration by the chemokines Exodus-2 and Exodus-3. Immunol Lett, 1999, 69: 269-273.
    Columba-Cabezas S, Serafini B, Ambrosini E et al. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol, 2003, 13: 38-51.
    Dieu M, Van Bervliert B, Vicari A et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med, 1998, 188: 373-386.
    Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma, 2000, 17:843-856.
    Frackowiak J, Potempska A, LeVine H et al. Extracellular deposits of A beta produced in cultures of Alzheimer disease brain vascular smooth muscle cells. J Neuropathol Exp Neurol, 2005 64: 82-90.
    Gehrmann J, Matsumoto Y, and Kreutzberg GW. Microglia: intrinsic immunoeffector cell of the brain. Brain Res Brain Res Rev, 1995, 20: 269-287.
    Grynkiewicz G, Poenie M, and Tsien RY. A new generation of Ca~(2+) indicators with greatly improved fluorescence properties. J Biol Chem, 1985, 260: 3440-3450.
    Gunn MD, Kyuwa S, Tam C et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med, 1999, 189: 447-450.
    Gunn MD, Tangemann K, Tam C et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA, 1998 95: 258-263.
    
    Hanisch UK. Microglia as a source and target of cytokines. Glia, 2002, 40: 140-155.
    Kipnis J and Schwartz M. Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4+CD25+ regulatory T-Cells at the crossroads of health and disease. Neuromolecular Med, 2005, 7: 197-206.
    Koenigsknecht J and Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a betal integrin-dependent mechanism. J Neurosci, 2004, 24: 9838-9846.
    Kopec KK and Carroll RT. Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J Neurochem, 1998, 71: 2123-2131.
    Liu B, Wang K, Gao HM et al. Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem, 2001, 77: 182-189.
    Lorton D, Kocsis JM, King L et al. beta-Amyloid induces increased release of interleukin-1 beta from lipopolysaccharide-activated human monocytes. J Neuroimmunol, 1996, 67: 21-29.
    Miliukiene V, Biziuleviciene G, and Pilinkiene A. Quantitative evaluation of macrophage phagocytosing capacity by a fluorometric assay. Acta Biol Hung, 2003, 54: 347-355.
    Nagira M, Imai T, Hieshima K et al. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem, 1997, 272: 19518-19524.
    Nagira M, Imai T, Yoshida R et al. A lymphocyte-specific CC chemokine, secondary lymphoidtissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. Fur J Immunol, 1998,28: 1516-1523.
    Oda T and Maeda H. A new simple fluorometric assay for phagocytosis. J Immunol Methods, 1986, 88: 175-183.
    Pachynski RK, Wu SW, Gunn MD et al. Secondary lymphoid-tissue chemokine (SLC) stimulates integrin alpha 4 beta 7-mediated adhesion of lymphocytes to mucosal address in cell adhesion molecule-1 (MAdCAM-1) under flow. J Immunol, 1998, 161: 952-956.
    Raivich G and Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev, 2004, 46: 261-281.
    Sallusto F, Mackay CR, and Lanzavecchia A. The role of chemokine receptors in primary, efector,and memory immune responses. Annu Rev Immunol, 2000, 18: 593-620.
    Shideman CR, Hu S, Peterson PK et al. CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. J Neurosci Res, 2006, [Epub ahead of print].
    Song X, Tanaka S, Cox D et al. Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol, 2004, 75: 1147-1155.
    Teasdale GM and Graham DI. Craniocerebral trauma: protection and retrieval of the neuronalpopulation atter injury. Neurosurgery, 1998, 43: 723-738.
    Tyner JW, Uchida O, Kajiwara N et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med, 2005, 11: 1180-1187.
    Ukhanov KY, Flores TM, Hsiao HS et al. Measurement of cytosolic Ca~(2+) concentration in Limulus ventral photoreceptors using fluorescent dyes. J Gen Physiol, 1995, 105: 95-116.
    Vicari AP, Ait-Yahia S, Chemin K et al. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol, 2000, 165: 1992-2000.
    Weldon DT, Rogers SD, Ghilardi JR et al. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci, 1998, 18: 2161-2173.
    Yoshida R, Imai T, Hieshima K et al. Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J Biol Chem, 1997 272: 13803-13809.
    Zhang ZG, Chopp M, and Powers C. Temporal profile of microglial response following transient (2h) middle cerebral artery occlusion. Brain Res, 1997, 744: 189-198.
    Zhang ZX, Zhang YZ, Jia SP et al. Effect of cytosolic free Ca~(2+) in the development of electroacupuncture analgesia endurance and morphine endurance. Science in China, 1986, 12: 67-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700