鼻腔给予睾酮/丙酸睾丸酮对大鼠行为的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衰老过程中男性个体雄激素水平多呈现不同程度的降低,其运动及探索行为逐渐减弱、老年后常表现出平衡及运动协调的障碍。研究发现雄激素参与某些神经精神疾病的神经病理生理改变。伴有睾酮缺乏的帕金森病患者在睾酮替代治疗后,其静止性震颤及精细运动调控均得到显著改善,而且帕金森病运动症状的改善程度与血清睾酮水平有关;帕金森病患者皮下埋置睾酮能够缓解与睾酮缺乏相似的帕金森病非运动症状。
     目前针对睾酮缺乏所致相关疾病的睾酮替代治疗主要采用口服、肌肉注射及皮下植入(埋置)缓释囊等方法。但这些给药途径存在一定的缺点,口服睾酮制剂常因首过效应而降低睾酮的生物利用度;肌肉注射存在一定的伤害,会造成病人的一定痛苦,特别是需长期的睾酮替代治疗时;植入或皮下埋植法患者须经历小的手术创伤,且常发生植入缓释囊的膨出或因皮下植入非囊性斑块制剂导致患者的皮肤刺激症状。
     理想的睾酮替代治疗应提供安全、有效、经济、方便、剂量容易掌握且容易达到有效的血液生物利用度;如果期望睾酮作用于脑,改善脑的功能活动,则期望睾酮进入脑的同时,不引起或较少引起周围的副作用。
     作为呼吸系统一部分的鼻腔其被覆粘膜包括呼吸部和嗅部两部分。嗅部的嗅细胞属神经细胞则通过嗅丝与颅内的嗅脑相联系。由于鼻腔的粘膜特性,经鼻途径也成为近年某些药物制剂首选的给药方法。
     因此,本研究以健康雄性、去势(雄激素缺乏)及老年雄性大鼠为实验动物模型,通过分析大鼠行为的变化,探讨鼻腔给予雄激素对大鼠中枢神经系统的影响,并通过免疫细胞化学、免疫印迹以及高效液相色谱法探讨与行为密切相关的中脑多巴胺能神经元及5-HT能神经元所发挥的作用,期望所获结果为以鼻腔给予睾酮(Testosterone, T)或丙酸睾丸酮(Testosterone propionate, TP)治疗中枢神经系统相关疾病提供实验依据。
     第一部分:鼻腔给予T/TP对大鼠相关脑区c-Fos表达的影响
     目的:探讨鼻腔给予T/TP是否能够引起大鼠中枢神经系统c-Fos的表达、激活不同的脑区。
     方法:利用放射免疫分析法检测大鼠鼻腔给予TP后脑脊液和血清睾酮浓度的变化;以免疫细胞化学方法显示大鼠各脑区c-Fos的表达。
     结果:1.放射免疫分析法结果显示:去势组大鼠脑脊液和血清中睾酮含量比正常组分别降低了45%(P<0.01)和69%(P<0.01);去势大鼠皮下注射TP后只增加了血清中睾酮的含量;去势大鼠鼻腔给予TP后脑脊液和血清中睾酮的含量均明显增加,脑脊液中睾酮的含量明显高于去势皮下注射TP组(GDX-sc.TP)(P<0.01),而血清中的含量明显低于GDX-sc.TP组(P<0.05);与Intact组大鼠相比,正常大鼠鼻腔给予TP后也显著增加脑脊液和血清中睾酮的含量。2.免疫细胞化学结果显示:正常大鼠鼻腔给予TP或T增加嗅结节(Olfactory tubercle,Tu)、边缘前皮质(Prelimbic cortex, PrL)、运动皮质(Motor cortex, M1,M2)、扣带回(Cingulate cortex, Cg)、尾壳核背内侧(Dorsomedial caudate putamen, CPu-DM)、尾壳核背外侧(Dorsolateral caudate putamen, CPu-DL)、伏核(Accumbens nucleus, Acb)、下丘脑后区(Posterior hypothalamic area, PH)、黑质外侧部(Substantia nigra, lateral part, SNL)、中缝背核(Dorsal raphe nucleus, DR)的c-Fos免疫反应阳性神经元数目和嗅球(Olfactory bulb, OB)、Tu、PrL、M1、M2、Cg、CPu-DM、CPu-DL、Acb、海马(Hippocampus, HIP)、PH、SNL和DR的c-Fos免疫反应强度,而皮下注射TP只增加了Tu、PrL、CPu-DL和Acb脑区c-Fos免疫反应阳性神经元数目以及OB和Tu脑区的c-Fos免疫反应强度。
     结论:1.雄性大鼠去势后脑脊液和血清中睾酮的浓度明显降低;去势大鼠皮下注射TP仅增加血清中睾酮的浓度;去势大鼠和正常大鼠鼻腔给予TP后均能够增加脑脊液和血清中睾酮的浓度。2.皮下注射TP仅激活了少数脑区c-Fos蛋白的表达;鼻腔给予TP或T后能够激活多数脑区c-Fos蛋白的表达。
     第二部分:鼻腔给予睾酮改变大鼠的旷场行为
     目的:观察大鼠长期鼻腔给予睾酮后的旷场行为变化,推测鼻腔给予睾酮对中枢神经系统的影响。
     方法:通过旷场实验观察大鼠鼻腔给予睾酮后静止闻嗅行为、探索行为、趋触性行为、运动行为和理毛行为的变化。
     结果:1.正常大鼠鼻腔给予睾酮后静止闻嗅次数比intact增加了46%(P<0.01)。雄性大鼠去势后静止闻嗅次数比sham组显著降低44%(P<0.01),去势大鼠鼻腔给予睾酮后明显增加静止闻嗅次数(P<0.01),并且超过sham组水平88%(P<0.01)。2.正常大鼠大鼠鼻腔给予睾酮后walking、climbing、rearing和sniffing行为次数比intact组分别增加了82%(P<0.01)、54%(P<0.05)、85%(P<0.01)和65%(P<0.01)。雄性大鼠去势后四种行为次数比sham组分别降低了70%(P<0.01)、57%(P<0.01)、68%(P<0.01)和62%(P<0.01);去势大鼠鼻腔给予睾酮后能够恢复walking、climbing和sniffing三种行为到sham组水平,而Rearing的次数尽管比GDX组增加了68%(P>0.05),仍比sham组低47%(P<0.05)。3.正常大鼠鼻腔给予睾酮后垂直运动、水平运动和总径长比intact组分别增加了61%(P<0.01)、69%(P<0.05)和75%(P<0.01)。雄性大鼠去势后三种行为数量比sham组分别降低了60%(P<0.01)、60%(P<0.01)和59%(P<0.01);去势大鼠鼻腔给予睾酮后能够恢复三种行为到sham组水平。4.正常组大鼠鼻腔给予睾酮后理毛数量和理毛持续时间比intact组分别增加了72%(P<0.01)和61%(P<0.01)。雄性大鼠去势后理毛数量和理毛持续时间比sham组分别降低了54%(P<0.01)和55%(P<0.01),去势大鼠鼻腔给予睾酮后理毛数量和理毛持续时间恢复到sham组水平。5.去势大鼠皮下注射睾酮后只恢复了walking、水平运动和总径长到假手术皮下注射安慰剂(sham-sc)水平。
     结论:1.去势降低雄性大鼠的旷场行为。2.长期鼻腔给予睾酮增加正常大鼠和去势大鼠的旷场行为。3.鼻腔给予睾酮改善去势大鼠旷场行为的效果明显优于皮下注射。
     第三部分:鼻腔给予睾酮增加大鼠黑质-尾壳核、腹侧被盖区-伏核DA能神经元的功能活动
     目的:探讨长期鼻腔给予睾酮对黑质-尾壳核、腹侧被盖区-伏核DA能神经元的影响。
     方法:通过免疫细胞化学方法和免疫印记方法显示酪氨酸羟化酶(TH)和多巴胺转运体(DAT)的表达;利用HPLC法检测DA及其代谢产物二羟基苯乙酸(DOPAC)和高香草酸(HVA)的含量。
     结果:1.免疫细胞化学方法发现:1)正常大鼠鼻腔给予睾酮后SN的TH表达比intact组增加7%(P<0.05)、CPu的DM、VM、VL和DL四个亚群分别增加了27%(P<0.01)、30%(P<0.01)、17%(P<0.01)和18%(P<0.01)、VTA增加了5%(P<0.05)、Acb的Core和Shell两个亚群分别增加了18%(P<0.01)和15%(P<0.01);雄性大鼠去势后SN的TH表达比sham组降低13%(P<0.05)、CPu的DM、VM、VL和DL四个亚群分别降低18%(P<0.05)、16%(P<0.05)、11%(P<0.05)和14%(P<0.05),VTA降低了26%(P<0.05)、Acb的Core和Shell两个亚群分别降低17%(P<0.01)和16%(P<0.05);去势大鼠鼻腔给予睾酮后恢复上述脑区TH的表达到sham组水平,其中Acb的Core亚群TH的表达超过sham组水平(P<0.01)。2)正常大鼠鼻腔给予睾酮SN的DAT表达比intact组增加7%(P<0.01)、CPu的DM、VM、VL和DL四个亚群分别增加了27%(P<0.01)、23%(P<0.05)、43%(P<0.01)和22%(P<0.05)、VTA增加了10%(P<0.01)、Acb的Core和Shell两个亚群分别增加了21%(P<0.01)和13%(P<0.05);雄性大鼠去势后SN的DAT表达比sham组降低13%(P<0.01)、CPu的DM、VM、VL和DL四个亚群分别降低15%(P<0.05)、16%(P<0.05)、15%(P<0.05)和15%(P<0.01)、VTA降低了15%(P<0.05)、Acb的Core和Shell两个亚群分别降低18%(P<0.01)和17%(P<0.05);去势大鼠鼻腔给予睾酮后恢复上述脑区DAT的表达到sham组水平。3)去势大鼠皮下注射睾酮后只恢复了SN和VTA的DAT表达。2.免疫印记方法发现:1)正常大鼠鼻腔给予睾酮后SN、CPu、VTA和Acb脑区TH的表达比intact组分别增加123%(P<0.01)、8%(P<0.01),27%(P<0.01)和51%(P<0.01);雄性大鼠去势后上述四个脑区TH的表达比sham组分别降低39%(P<0.01)、11%(P<0.01)、35%(P<0.01)和43%(P<0.01);去势大鼠鼻腔给予睾酮后增加了上述脑区TH的表达。2)DAT的表达显示两个条带,一条位于80KDa处为成熟糖基化DAT(Glycosylated-DAT),另一条位于50KDa处为未成熟的非糖基化DAT(Non-Glycosylated-DAT)。正常大鼠鼻腔给予睾酮增加了SN两种DAT的表达比intact组分别增加了14%(P<0.01)和10%(P<0.01)、CPu分别增加了40%(P<0.01)和11%(P<0.01)、Acb分别增加了22%(P<0.01)和10%(P<0.05)、VTA糖基化DAT增加了53%(P<0.01);雄性大鼠去势后SN两种DAT的表达比sham组分别降低了20%(P<0.01)和23%(P<0.01)、VTA分别降低了58%(P<0.01)和23%(P<0.01)、Acb分别降低了51%(P<0.01)和17%(P<0.01)、CPu非糖基化DAT降低了12%(P<0.05);去势大鼠鼻腔给予睾酮后增加了上述脑区降低的两种DAT的表达。3)去势大鼠皮下注射睾酮后只增加了SN的TH(P<0.01)、CPu糖基化DAT(P<0.01)和非糖基化DAT(P<0.01)的表达。3. HPLC检测发现,正常大鼠鼻腔给予睾酮后SN和CPu的DA含量无明显变化(P>0.05),CPu的DOPAC和HVA的含量以及DOPAC+HVA/DA的比值比Intact组分别增加了38%(P<0.01)、60%(P<0.01)和35%(P<0.05);雄性大鼠去势后SN和CPu的DA含量,CPu的DA代谢产物和代谢率无明显变化(P>0.05),去势大鼠鼻腔给予睾酮后CPu的HVA的含量比GDX组增加了23%(P<0.05),DOPAC和HVA的含量分别超过Sham组水平的18%(P<0.01)和51%(P<0.01)。
     结论:1.大鼠去势显著降低了大鼠SN、VTA、CPu和Acb四个脑区TH和DAT的表达。2.长期鼻腔给予睾酮能够增加正常大鼠和去势大鼠SN、VTA、CPu和Acb四个脑区TH和DAT的表达,增加了DA能神经元的代谢。3.睾酮改善去势所致中脑DA能神经元功能活动降低的效果,鼻腔途径优于皮下注射。
     第四部分:鼻腔给予睾酮增加大鼠中脑5-羟色胺能神经元的功能活动
     目的:探讨长期鼻腔给予睾酮对中缝背核(DR)5-HT能神经元的影响。
     方法:以免疫细胞化学方法显示大鼠中缝背核TPH、5-HT和SERT的表达;利用HPLC方法检测DR、CPu和Acb脑区5-HT及其代谢产物五羟吲哚乙酸(5-HIAA)的含量。
     结果:1.免疫细胞化学方法发现:1)正常大鼠鼻腔给予睾酮后中缝背核TPH、5-HT和SERT的表达比intact组分别增加3%(P<0.05)、9%(P<0.05)和15%(P<0.01);雄性大鼠去势后DR上述三种物质的表达比sham组分别降低21%(P<0.01)、22%(P<0.01)和29%(P<0.05);去势大鼠鼻腔给予睾酮后恢复DR的TPH、5-HT和SERT表达至sham组水平,其中SERT的表达超过sham组水平(P<0.05)。2)去势大鼠皮下注射睾酮后增加了TPH、5-HT和SERT的表达,但仍低于sham-sc组水平。2. HPLC法发现:正常大鼠鼻腔给予睾酮后DR的5-HT含量比intact组增加32%(P<0.01),CPu的5-HIAA和5-HIAA/5-HT比值分别增加了27%(P<0.05)和26%(P<0.05),Acb的5-HIAA和5-HIAA/5-HT比值分别增加了29%(P<0.05)和28%(P<0.05);雄性大鼠去势后DR、CPu和Acb的5-HT含量比Sham组分别降低了26%(P<0.05)、26%(P<0.05)和12%(P<0.05),CPu和Acb的5-HIAA含量分别降低了13%(P<0.05)和23%(P<0.05);去势大鼠鼻腔给予睾酮后能够恢复上述脑区各指标到sham组水平。
     结论:1.去势降低雄性大鼠中缝背核TPH、5-HT和SERT的表达。2.长期鼻腔给予睾酮增加大鼠中缝背核TPH、5-HT和SERT的表达,其效果优于皮下注射。3.去势降低雄性大鼠DR、CPu和Acb的5-HT及其代谢产物的含量,长期鼻腔给予睾酮逆转上述改变。
     第五部分:鼻腔给予丙酸睾丸酮对老年大鼠行为及其脑内DA和5-HT能神经元的影响
     目的:观察长期鼻腔给予TP后老年大鼠旷场行为、平衡反应能力、肌张力和运动协调能力的变化,以及对脑内DA和5-HT能神经元的影响,期望所获结果为鼻腔给予睾酮(或TP)治疗中枢神经系统相关疾病提供实验依据。
     方法:利用旷场实验、倾斜面实验、水平绳实验和粘附物去除实验观察大鼠的行为;以免疫细胞化学和免疫印迹显示TH、DAT、TPH、5-HT、SERT的表达。
     结果:1.旷场实验发现,老年24月龄大鼠的静止闻嗅次数、Walking、Climbing、Rearing、Sniffing、垂直运动、水平运动、总径长、理毛数量和理毛持续时间比6Mon组分别降低了39%(P<0.01)、55%(P<0.01)、39%(P<0.01)、74%(P<0.01)、53%(P<0.01)、53%(P<0.05)、58%(P<0.01)、58%(P<0.01)、56%(P<0.01)和57%(P<0.01),理毛潜伏期比6Mon组延长了506%(P<0.01);老年大鼠长期鼻腔给予TP后能够增加或恢复上述降低的行为,缩短理毛潜伏期时间。2.倾斜面实验发现,老年24月龄大鼠的倾斜面下滑角度比6月龄组降低了27%(P<0.05),50°夹角滑下次数增加了660%(P<0.01);老年大鼠鼻腔给予TP后,增加了倾斜面下滑的角度,减少了50°角滑下次数。3.水平绳实验发现,老年24月龄大鼠的悬挂时间比6月龄大鼠缩短69%(P<0.01);老年大鼠鼻腔给予TP后延长了悬挂时间。4.粘附物去除实验发现,老年24月龄大鼠的左鼻和右鼻粘附物去除时间比6月龄大鼠分别延长了435%(P<0.05)和656%(P<0.05);老年大鼠鼻腔给予TP后左鼻和右鼻粘附物去除时间恢复到6月龄大鼠水平。5.免疫细胞化学方法发现:1)老年24月龄大鼠SN的TH表达比6月龄组降低了22%(P<0.05)、CPu的DM、VM、VL和DL四个亚群分别降低21%(P<0.05)、25%(P<0.05)、20%(P<0.05)和24%(P<0.01)、VTA降低了12%(P<0.05)、Acb的Core和Shell两个亚群分别降低20%(P<0.05)和15%(P<0.01),老年大鼠鼻腔给予TP后增加了上述脑区TH的表达。2)老年24月龄大鼠SN的DAT表达比6月龄组降低了10%(P<0.05)、CPu的DM、VM、VL和DL四个亚群分别降低17%(P<0.05)、16%(P<0.05)、15%(P<0.05)和17%(P<0.05)、VTA降低了9%(P<0.05)、Acb的Core和Shell两个亚群分别降低19%(P<0.05)和17%(P<0.01);老年大鼠鼻腔给予TP后增加了SN、CPu的DM、VL和DL三个亚群,VTA和Acb的Shell亚群DAT的表达。3)老年24月龄大鼠DR的TPH、5-HT和SERT表达比6月龄组分别降低10%(P<0.05)、14%(P<0.01)和12%(P<0.01);老年大鼠鼻腔给予TP后增加TPH、5-HT和SERT的表达。6.免疫印记方法发现:1)老年24月龄大鼠SN、CPu、VTA和Acb四个脑区TH的表达比6月龄大鼠分别降低25%(P<0.01)、18%(P<0.01)、41%(P<0.01)和24%(P<0.01);老年大鼠鼻腔给予TP后增加了上述脑区TH的表达。2)老年24月龄大鼠SN的糖基化DAT和非糖基化DAT的表达比6月龄大鼠分别降低10%(P<0.05)和40%(P<0.01)、CPu分别降低了36%(P<0.01)和16%
     (P<0.05)、VTA分别降低了70%(P<0.01)和10%(P<0.05)、Acb分别降低了12%(P<0.05)和14%(P<0.01);老年大鼠鼻腔给予TP后SN、CPu和VTA非糖基化的DAT恢复到6Mon组水平。
     结论:1. 24月龄大鼠的旷场行为、平衡反应能力、肌张力和运动协调能力比6月龄明显降低;老年大鼠长期鼻腔给予TP后能够改善上述行为障碍。2. 24月龄大鼠黑质-尾壳核和腹侧被盖区-伏核DA能神经元TH和DAT的表达、以及中缝背核TPH、5-HT和SERT的表达明显降低;老年大鼠长期鼻腔给予TP后能够改善上述脑区各物质的表达。
In the senile process, testosterone (T) level decreased gradually and the motor behavior and exploratory behavior were impaired in aged male organisms. Aged men or aged male rats often displayed the disturbances of the body balance and motor coordination. Testosterone is involved in the neuropathophysiology of some neuropsychiatric disorders. The resting tremor and fine motor control were significantly improved after testosterone administration in a parkinsonian with testosterone deficiency. The improvement in motor symptoms correlated with serum testosterone levels. Nonmotor symptoms of Parkinson disease, which are virtually identical to the testosterone deficiency symptoms, were ameliorated by transdermal testosterone gel of a daily dose.
     Currently, testosterone replacement therapies include oral therapy, intramuscular injections and subcutaneous testosterone implants. The administration routes above have been shown some disadvantages. Orally administered testosterone has lower bioavailability because of first-pass metabolism. Intramuscular injections are painful and inappropriate to be used, especially in long-term testosterone replacement. The insertion of T implants requires minor surgery and can be painful, and extrusion of the pellets is common. Transdermal testosterone non-scrotal patches often result in skin irritation in patients.
     The ideal testosterone replacement therapy should offer safety, efficacy, cost-effectiveness, convenience, a good release profile, dosing flexibility, and effective normalization of T levels. Targeting testosterone to the central nervous system should allow the administration of lower doses of testosterone and fewer peripheral side effects.
     Nasal cavity was a part of respiratory system. The lining mucosa of nasal cavity includes respiratory region and olfactory region. The olfactory cells of olfactory region belong to nerve cells, which contact with rhinencephalon through fila olfactoria. Based on the mucous membrane characteristics, intranasal administration of drugs has become preferred method in recent year.
     Therefore, the intact male rats, gonadectomized (GDX) rats and aged male rats were used as experimental animal models in present study. The influence of intranasal administration of T upon the central nervous system was studied by analyzing the open field behavior of rats after long-term intranasal administration of T and the effects of intranasal delivery of T on mensencephalic dopaminergic and serotoninergic neurons were analyzed by immunocytochemistry, immunoblotting and HPLC. It is hoped that intranasal administration of T/TP could be used in adjutant therapy for some CNS diseases.
     Prat 1: Effects of intranasal administration of T/TP on c-Fos in rat brain
     Objective: To study whether the intranasal administration of T/TP could induce the expression of c-Fos in rat brain and activate different brain regions.
     Methods: Radioimmunoassay (RIA) was used to detect testosterone concentration in cerebrospinal fluid and in serum after intranasal administration of TP. Immunocytochemistry was used to detect the expression of c-Fos protein in different brain regions.
     Results: 1. RIA: Testosterone in cerebrospinal fluid and in serum was decreased by 45% (P<0.01) and 69% (P<0.01) respectively in GDX rats compared to intact rats. Subcutaneous injection of TP in GDX rats (GDX-sc.TP) only increased testosterone in serum. Testosterone in cerebrospinal fluid and in serum was increased after intranasal administration of TP in GDX rats (GDX-TP). Testosterone in cerebrospinal fluid of GDX-TP rats was higher than that in GDX-sc.TP rats (P<0.01), however testosterone in serum of GDX-TP rats was lower than that in GDX-sc.TP rats (P<0.05). Intranasal administration of TP in intact rats also increased testosterone in cerebrospinal fluid and in serum compared to intact rats. 2. Immunocytochemistry: After intranasal administration of TP or testosterone, the number of c-Fos-positive neurons was increased in Tu, PrL, M1,M2, Cg, CPu-DM, CPu-DL, Acb, PH, SNL and DR brain regions and the c-Fos immunoreactive intensity was enhanced in OB, Tu, PrL, M1,M2, Cg, CPu-DM, CPu-DL, Acb, HIP, PH, SNL and DR brain regions. However, after subcutaneous injection of TP, the number of c-Fos-positive neurons was increased only in Tu, PrL, CPu-DL and Acb brain regions and the c-Fos immunoreactive intensity was enhanced only in OB and Tu.
     Conclusions: 1. Testosterone in cerebrospinal fluid and in serum was significantly decreased after GDX. Subcutaneous injection of TP in GDX rats only increased the testosterone in serum. Testosterone in cerebrospinal fluid and in serum was increased after intranasal administration of TP in intact rats and GDX rats. 2. The expression of c-Fos was incresead only in a few brain regions after subcutaneous injection of TP, however, more brain regions were activated after intranasal administration of TP or testosterone.
     Prat 2: Behavior in open field test was affected after intranasal administration of testosterone to rats
     Objective: To study the effects of long-term intranasal administration of testosterone on the central nervous system by analyzing the open field behavior of rats.
     Methods: The open field test was used to analyze five types of behavioral patterns in present study: immobile-sniffing, exploratory behavior, thigmotaxic behavior, motor behavior and grooming behavior.
     Results: 1. Immobile-sniffing: The intranasal administration of testosterone in intact rats significantly increased the number of immobile-sniffing events by 46% (P<0.01). Gonadectomy decreased the immobile-sniffing events, with a 44% (P<0.01) reduction and the intranasal administration of testosterone in GDX rats significantly increased the number of immobile-sniffing events (P<0.01), which was even more than in sham rats by 88% (P<0.01). 2. Exploratory behavior: The intranasal administration of testosterone significantly increased the amount of walking, climbing, rearing and sniffing in intact rats by 82% (P<0.01), 54% (P<0.05), 85% (P<0.01) and 65% (P<0.01) respectively. Gonadectomy decreased the amount of above four behaviors by 70% (P<0.01), 57% (P<0.01), 68% (P<0.01) and 62% (P<0.01) respectively and that the amount of above behaviors in GDX rats was restored to the level of sham rats after intranasal administration of testosterone, except for the rearing. The amount of rearing in GDX-T rats was still lower than in the sham rats by 47% (P<0.05), even though the amount was increased 68% (P>0.05) compared to GDX rats. 3. Motor behavior: The intranasal administration of T significantly increased the amount of vertical activity and horizontal activity as well as the total path length in intact rats by 61% (P<0.01), 69% (P<0.05) and 75% (P<0.01) respectively. The amount of vertical activity and horizontal activity in GDX rats was significantly lower than in the sham rats by 60% (P<0.01) and 60% (P<0.01) respectively, the total path length in GDX rats was significantly less than in the sham rats by 59% (P<0.01) and the amount of vertical activity and horizontal activity as well as the total path length in GDX rats were restored to the level of sham rats after intranasal administration of testosterone. 4. Grooming behavior: The intranasal administration of T significantly increased the number of grooming events and the duration of grooming in intact rats by 72% (P<0.01) and 61% (P<0.01) respectively. The number of grooming events in GDX rats was significantly less than in the sham rats by 54% (P<0.01), the duration of grooming in GDX rats was significantly shorter than in the sham rats by 55% (P<0.01) and the number of grooming events as well as the duration of grooming in GDX rats was restored to the level of sham rats after intranasal administration of testosterone. 5. Subcutaneous injection results: The amount of walking and horizontal activity, the total path length was only restored to the level of sham-sc rats after subcutaneous injection of testosterone.
    
     Conclusions: 1. Significant decreases in open field activity were observed in GDX rats. 2. The open field activity scores was significantly increased in GDX rats and in intact rats compared with the corresponding GDX rats and intact rats after intranasal administration of testosterone. 3. Intranasal route improved the impaired behaviors better than subcutaneous injection.
     Prat 3: Intranasal administration of testosterone increased the dopaminergic activity in SN-CPu and VTA-Acb neurons of rats
     Objective: To sduty the effects of long-term intranasal administration of testosterone on dopaminergic neurons in SN-CPu and VTA-Acb of rats.
     Methods: Immunohistochemistry and immunoblotting were used to detect the expression of TH and DAT. HPLC was used to detect DA and its metabolites DOPAC and HVA.
     Results: 1. Immunocytochemistry: 1) The intranasal administration of testosterone significantly increased the expression of TH in intact rats by 7% (P<0.05) in SN, increased by 27% (P<0.01), 30% (P<0.01), 17% (P<0.01) and 18% (P<0.01) in dorsomedial CPu (CPu-DM), ventromedial CPu (CPu-VM), ventrolateral CPu (CPu-VL) and dorsolateral CPu (CPu-DL) respectively, increased by 5% (P<0.05) in VTA, increased by 18% (P<0.01) and 15% (P<0.01) in core and shell of Acb respectively. Gonadectomy decreased the expression of TH above eight brain regions by 13% (P<0.05), 18% (P<0.05), 16% (P<0.05), 11% (P<0.05), 14% (P<0.05), 26% (P<0.05), 17% (P<0.01) and 16% (P<0.05) and that the expression of TH above eight brain regions in GDX rats was restored to the level of sham rats after intranasal administration of testosterone, even though the expression of TH was higher than sham rats (P<0.01). 2) The intranasal administration of testosterone significantly increased the expression of DAT in intact rats by 7% (P<0.01) in SN, increased by 27% (P<0.01), 23% P<0.05), 43% (P<0.01) and 22% (P<0.01) in CPu-DM, CPu-VM, CPu-VL and CPu-DL respectively, increased by 10% (P<0.01) in VTA, increased by 21% (P<0.01) and 13% (P<0.05) in core and shell of Acb respectively. Gonadectomy decreased the expression of DAT above eight brain regions by 13% (P<0.01), 15% (P<0.05), 16% (P<0.05), 15% (P<0.05), 15% (P<0.01), 15% (P<0.05), 18% (P<0.01) and 17% (P<0.05) and that the expression of DAT above eight brain regions in GDX rats was restored to the level of sham rats after intranasal administration of testosterone. 3) The expression of DAT in SN and VTA was only restored to the level of sham-sc rats after subcutaneous injection of testosterone. The expression of TH in CPu-DL and VTA and the expression of DAT in CPu-DM, CPu-DL and shell of Acb were improved after subcutaneous injection of testosterone. 2. Immunoblotting: 1) The intranasal administration of testosterone significantly increased the expression of TH in intact rats by 123% (P<0.01), 8% (P<0.01), 27% (P<0.01) and 51% (P<0.01) in SN, CPu, VTA and Acb respectively. Gonadectomy decreased the expression of TH above four brain regions by 39% (P<0.01), 11% (P<0.01), 35% (P<0.01) and 43% (P<0.01) and that the expression of TH above four brain regions in GDX rats was improved after intranasal administration of testosterone. 2) DAT bands included Glycosylated-DAT (80KDa) and Non-Glycosylated-DAT (50KDa). The intranasal administration of testosterone significantly increased the expression of two kinds of DAT in intact rats by 14% (P<0.01) and 10% (P<0.01) in SN respectively, increased by 40% (P<0.01) and 11% (P<0.01) in CPu respectively, increased by 22% (P<0.01) and 10% (P<0.05) in Acb respectively, the expression of Glycosylated-DAT increased by 53% in VTA (P<0.01). Gonadectomy decreased the expression of two kinds of DAT by 20% (P<0.01) and 23% (P<0.01) in SN respectively, decreased by 58% (P<0.01) and 23% (P<0.01) in VTA respectively, decreased by 51% (P<0.01) and 17% (P<0.01) in Acb respectively, the expression of Non-Glycosylated-DAT decreased by 12% (P<0.05) in CPu. The expression of DAT above four brain regions in GDX rats was improved after intranasal administration of testosterone. 3) The expression of TH in SN and the
     expression of two kinds of DAT in CPu were only improved after subcutaneous injection of testosterone. 3. HPLC: There are no significant differences on DA concentration in SN and CPu after intranasal administration of testosterone (P>0.05). The intranasal administration of testosterone significantly increased the concentration of DOPAC and HVA by 38% (P<0.01) and 60% (P<0.01) in CPu respectively, increased the ratio of DOPAC+HVA/DA by 35% (P<0.05) in CPu. There are no significant differences on DA concentration in SN and CPu, and the metabolites and metabolic rate in CPu after gonadectomy (P>0.05). The intranasal administration of testosterone in GDX rat increased the concentration of HVA by 23% (P<0.05) in CPu, the concentration of DOPAC and HVA increased by 18% (P<0.01) and 51% (P<0.01) compared to sham group respectively.
     Conclusions: 1. The expression of TH and DAT was significantly decreased in SN, CPu, VTA and Acb in GDX rats. 2. Long-term intranasal administration of testosterone significantly increased both the expression of TH and DAT in SN, CPu, VTA and Acb and the metabolites of dopaminergic neurons in GDX rats and Intact rats. 3. Intranasal route improved the reduced dopaminergic neurons activity in SN-CPu and VTA-Acb better than subcutaneous injection.
     Prat 4: Intranasal administration of testosterone increased the serotoninergic activity in dorsal raphe nucleus of rat.
     Objective: To study the effects of long-term intranasal administration of testosterone on the serotoninergic neurons in DR of rats.
     Methods: Immunohistochemistry was used to detect the expression of TPH, 5-HT and SERT in DR. HPLC was used to detect 5-HT and its metabolites 5-HIAA in DR, CPu and Acb.
     Results: 1. Immunocytochemistry: 1) The intranasal administration of testosterone significantly increased the expression of TPH, 5-HT and SERT in intact rats by 3% (P<0.05), 9% (P<0.05) and 15% (P<0.01) in DR respectively. Gonadectomy decreased the expression of TPH, 5-HT and SERT by 21% (P<0.05), 22% (P<0.01) and 29% (P<0.05) compared to sham rats and that the expression of TPH, 5-HT and SERT in GDX rats was restored to the level of sham rats after intranasal administration of testosterone, and the expression of SERT was even more than in sham rats (P<0.05). 2) The expression of TPH, 5-HT and SERT were improved, however, which were lower compared to sham-sc rats after subcutaneous injection of testosterone. 2. HPLC: The intranasal administration of testosterone significantly increased the concentration of 5-HT by 32% (P<0.01) in DR, increased the concentration of 5-HIAA and the ratio of 5-HIAA/5-HT by 27% (P<0.05) and 26% (P<0.05) in CPu respectively, increased the concentration of 5-HIAA and the ratio of 5-HIAA/5-HT by 29% (P<0.05) and 28% (P<0.05) in Acb respectively. Gonadectomy decreased the concentration of 5-HT by 26% (P<0.05), 26% (P<0.05) and 12% (P<0.05) in DR, CPu and Acb respectively, decreased the concentration of 5-HIAA by 13% (P<0.05) and 23% (P<0.05) in CPu and Acb respectively compared to sham rats and that were restored to the level of sham rats after intranasal administration of testosterone.
     Conclusions: 1. The expression of TPH, 5-HT and SERT was significantly decreased in DR of GDX rats. 2. Long-term intranasal administration of testosterone significantly increased the expression of TPH, 5-HT and SERT in DR of GDX rats and intact rats. Intranasal route improved the decreased serotoninergic neurons activity better than subcutaneous injection. 3. The concentration of 5-HT and 5-HIAA was significantly reduced in DR, CPu and Acb in GDX rats, and long-term intranasal administration of testosterone could restore them to sham level.
     Prat 5: Influence of intranasal administration of TP upon the behaviors, dopaminergic and serotoninergic neurons in aged rats
     Objective: To study the influence of long-term intranasal administration of TP on behaviors and dopaminergic and serotoninergic neurons in aged rats.
     Methods: Open field test, tilting-plane test, horizontal-wire test and adhesive removal test were used to detect behaviors. Immunohistochemistry and immunoblotting were used to detect the expression of TH, DAT, TPH, 5-HT and SERT.
     Results: 1. Open field test: The amount of immobile-sniffing events, walking,climbing,rearing,sniffing, vertical activity, horizontal activity, total path length, number of grooming events and the duration of grooming were decreased in 24Mon rats by 39% (P<0.01), 55% (P<0.01), 39% (P<0.01), 74% (P<0.01), 53% (P<0.01), 53% (P<0.05), 58% (P<0.01), 58% (P<0.01), 56%(P<0.01) and 57% (P<0.01) respectively, and the latency of grooming were increased by 506% (P<0.01) compared to 6Mon rats. All behaviors above were significantly improved after intranasal administration of TP compared to 24Mon rats. 2. Tilting-plane test: The angle of sliding off decreased by 27% (P<0.05) and the number of sliding off at 50°angle increased by 660% (P<0.01) in 24Mon rats compared to 6Mon rats. Intranasal administration of TP increased the angle of sliding off and decreased the number of sliding off at 50°angle. 3. Horizontal-wire test: The duration time of hanging was shorter by 69% (P<0.01) in 24Mon rats compared to 6Mon rats and intranasal administration of TP improved the duration time of hanging compared to 24Mon rats. 4. Adhesive removal test: The latency to remove adhesive paper on left nose and right nose increased by 435% (P<0.05) and 656% (P<0.05) in 24Mon rats compared to 6Mon rats respectively and the latency to remove adhesive paper were restored to the level of 6Mon rats after intranasal administration of TP. 5. Immunocytochemistry: 1) The expression of TH was decreased by 22% (P<0.05) in SN, 21% (P<0.05), 25% (P<0.05), 20% (P<0.05) and 24% (P<0.01) in CPu-DM, CPu-VM, CPu-VL and CPu-DL respectively, 12% (P<0.05) in VTA, 20% (P<0.05) and 15% (P<0.01) in core and shell of Acb respectively in 24Mon rats compared to 6Mon rats. Intranasal administration of TP improved the expression of TH in brain regions above. 2) The expression of DAT was decreased by 10% (P<0.05) in SN, 17% (P<0.05), 16% (P<0.05), 15% (P<0.05) and 17% (P<0.05) in CPu-DM, CPu-VM, CPu-VL and CPu-DL respectively, 9% (P<0.05) in VTA, 19% (P<0.05) and 17% (P<0.01) in core and shell of Acb respectively in 24Mon rats compared to 6Mon rats. Intranasal administration of TP improved the expression of DAT in brain regions above except for CPu-VM. 3) The expression of TPH, 5-HT and SERT was decreased by 10% (P<0.05), 14% (P<0.01) and 12% (P<0.01) in 24Mon rats compared to 6Mon rats respectively. Intranasal administration of TP improved the expression of TPH, 5-HT and SERT. 6. Immunoblotting: 1) The expression of TH was decreased by 25% (P<0.01), 18% (P<0.01) 41% (P<0.01) and 24% (P<0.01) in SN, CPu, VTA and Acb in 24Mon rats compared to 6Mon rats respectively and intranasal administration of TP improved the expression of TH four brain regions above. 2) The expression of two kinds of DAT were decreased by 10% (P<0.05) and 40% (P<0.01) in SN respectively, 36% (P<0.01) and 16% (P<0.05) in CPu respectively, 70% (P<0.01) and 10% (P<0.05) in VTA respectively, 12% (P<0.05) and 14% (P<0.01) in Acb respectively. The expression of Non-Glycosylated-DAT in SN, CPu and VTA were restored after long-term intranasal administration of TP.
     Conclusions: 1. Open field behavior, balancing reactions, muscular strength performance and motor coordination ability were significantly reduced in 24Mon rats compared to 6Mon rats, which were improved after long-term intranasal administration of TP. 2. The expression of TH, DAT, TPH, 5-HT and SERT were significantly reduced in 24Mon rats compared to 6Mon rats, which were improved after long-term intranasal administration of TP.
引文
1 Mottram DR, George AJ. Anabolic steroids [J]. Baillieres Best Pract Res Clin Endocrinol Metab, 2000, 14(1): 55-69
    2 Moffat SD, Zonderman AB, Metter EJ, et al. Free testosterone and risk for Alzheimer disease in older men [J]. Neurology, 2004, 62(2): 188-193
    3 Rosario ER, Pike CJ. Androgen regulation of beta-amyloid protein and the risk of Alzheimer's disease [J]. Brain Res Rev, 2008, 57(2): 444-453
    4 Cornford EM, Braun LD, Oldendorf WH, et al. Comparison of lipid-mediated blood-brain-barrier penetrability in neonates and adults [J]. Am J Physiol, 1982, 243(3): C161-168
    5 Harkema JR. Comparative aspects of nasal airway anatomy: relevance to inhalation toxicology [J]. Toxicol Pathol, 1991, 19(4 Pt 1): 321-336
    6 Rojo AI, Montero C, Salazar M, et al. Persistent penetration of MPTP through the nasal route induces Parkinson's disease in mice [J]. Eur J Neurosci, 2006, 24(7): 1874-1884
    7 Dufes C, Olivier JC, Gaillard F, et al. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats [J]. Int J Pharm, 2003, 255(1-2): 87-97
    8 Jogani VV, Shah PJ, Mishra P, et al. Nose-to-brain delivery of tacrine [J]. J Pharm Pharmacol, 2007, 59(9): 1199-1205
    9 Yamada K, Hasegawa M, Kametani S, et al. Nose-to-brain delivery of TS-002, prostaglandin D2 analogue [J]. J Drug Target, 2007, 15(1): 59-66
    10 Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun [J]. Annu Rev Neurosci, 1991, 14: 421-451
    11 Labiner DM, Butler LS, Cao Z, et al. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing [J]. J Neurosci, 1993, 13(2): 744-751
    12 Herrera DG, Robertson HA. Activation of c-fos in the brain [J]. Prog Neurobiol. 1996, 50(2-3): 83-107
    13 Harlan RE, Brown HE, Lynch CS, et al. Androgenic-anabolic steroids blunt morphine-induced c-fos expression in the rat striatum: possible role of beta-endorphin [J]. Brain Res, 2000, 853(1): 99-104
    14 Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery [J]. J Pharm Sci, 2005, 94(6): 1187-1195
    15 Illum L. Is nose-to-brain transport of drugs in man a reality [J]? J Pharm Pharmacol, 2004, 56(1): 3-17
    16 Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration [J]. Neuroscience, 2004, 127(2): 481-496
    17 Takemoto O, Tomimoto H, Yanagihara T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils [J]. Stroke, 1995, 26(9): 1639-1648
    18 Nieschlag E, Behre HM, Bouchard P, et al. Testosterone replacement therapy: current trends and future directions [J]. Hum Reprod Update, 2004, 10(5): 409-419
    19 Handelsman DJ, Mackey MA, Howe C, et al. An analysis of testosterone implants for androgen replacement therapy [J]. Clin Endocrinol (Oxf), 1997, 47(3): 311-316
    20 Jordan WP Jr. Allergy and topical irritation associated with transdermal testosterone administration: a comparison of scrotal and nonscrotal transdermal systems [J]. Am J Contact Dermat, 1997, 8(2): 108-113
    21 Parker S, Armitage M. Experience with transdermal testosterone replacement therapy for hypogonadal men [J]. Clin Endocrinol (Oxf), 1999, 50(1): 57-62
    22 Morley JE, Patrick P, Perry HM 3rd. Evaluation of assays available to measure free testosterone [J]. Metabolism, 2002, 51(5): 554-559
    1 Frye CA, Seliga AM. Testosterone increases analgesia, anxiolysis, and cognitive performance of male rats [J]. Cogn Affect Behav Neurosci, 2001, 1(4): 371-381
    2 Lambadjieva ND. Influence of testosterone on some behavioral reactions of male immature rats exposed to continual light [J]. Methods Find Exp Clin Pharmacol, 1999, 21(1): 17-20
    3 Perry PJ, Kutscher EC, Lund BC, et al. Measures of aggression and mood changes in male weightlifters with and without androgenic anabolic steroid use [J]. J Forensic Sci, 2003, 48(3): 646-651
    4康云霄,李双成,高建伟,等.丙酸睾丸酮早期处理对大鼠行为及脑内多巴胺转运体的影响[J].解剖学杂志, 2008, 31(5): 655-657
    5 Lumia AR, Thorner KM, McGinnis MY. Effects of chronically high doses of the anabolic androgenic steroid, testosterone, on intermale aggression and sexual behavior in male rats [J]. Physiol Behav, 1994, 55(2): 331-335
    6 Clark AS, Barber DM. Anabolic-androgenic steroids and aggression in castrated male rats [J]. Physiol Behav, 1994, 56(5): 1107-1113
    7 McGinnis MY. Anabolic androgenic steroids and aggression: studies usinganimal models [J]. Ann N Y Acad Sci, 2004, 1036: 399-415
    8 Adler A, Vescovo P, Robinson JK, et al. Gonadectomy in adult life increases tyrosine hydroxylase immunoreactivity in the prefrontal cortex and decreases open field activity in male rats [J]. Neuroscience, 1999, 89(3): 939-954
    9 Edinger KL, Frye CA. Testosterone's anti-anxiety and analgesic effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus [J]. Psychoneuroendocrinology, 2005, 30(5): 418-430
    10 Rojo AI, Montero C, Salazar M, et al. Persistent penetration of MPTP through the nasal route induces Parkinson's disease in mice [J]. Eur J Neurosci, 2006, 24(7): 1874-1884
    11 Casarrubea M, Sorbera F, Crescimanno G. Multivariate analysis of the modifications induced by an environmental acoustic cue on rat exploratory behavior [J]. Physiol Behav, 2008, 93(4-5): 687-996
    12 Casarrubea M, Sorbera F, Crescimanno G. Structure of rat behavior in hole-board: I) multivariate analysis of response to anxiety [J]. Physiol Behav, 2009, 96(1): 174-179
    13 Casarrubea M, Sorbera F, Crescimanno G. Structure of rat behavior in hole-board: II) multivariate analysis of modifications induced by diazepam [J]. Physiol Behav, 2009, 96(4-5): 683-692
    14 Meyerson BJ, H?glund AU. Exploratory and socio-sexual behaviour in the male laboratory rat: a methodological approach for the investigation of drug action [J]. Acta Pharmacol Toxicol (Copenh), 1981, 48(2): 168-180
    15 Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review [J]. Eur J Pharmacol, 2003, 463(1-3): 3-33
    16 Ericson E, Samuelsson J, Ahlenius S. Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations [J]. J Pharmacol Methods, 1991, 25(2): 111-122
    17 Hillegaart V, Wadenberg ML, Ahlenius S. Effects of 8-OH-DPAT on motor activity in the rat [J]. Pharmacol Biochem Behav, 1989, 32(3): 797-800
    18 Wultz B, Sagvolden T, Moser EI, et al. The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior [J]. Behav Neural Biol, 1990, 53(1): 88-102
    19 Li JS, Huang YC. Early androgen treatment influences the pattern and amount of locomotion activity differently and sexually differentially in an animal model of ADHD [J]. Behav Brain Res, 2006, 175(1): 176-182
    20 Kalueff AV, Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research [J]. Brain Res Brain Res Protoc, 2004, 13(3): 151-158
    21 Kalueff AV, Tuohimaa P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research [J]. J Neurosci Methods, 2005, 143(2): 169-177
    22 Kalueff AV, Aldridge JW, LaPorte JL, et al. Analyzing grooming microstructure in neurobehavioral experiments [J]. Nat Protoc, 2007, 2(10): 2538-2544
    23 Hussain AA, Kimura R, Huang CH. Nasal absorption of testosterone in rats [J]. J Pharm Sci, 1984, 73(9): 1300-1301
    24 Banks WA, Morley JE, Niehoff ML, et al. Delivery of testosterone to the brain by intranasal administration: comparison to intravenous testosterone [J]. J Drug Target, 2009, 17(2): 91-97
    25 de Souza Silva MA, Mattern C, Topic B, et al. Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone [J]. Eur Neuropsychopharmacol, 2009, 19(1): 53-63
    26 Simerly RB, Chang C, Muramatsu M, et al. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study [J]. J Comp Neurol, 1990, 294(1): 76-95
    27 Sarkey S, Azcoitia I, Garcia-Segura LM, et al. Classical androgen receptors in non-classical sites in the brain [J]. Horm Behav, 2008, 53(5):753-764
    28 DonCarlos LL, Monroy E, Morrell JI. Distribution of estrogen receptor-immunoreactive cells in the forebrain of the female guinea pig [J]. J Comp Neurol, 1991, 305(4): 591-612
    29 Kritzer MF. Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat [J]. J Comp Neurol, 1997, 379(2): 247-260
    30 Creutz LM, Kritzer MF. Mesostriatal and mesolimbic projections of midbrain neurons immunoreactive for estrogen receptor beta or androgen receptors in rats [J]. J Comp Neurol, 2004, 476(4): 348-362
    31 Raynaud JP. Testosterone deficiency syndrome: treatment and cancer risk [J]. J Steroid Biochem Mol Biol, 2009, 114(1-2): 96-105
    32 Mitchell E, Thomas D, Burnet R. Testosterone improves motor function in Parkinson's disease [J]. J Clin Neurosci, 2006, 13(1): 133-136
    33 Downer JB, Jones LA, Engelbach JA, et al. Comparison of animal models for the evaluation of radiolabeled androgens [J]. Nucl Med Biol, 2001, 28(6): 613-626
    34 Hobbs CJ, Jones RE, Plymate SR. The effects of sex hormone binding globulin (SHBG) on testosterone transport into the cerebrospinal fluid [J]. J Steroid Biochem Mol Biol, 1992, 42(6): 629-635
    35 Pardridge WM, Mietus LJ, Frumar AM, et al. Effects of human serum on transport of testosterone and estradiol into rat brain [J]. Am J Physiol, 1980, 239(1): E103-108
    1 de Souza Silva MA, Mattern C, Topic B, et al. Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone [J]. Eur Neuropsychopharmacol, 2009, 19(1): 53-63
    2 Zhang G, Shi G, Tan H, et al. Intranasal administration of testosterone increased immobile-sniffing, exploratory behavior, motor behavior and grooming behavior in rats [J]. Horm Behav, 2011, 59(4): 477-483
    3 Jeong H, Kim MS, Kwon J, et al. Regulation of the transcriptional activity of the tyrosine hydroxylase gene by androgen receptor [J]. Neurosci Lett, 2006, 396(1): 57-61
    4 Kindlundh AM, Rahman S, Lindblom J, et al. Increased dopamine transporter density in the male rat brain following chronic nandrolone decanoate administration [J]. Neurosci Lett, 2004, 356(2): 131-134
    5 Ricci LA, Schwartzer JJ, Melloni RH Jr. Alterations in the anterior hypothalamic dopamine system in aggressive adolescent AAS-treated hamsters [J]. Horm Behav, 2009, 55(2): 348-355
    6 Northcutt KV, Wang Z, Lonstein JS. Sex and species differences in tyrosine hydroxylase-synthesizing cells of the rodent olfactory extended amygdala [J]. J Comp Neurol, 2007, 500(1): 103-115
    7 Mitchell JB, Stewart J. Effects of castration, steroid replacement, and sexual experience on mesolimbic dopamine and sexual behaviors in the male rat [J]. Brain Res, 1989, 491(1): 116-127
    8 Pisa M. Regional specialization of motor functions in the rat striatum: implications for the treatment of parkinsonism [J]. Prog Neuropsychopharmacol Biol Psychiatry, 1988, 12(2-3): 217-224
    9 Zahm DS. Functional-anatomical implications of the nucleus accumbens core and shell subterritories [J]. Ann N Y Acad Sci, 1999, 877: 113-128
    10 Aldridge JW, Berridge KC, Rosen AR. Basal ganglia neural mechanisms of natural movement sequences [J]. Can J Physiol Pharmacol, 2004, 82(8-9): 732-739
    11 KerdelhuéB, Bojda F, Lesieur P, et al. Median eminence dopamine and serotonin neuronal activity. Temporal relationship to preovulatory prolactin and luteinizing hormone surges [J]. Neuroendocrinology, 1989, 49(2): 176-180
    12 Sarkey S, Azcoitia I, Garcia-Segura LM, et al. Classical androgen receptors in non-classical sites in the brain [J]. Horm Behav, 2008, 53(5): 753-764
    13 Tabori NE, Stewart LS, Znamensky V, et al. Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation [J]. Neuroscience. 2005, 130(1): 151-163
    14 Kritzer MF. Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat [J]. J Comp Neurol, 1997, 379(2): 247-260
    15 DonCarlos LL, Monroy E, Morrell JI. Distribution of estrogen receptor-immunoreactive cells in the forebrain of the female guinea pig [J]. J Comp Neurol, 1991, 305(4): 591-612
    16 Simerly RB, Chang C, Muramatsu M, et al. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study [J]. J Comp Neurol, 1990, 294(1): 76-95
    17 Spencer TJ, Biederman J, Madras BK, et al. Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane [J]. Biol Psychiatry, 2007, 62(9): 1059-1061
    18 Cheon KA, Ryu YH, Kim YK, et al. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder [J]. Eur J Nucl Med Mol Imaging, 2003, 30(2): 306-311
    19 Verghese J, Ambrose AF, Lipton RB, et al. Neurological gait abnormalities and risk of falls in older adults [J]. J Neurol, 2010, 257(3): 392-398
    20 Cham R, Studenski SA, Perera S, et al. Striatal dopaminergic denervation and gait in healthy adults [J]. Exp Brain Res, 2008, 185(3): 391-398
    21 Ferrini RL, Barrett-Connor E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men [J]. Am J Epidemiol, 1998, 147(8): 750-754
    1 Dalal A, Poddar MK. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats [J]. Toxicol Mech Methods, 2010, 20(6): 287-297
    2 Sarkisova KIu, Folomkina AA. Effect of selective serotonin reuptake inhibitor fluoxetine on symptoms of depression-like behavior in WAG/Rij rats [J]. Zh Vyssh Nerv Deiat Im I P Pavlova, 2010, 60(1): 98-108
    3 van der Plasse G, Feenstra MG. Is acute tryptophan depletion a valid method to assess central serotonergic function [J]? Neurosci Biobehav Rev, 2011 Mar 22. [Epub ahead of print]
    4 Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants [J]. Science, 2003, 301(5634): 805-809
    5 Irwin D, Lippa CF, Rosso A. Effects of prescribed medications on cognition and behavior in frontotemporal lobar degeneration [J]. Am J Alzheimers Dis Other Demen, 2010, 25(7): 566-571
    6 Enginar N, Hatipo?lu I, Firtina M. Evaluation of the acute effects of amitriptyline and fluoxetine on anxiety using grooming analysis algorithm in rats [J]. Pharmacol Biochem Behav, 2008, 89(3): 450-455
    7 Homberg JR, Schubert D, Gaspar P. New perspectives on the neurodevelopmental effects of SSRIs [J]. Trends Pharmacol Sci, 2010, 31(2): 60-65
    8 Veras AB, Nardi AE. The complex relationship between hypogonadism and major depression in a young male [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(2): 421-422
    9 McIntyre RS, Mancini D, Eisfeld BS, et al. Calculated bioavailable testosterone levels and depression in middle-aged men [J]. Psychoneuroendocrinology, 2006, 31(9): 1029-1035
    10 Shores MM, Kivlahan DR, Sadak TI, et al. A randomized, double-blind,placebo-controlled study of testosterone treatment in hypogonadal older men with subthreshold depression (dysthymia or minor depression) [J]. J Clin Psychiatry, 2009, 70(7): 1009-1016
    11 Zarrouf FA, Artz S, Griffith J, et al. Testosterone and depression: systematic review and meta-analysis [J]. J Psychiatr Pract, 2009, 15(4): 289-305
    12 McQueen JK, Wilson H, Sumner BE, et al. Serotonin transporter (SERT) mRNA and binding site densities in male rat brain affected by sex steroids [J]. Brain Res Mol Brain Res, 1999, 63(2): 241-247
    13 Robichaud M, Debonnel G. Oestrogen and testosterone modulate the firing activity of dorsal raphe nucleus serotonergic neurones in both male and female rats [J]. J Neuroendocrinol, 2005, 17(3): 179-185
    14 McQueen JK, Wilson H, Sumner BE, et al. Serotonin transporter (SERT) mRNA and binding site densities in male rat brain affected by sex steroids[J]. Brain Res Mol Brain Res, 1999, 63(2): 241-247
    15 Kurling S, Kankaanp?? A, Ellermaa S, et al. The effect of sub-chronic nandrolone decanoate treatment on dopaminergic and serotonergic neuronal systems in the brains of rats [J]. Brain Res, 2005, 1044(1): 67-75
    16 de Souza Silva MA, Mattern C, Topic B, et al. Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone [J]. Eur Neuropsychopharmacol. 2009, 19(1): 53-63
    17 Thiblin I, Finn A, Ross SB, et al. Increased dopaminergic and 5-hydroxytryptaminergic activities in male rat brain following long-term treatment with anabolic androgenic steroids [J]. Br J Pharmacol, 1999, 126(6): 1301-1306
    18康云霄,李双成,高建伟等.丙酸睾丸酮早期处理对大鼠行为及脑内多巴胺转运体的影响[J].解剖学杂志.2008, 31(5): 655-657
    19 Di Matteo V, Pierucci M, Esposito E, et al. Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders [J]. Prog Brain Res, 2008, 172: 423-463
    20 Lapointe NP, Guertin PA. Synergistic effects of D1/5 and 5-HT1A/7 receptor agonists on locomotor movement induction in complete spinal cord-transected mice [J]. J Neurophysiol. 2008, 100(1): 160-168
    21 Di Matteo V, Di Giovanni G, Pierucci M, et al. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies [J]. Prog Brain Res, 2008, 172: 7-44
    22 Pum M E, Huston J P, Müller C P. The role of cortical serotonin in anxiety and locomotor activity in Wistar rats [J]. Behav Neurosci, 2009, 123(2): 449-454
    23 Lima MG, Barros MB, César CL, et al. Health related quality of life among the elderly: a population-based study using SF-36 survey [J]. Cad Saude Publica, 2009, 25(10): 2159-2167
    24 Verghese J, Ambrose AF, Lipton RB, et al. Neurological gait abnormalities and risk of falls in older adults [J]. J Neurol, 2010, 257(3): 392-398
    25 Cham R, Studenski SA, Perera S, et al. Striatal dopaminergic denervation and gait in healthy adults [J]. Exp Brain Res, 2008, 185(3): 391-398
    26 Moretti M, de Souza AG, de Chaves G, et al. Emotional behavior in middle-aged rats: Implications for geriatric psychopathologies [J]. Physiol Behav, 2011, 102(1): 115-120
    27 Pizzi C, Rutjes AW, Costa GM, et al. Meta-analysis of selective serotonin reuptake inhibitors in patients with depression and coronary heart disease [J]. Am J Cardiol, 2011, 107(7): 972-979
    1王磊,康云霄,石葛明.老年人脑内多巴胺转运体的表达[J].中国老年学杂志, 2008, 28(16): 1607-1608
    2康云霄,王磊,王智涛,等.老年大鼠脑内多巴胺转运体的表达[J].中国老年学杂志, 2008, 28(6): 527-529
    3 Yoshimoto K, Kato B, Ueda S, et al. Dopamine and serotonin uptakeinhibitors on the release of dopamine and serotonin in the nucleus accumbens of young and aged rats [J]. Mech Ageing Dev, 2001, 122(15): 1707-1721
    4 Nishimura A, Ueda S, Takeuchi Y, et al. Vulnerability to aging in the rat serotonergic system [J]. Acta Neuropathol, 1998, 96(6): 581-595
    5 Ueda S, Aikawa M, Ishizuya-Oka A, et al. Age-related degeneration of the serotoninergic fibers in the zitter rat brain [J]. Synapse, 1998, 30(1): 62-70
    6 Verghese J, Ambrose AF, Lipton RB, et al. Neurological gait abnormalities and risk of falls in older adults [J]. J Neurol, 2010, 257(3): 392-398
    7 Cham R, Studenski SA, Perera S, et al. Striatal dopaminergic denervation and gait in healthy adults [J]. Exp Brain Res, 2008, 185(3): 391-398
    8 Moretti M, de Souza AG, de Chaves G, et al. Emotional behavior in middle-aged rats: Implications for geriatric psychopathologies [J]. Physiol Behav, 2011, 102(1): 115-120
    9 Ferrini RL, Barrett-Connor E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men [J]. Am J Epidemiol, 1998, 147(8): 750-754
    10 J?nicke B, Schulze G, Coper H. Motor performance achievements in rats of different ages [J]. Exp Gerontol, 1983, 18(5): 393-407
    11 Schallert T, Upchurch M, Lobaugh N, et al. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage [J]. Pharmacol Biochem Behav, 1982, 16(3): 455-462
    12 Crusio WE. Inheritance of behavioral and neuroanatomical phenotypical variance: hybrid mice are not always more stable than inbreds [J]. Behav Genet, 2006, 36(5): 723-731
    13 Altun M, Bergman E, Edstr?m E, et al. Behavioral impairments of the aging rat [J]. Physiol Behav, 2007, 92(5): 911-923
    14 Erixon-Lindroth N, Farde L, Wahlin TB, et al. The role of the striatal dopamine transporter in cognitive aging [J]. Psychiatry Res, 2005, 138(1): 1-12
    15 Braskie MN, Wilcox CE, Landau SM, et al. Relationship of striatal dopamine synthesis capacity to age and cognition [J]. J Neurosci, 2008, 28(52): 14320-14328
    16 Tupala E, Hall H, Bergstr?m K, et al. Different effect of age on dopamine transporters in the dorsal and ventral striatum of controls and alcoholics [J]. Synapse, 2003, 48(4): 205-211
    17 van Dyck CH, Seibyl JP, Malison RT, et al. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries [J]. Am J Geriatr Psychiatry, 2002, 10(1): 36-43
    18 Steinbusch HW, Van Luijtelaar MG, Dijkstra H, et al. Aging and regenerative capacity of the rat serotonergic system. A morphological, neurochemical and behavioral analysis after transplantation of fetal raphe cells [J]. Ann N Y Acad Sci, 1990, 600: 384-402; discussion 402-404
    19 Zhang ZJ, Ren HM, Hu HT, et al. Effects of castration and testosterone-replacement on hypothalamic and plasma luteinizing hormone-releasing hormone levels in the aged male rat [J]. Sheng Li Xue Bao, 1992, 44(3): 275-281
    20 Nguyen TV, Jayaraman A, Quaglino A, et al. Androgens selectively protect against apoptosis in hippocampal neurones [J]. J Neuroendocrinol, 2010, 22(9): 1013-1022
    21 Pan Y, Zhang H, Acharya AB, et al. Effect of testosterone on functional recovery in a castrate male rat stroke model [J]. Brain Res, 2005, 1043(1-2): 195-204
    22 Nikoli? M, Vranid TS, Arbanas J, et al. Muscle loss in elderly [J]. Coll Antropol, 2010, 34 Suppl 2: 105-108
    23 Kovacheva EL, Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways [J]. Endocrinology, 2010, 151(2): 628-638
    24 Zhao W, Pan J, Zhao Z, et al. Testosterone protects againstdexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation [J]. J Steroid Biochem Mol Biol, 2008, 110(1-2): 125-129
    25 Qin W, Pan J, Wu Y, et al. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1α[J]. Biochem Biophys Res Commun, 2010, 403(3-4): 473-478
    26 Cruz-Muros I, Afonso-Oramas D, Abreu P, et al. Aging effects on the dopamine transporter expression and compensatory mechanisms [J]. Neurobiol Aging, 2009, 30(6): 973-986
    27 Soros P, Bose A, Sokoloff LG, et al. Age-related changes in the functional neuroanatomy of overt speech production [J]. Neurobiol Aging, 2009 Sep 24
    28 Simonyi A, Miller LA, Sun GY. Region-specific decline in the expression of metabotropic glutamate receptor 7 mRNA in rat brain during aging [J]. Brain Res Mol Brain Res, 2000, 82(1-2): 101-106
    29 Mahncke HW, Bronstone A, Merzenich MM. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention [J]. Prog Brain Res, 2006, 157: 81-109
    30 Gold SM, Voskuhl RR. Testosterone replacement therapy for the treatment of neurological and neuropsychiatric disorders [J]. Curr Opin Investig Drugs, 2006, 7(7): 625-630
    31 Handelsman DJ, Mackey MA, Howe C, et al. An analysis of testosterone implants for androgen replacement therapy [J]. Clin Endocrinol (Oxf), 1997, 47(3): 311-316
    32 Cavender RK, Fairall M. Subcutaneous testosterone pellet implant (Testopel) therapy for men with testosterone deficiency syndrome: a single-site retrospective safety analysis [J]. J Sex Med, 2009, 6(11): 3177-3192
    1 Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease [J]. Adv Drug Deliv Rev, 1998, 29(1-2):3-12
    2 Illum L. Nasal drug delivery--possibilities, problems and solutions [J]. J Control Release, 2003, 87(1-3):187-198
    3 Merkus FW, Verhoef JC, Schipper NG, et al. Nasal mucociliary clearance as a factor in nasal drug delivery [J]. Adv Drug Deliv Rev, 1998, 29(1-2):13-38
    4 Kimbell JS, Gross EA, Richardson RB, et al. Correlation of regional formaldehyde flux predictions with the distribution of formaldehyde-induced squamous metaplasia in F344 rat nasal passages [J]. Mutat Res, 1997, 380(1-2):143-154
    5 Gosau M, Rink D, Driemel O, et al. Maxillary sinus anatomy: a cadavericstudy with clinical implications [J]. Anat Rec (Hoboken), 2009, 292(3): 352-354
    6 Chien YW, Chang SF. Intranasal drug delivery for systemic medications [J]. Crit Rev Ther Drug Carrier Syst, 1987, 4(2): 67-194
    7 Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption [J]. Int J Pharm, 1996, 127: 115-133
    8 Verdugo P. Goblet cells secretion and mucogenesis [J]. Annu Rev Physiol, 1990, 52: 157-176
    9 Wanner A. The role of mucociliary dysfunction in bronchial asthma [J]. Am J Med, 1979, 67(3): 477-485
    10 Vollrath M, Altmannsberger M, Weber K, et al. An ultrastructural and immunohistological study of the rat olfactory epithelium: unique properties of olfactory sensory cells [J]. Differentiation, 1985, 29(3): 243-253
    11 Charlton S, Jones NS, Davis SS, et al. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device [J]. Eur J Pharm Sci, 2007, 30(3-4): 295-302
    12 Montgomery WM, Vig PS, Staab EV, et al. Computed tomography: a three-dimensional study of the nasal airway [J]. Am J Orthod, 1979, 76(4): 363-375
    13 Gross EA, Swenberg JA, Fields S, et al. Comparative morphometry of the nasal cavity in rats and mice [J]. J Anat, 1982, 135(Pt 1): 83-88
    14 Patra AL, Gooya A, Ménache MG. A morphometric comparison of the nasopharyngeal airway of laboratory animals and humans [J]. Anat Rec, 1986, 215(1): 42-50
    15 Johnson NF, Hotchkiss JA, Harkema JR, et al. Proliferative responses of rat nasal epithelia to ozone [J]. Toxicol Appl Pharmacol, 1990, 103(1): 143-155
    16 Harkema JR, Plopper CG, Hyde DM, et al. Regional differences in quantities of histochemically detectable mucosubstances in nasal,paranasal, and nasopharyngeal epithelium of the bonnet monkey [J]. J Histochem Cytochem, 1987, 35(3): 279-286
    17 Monteiro-Riviere NA, Popp JA. Ultrastructural characterization of the nasal respiratory epithelium in the rat [J]. Am J Anat, 1984, 169(1): 31-43
    18 Popp JA, Martin JT. Surface topography and distribution of cell types in the rat nasal respiratory epithelium: scanning electron microscopic observations [J]. Am J Anat, 1984, 169(4): 425-436
    19 Adams DR, Hotchkiss DK. The canine nasal mucosa [J]. Anat Histol Embryol, 1983, 12(2): 109-125
    20 3434543 Harkema JR, Plopper CG, Hyde DM, et al. Nonolfactory surface epithelium of the nasal cavity of the bonnet monkey: a morphologic and morphometric study of the transitional and respiratory epithelium [J]. Am J Anat, 1987, 180(3): 266-279
    21 Harkema JR, Plopper CG, Hyde DM, et al. Effects of an ambient level of ozone on primate nasal epithelial mucosubstances. Quantitative histochemistry [J]. Am J Pathol, 1987, 127(1): 90-96
    22 Matulionis DH, Parks HF. Ultrastructural morphology of the normal nasal respiratory epithelium of the mouse [J]. Anat Rec, 1973, 176(1): 64-83
    23 Loo SK. Fine structure of the olfactory epithelium in some primates [J]. J Anat, 1977, 123(Pt 1): 135-145
    24 Hadley WM, Dahl AR. Cytochrome P-450-dependent monooxygenase activity in nasal membranes of six species [J]. Drug Metab Dispos, 1983, 11(3): 275-276
    25 Harkema JR, Plopper CG, Hyde DM, et al. Response of the macaque nasal epithelium to ambient levels of ozone. A morphologic and morphometric study of the transitional and respiratory epithelium [J]. Am J Pathol, 1987, 128(1): 29-44
    26 Harkema JR, Hotchkiss JA, Henderson RF. Effects of 0.12 and 0.80 ppm ozone on rat nasal and nasopharyngeal epithelial mucosubstances: quantitative histochemistry [J]. Toxicol Pathol, 1989, 17(3): 525-535
    27 Yamamoto T, Masuda H. Some observations on the fine structure of thegoblet cells in the nasal respiratory epithelium of the rat, with special reference to the well-developed agranular endoplasmic reticulum [J]. Okajimas Folia Anat Jpn, 1982, 58(4-6): 583-594
    28 Boysen M, Reith A. Intracytoplasmic lumina with and without cilia in both normal and pathologically altered nasal mucosa [J]. Ultrastruct Pathol, 1980, 1(4): 477-485
    29 Mogensen C, Tos M. Density of goblet cells on normal adult nasal turbinates [J]. Anat Anz, 1977, 142(4): 322-330
    30 Busuttil A, More IA, McSeveney D. A reappraisal of the ultrastructure of the human respiratory nasal mucosa [J]. J Anat, 1977, 124(Pt 2): 445-458
    31 Morgan KT, Jiang XZ, Patterson DL, et al. The nasal mucociliary apparatus. Correlation of structure and function in the rat [J]. Am Rev Respir Dis, 1984, 130(2): 275-281
    32 Costanzo RM. Regeneration of olfactory receptor cells [J]. Ciba Found Symp, 1991, 160: 233-242; discussion 243-248
    33 Dahl AR, Hadley WM. Nasal cavity enzymes involved in xenobiotic metabolism: effects on the toxicity of inhalants [J]. Crit Rev Toxicol, 1991, 21(5): 345-372
    34 Jang EJ, Lee YJ, Chung SJ, et al. Nasal absorption of procyclidine in rats and dogs [J]. Arch Pharm Res, 2001, 24(3): 219-223
    35 Pelser A, Müller DG, du Plessis J, et al. Comparative pharmacokinetics of single doses of doxylamine succinate following intranasal, oral and intravenous administration in rats [J]. Biopharm Drug Dispos, 2002, 23(6): 239-244
    36 Hussain AA, Kimura R, Huang CH. Nasal absorption of testosterone in rats [J]. J Pharm Sci, 1984, 73(9): 1300-1301
    37 Chow HH, Anavy N, Villalobos A. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats [J]. J Pharm Sci, 2001, 90(11): 1729-1735
    38 Dufes C, Olivier JC, Gaillard F, et al. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats [J]. Int JPharm, 2003, 255(1-2): 87-97
    39 Zhang QZ, Jiang XG, Wu CH. Distribution of nimodipine in brain following intranasal administration in rats [J]. Acta Pharmacol Sin, 2004, 25(4): 522-527
    40 Jogani VV, Shah PJ, Mishra P, et al. Nose-to-brain delivery of tacrine [J]. J Pharm Pharmacol, 2007, 59(9): 1199-1205
    41 Hashizume R, Ozawa T, Gryaznov SM, et al. New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163 [J]. Neuro Oncol, 2008, 10(2): 112-120
    42 Yamada K, Hasegawa M, Kametani S, et al. Nose-to-brain delivery of TS-002, prostaglandin D2 analogue [J]. J Drug Target, 2007, 15(1): 59-66.
    43 Danielyan L, Sch?fer R, von Ameln-Mayerhofer A, et al. Intranasal delivery of cells to the brain [J]. Eur J Cell Biol, 2009, 88(6): 315-324
    44 Chen XQ, Fawcett JR, Rahman YE, et al. Delivery of Nerve Growth Factor to the Brain via the Olfactory Pathway [J]. J Alzheimers Dis, 1998, 1(1): 35-44
    45 Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system [J]. J Pharm Sci, 2009, 98(7): 2501-2515
    46 Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery [J]. Drug Discov Today, 2002, 7(18): 967-975
    47 Costantino HR, Illum L, Brandt G, et al. Intranasal delivery: physicochemical and therapeutic aspects [J]. Int J Pharm, 2007, 337(1-2): 1-24
    48 Graff CL, Zhao R, Pollack GM. Pharmacokinetics of substrate uptake and distribution in murine brain after nasal instillation [J]. Pharm Res, 2005, 22(2): 235-244
    49 Graff CL, Pollack GM. P-Glycoprotein attenuates brain uptake of substrates after nasal instillation [J]. Pharm Res, 2003, 20(8): 1225-1230
    50 Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier [J]. Pharm Res, 2005, 22(1): 86-93
    51 Westin U, Piras E, Jansson B, et al. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents [J]. Eur J Pharm Sci, 2005, 24(5): 565-573
    52 Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems [J]? J Pharm Sci, 2007, 96(3): 473-483
    53 McMartin C, Hutchinson LE, Hyde R, et al. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity [J]. J Pharm Sci, 1987, 76(7): 535-540
    54 Huang CH, Kimura R, Nassar RB, et al. Mechanism of nasal absorption of drugs I: Physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats [J]. J Pharm Sci, 1985, 74(6): 608-611
    55 Kao HD, Traboulsi A, Itoh S, et al. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs [J]. Pharm Res, 2000, 17(8): 978-984
    56 Houtmeyers E, Gosselink R, Gayan-Ramirez G, et al. Regulation of mucociliary clearance in health and disease [J]. Eur Respir J, 1999, 13(5): 1177-1188
    57 Schipper NG, Verhoef JC, Merkus FW. The nasal mucociliary clearance: relevance to nasal drug delivery [J]. Pharm Res, 1991, 8(7):807-814
    58 Bogdanffy MS. Biotransformation enzymes in the rodent nasal mucosa: the value of a histochemical approach [J]. Environ Health Perspect, 1990, 85: 177-186
    59 Dahl AR, Lewis JL. Respiratory tract uptake of inhalants and metabolism of xenobiotics [J]. Annu Rev Pharmacol Toxicol, 1993, 33: 383-407
    60 Mitra AK, Krishnamoorthy R. Prodrugs for nasal drug delivery [J]. Adv Drug Deliv Rev, 1998, 29(1-2): 135-146
    61 Dimova S, Brewster ME, Noppe M, et al. The use of human nasal in vitro cell systems during drug discovery and development [J]. Toxicol In Vitro, 2005, 19(1): 107-122
    62 Sarkar MA. Drug metabolism in the nasal mucosa [J]. Pharm Res, 1992, 9(1): 1-9
    63 Harris AS, Nilsson IM, Wagner ZG, et al. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin [J]. J Pharm Sci, 1986, 75(11): 1085-1088
    64 Sakane T, Akizuki M, Taki Y, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs [J]. J Pharm Pharmacol, 1995, 47(5): 379-381
    65 Born J, Lange T, Kern W, et al. Sniffing neuropeptides: a transnasal approach to the human brain [J]. Nat Neurosci, 2002, 5(6): 514-516
    66 Fisher AN, Brown K, Davis SS, et al. The effect of molecular size on the nasal absorption of water-soluble compounds in the albino rat [J]. J Pharm Pharmacol, 1987, 39(5): 357-362
    67 Shao Z, Park GB, Krishnamoorthy R, et al. The physicochemical properties, plasma enzymatic hydrolysis, and nasal absorption of acyclovir and its 2'-ester prodrugs [J]. Pharm Res, 1994, 11(2): 237-242
    68 Yang C, Gao H, Mitra AK. Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir [J]. J Pharm Sci, 2001, 90(5): 617-624
    69 Machida M, Sano K, Arakawa M, et al. Effects of surfactants and protease inhibitors on nasal absorption of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in rats [J]. Biol Pharm Bull, 1994, 17(10): 1375-1378
    70 Morimoto K, Yamaguchi H, Iwakura Y, et al. Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue [J]. Pharm Res, 1991, 8(9): 1175-1179
    71 Bernkop-Schnürch A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins [J]. J Control Release, 1998, 52(1-2): 1-16
    72 Zaki NM, Awad GA, Mortada ND, et al. Rapid-onset intranasal delivery of metoclopramide hydrochloride. Part I. Influence of formulation variables on drug absorption in anesthetized rats [J]. Int J Pharm, 2006, 327(1-2): 89-96
    73 Hoberman JM, Yesalis CE. The history of synthetic testosterone [J]. Scientific American, 1995, 272 (2): 76-81
    74 McGinnis MY, Lumia AR, Tetel MJ, et al. Effects of anabolic androgenic steroids on the development and expression of running wheel activity and circadian rhythms in male rats [J]. Physiol Behav, 2007, 92(5): 1010-1018
    75 Salvador A, Moya-Albiol L, Martínez-Sanchis S, et al. Lack of effects of anabolic-androgenic steroids on locomotor activity in intact male mice [J]. Percept Mot Skills, 1999, 88(1): 319-328.
    76 Corrigan B. Anabolic steroids and the mind [J]. Med J Aust, 1996, 165(4): 222-226
    77 Thiblin I, Kristiansson M, Rajs J. Anabolic androgenic steroids and behavioural patterns among violent offenders [J]. Journal of Forensic Psychiatry & Psychology, 1997, 8(2): 299-310
    78 Pope HG Jr, Katz DL. Psychiatric and medical effects of anabolic-androgenic steroid use. A controlled study of 160 athletes [J]. Arch Gen Psychiatry, 1994, 51(5): 375-382
    79 Galligani N, Renck A, Hansen S. Personality profile of men using anabolic androgenic steroids [J]. Horm Behav, 1996, 30(2): 170-175
    80 Olweus D, Mattsson A, Schalling D, et al. Circulating testosterone levels and aggression in adolescent males: a causal analysis [J]. Psychosom Med, 1988, 50(3):261-272
    81 Brooks JH, Reddon JR. Serum testosterone in violent and nonviolent young offenders [J]. J Clin Psychol, 1996, 52(4):475-483
    82 Lumia AR, Thorner KM, McGinnis MY. Effects of chronically high doses of the anabolic androgenic steroid, testosterone, on intermale aggression and sexual behavior in male rats [J]. Physiol Behav, 1994, 55(2): 331-335
    83 Clark AS, Barber DM. Anabolic-androgenic steroids and aggression in castrated male rats [J]. Physiol Behav, 1994, 56(5):1107-1113
    84 McGinnis MY. Anabolic androgenic steroids and aggression: studies using animal models [J]. Ann N Y Acad Sci, 2004, 1036: 399-415
    85 Thiblin I, P?rlklo T. Anabolic androgenic steroids and violence. ActaPsychiatr Scand Suppl [J]. 2002, (412):125-128
    86 Svare BB. Anabolic steroids and behavior.a preclinical research perspective [J]. NIDA Res Monographs, 1990, 102: 224-241
    87 Akhondzadeh S, Rezaei F, Larijani B, et al. Correlation between testosterone, gonadotropins and prolactin and severity of negative symptoms in male patients with chronic schizophrenia [J]. Schizophr Res, 2006, 84(2-3): 405-410
    88 Zarrouf FA, Artz S, Griffith J, et al. Testosterone and depression: systematic review and meta-analysis [J]. J Psychiatr Pract, 2009, 15(4): 289-305
    89 Frye CA, Edinger K, Sumida K. Androgen administration to aged male mice increases anti-anxiety behavior and enhances cognitive performance [J]. Neuropsychopharmacology, 2008, 33(5): 1049-1061
    90 Adler A, Vescovo P, Robinson JK, et al. Gonadectomy in adult life increases tyrosine hydroxylase immunoreactivity in the prefrontal cortex and decreases open field activity in male rats [J]. Neuroscience, 1999, 89(3): 939-954
    91 Minkin DM, Meyer ME, van Haaren F. Behavioral effects of long-term administration of an anabolic steroid in intact and castrated male Wistar rats [J]. Pharmacol Biochem Behav, 1993, 44(4): 959-963
    92 Edinger KL, Frye CA. Testosterone's anti-anxiety and analgesic effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus [J]. Psychoneuroendocrinology, 2005, 30(5): 418-430
    93 Hoberman JM, Yesalis CE. The history of synthetic testosterone [J]. Sci Am, 1995, 272(2): 76-81
    94 Pope HG Jr, Katz DL. Psychiatric and medical effects of anabolic-androgenic steroid use. A controlled study of 160 athletes [J]. Arch Gen Psychiatry, 1994, 51(5): 375-382
    95 Corrigan B. Anabolic steroids and the mind [J]. Med J Aust, 1996, 165(4): 222-226
    96 Lukas SE. CNS effects and abuse liability of anabolic-androgenic steroids[J]. Annu Rev Pharmacol Toxicol, 1996, 36: 333-357
    97 Su TP, Pagliaro M, Schmidt PJ, et al. Neuropsychiatric effects of anabolic steroids in male normal volunteers [J]. JAMA, 1993, 269(21): 2760-2764
    98 Choi PY, Pope HG Jr. Violence toward women and illicit androgenic-anabolic steroid use [J]. Ann Clin Psychiatry, 1994, 6(1): 21-25
    99 Kelly MJ, Moss RL, Dudley CA. The effects of microelectrophoretically applied estrogen, cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat [J]. Exp Brain Res, 1977, 30(1): 53-64
    100 Dufy B, Vincent JD, Fleury H, et al. Membrane effects of thyrotropin-releasing hormone and estrogen shown by intracellular recording from pituitary cells [J]. Science, 1979, 204(4392): 509-511
    101 Nabekura J, Oomura Y, Minami T, et al. Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons [J]. Science, 1986, 233(4760): 226-228
    102 Foy MR, Teyler TJ. 17-alpha-Estradiol and 17-beta-estradiol in hippocampus [J]. Brain Res Bull, 1983, 10(6): 735-739
    103 Wong M, Moss RL. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons [J]. J Neurosci, 1992, 12(8): 3217-3225
    104 Smith SS, Waterhouse BD, Woodward DJ. Sex steroid effects on extrahypothalamic CNS. II. Progesterone, alone and in combination with estrogen, modulates cerebellar responses to amino acid neurotransmitters [J]. Brain Res, 1987, 422(1): 52-62
    105 Smith SS, Woodward DJ, Chapin JK. Sex steroids modulate motor-correlated increases in cerebellar discharge [J]. Brain Res, 1989, 476(2): 307-316
    106 Kelly MJ, Moss RL, Dudley CA. The effects of microelectrophoretically applied estrogen, cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat [J]. Exp Brain Res,1977, 30(1): 53-64
    107 Thompson TL, Moss RL. Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects [J]. J Neurochem, 1994, 62(5): 1750-1756
    108 DonCarlos LL, Garcia-Ovejero D, Sarkey S, et al. Androgen receptor immunoreactivity in forebrain axons and dendrites in the rat [J]. Endocrinology, 2003, 144(8): 3632-3638
    109 Rosen G, O'Bryant E, Matthews J, et al. Distribution of androgen receptor mRNA expression and immunoreactivity in the brain of the green anole lizard [J]. J Neuroendocrinol, 2002, 14(1): 19-28
    110 Milner TA, McEwen BS, Hayashi S, et al. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites [J]. J Comp Neurol, 2001, 429(3): 355-371
    111 Tabori NE, Stewart LS, Znamensky V, et al. Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation [J]. Neuroscience, 2005, 130(1): 151-163
    112 Johansson P, Ray A, Zhou Q, et al. Anabolic androgenic steroids increase beta-endorphin levels in the ventral tegmental area in the male rat brain [J]. Neurosci Res, 1997, 27(2):185-189
    113 Vermes I, Várszegi M, Tóth EK, et al. Action of androgenic steroids on brain neurotransmitters in rats [J]. Neuroendocrinology, 1979, 28(6): 386-393
    114 Hannan CJ Jr, Friedl KE, Zold A, et al. Psychological and serum homovanillic acid changes in men administered androgenic steroids [J]. Psychoneuroendocrinology, 1991, 16(4): 335-343
    115 Virkkunen M, Goldman D, Nielsen DA, et al. Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence [J]. J Psychiatry Neurosci, 1995, 20(4): 271-275
    116 Galligani N, Renck A, Hansen S. Personality profile of men using anabolic androgenic steroids [J]. Horm Behav, 1996, 30(2): 170-175
    117 Fuller RW. Fluoxetine effects on serotonin function and aggressivebehavior [J]. Ann N Y Acad Sci, 1996, 794: 90-97
    118 Muehlenkamp F, Lucion A, Vogel WH. Effects of selective serotonergic agonists on aggressive behavior in rats [J]. Pharmacol Biochem Behav, 1995, 50(4):671-674
    119 Bonson KR, Johnson RG, Fiorella D, et al. Serotonergic control of androgen-induced dominance [J]. Pharmacol Biochem Behav, 1994, 49(2): 313-322
    120 Kritzer MF. Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat [J]. J Comp Neurol, 1997, 379(2): 247-260
    121 Putnam SK, Sato S, Hull EM. Effects of testosterone metabolites on copulation and medial preoptic dopamine release in castrated male rats [J]. Horm Behav, 2003, 44(5): 419-426
    122 Sanghera MK, Grady S, Smith W, et al. Incertohypothalamic A13 dopamine neurons: effect of gonadal steroids on tyrosine hydroxylase [J]. Neuroendocrinology, 1991, 53(3): 268-275
    123 Ferrari PF, van Erp AM, Tornatzky W, et al. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats [J]. Eur J Neurosci, 2003, 17(2): 371-378
    124 Christophersen NS, Meijer X, J?rgensen JR, et al. Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain [J]. Brain Res Bull, 2006, 70(4-6): 457-466
    125 Margolis EB, Lock H, Hjelmstad GO, et al. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons [J]? J Physiol, 2006, 577(Pt 3): 907-924
    126 Kindlundh AM, Rahman S, Lindblom J, et al. Increased dopamine transporter density in the male rat brain following chronic nandrolone decanoate administration [J]. Neurosci Lett, 2004, 356(2): 131-134
    127 Birgner C, Kindlundh-H?gberg AM, Nyberg F, et al. Altered extracellularlevels of DOPAC and HVA in the rat nucleus accumbens shell in response to sub-chronic nandrolone administration and a subsequent amphetamine challenge [J]. 2007, 412(2):168-172
    128 Birgner C, Kindlundh-H?gberg AM, Oreland L, et al. Reduced activity of monoamine oxidase in the rat brain following repeated nandrolone decanoate administration [J]. Brain Res, 2008, 1219: 103-110
    129 Kindlundh AM, Lindblom J, Nyberg F. Chronic administration with nandrolone decanoate induces alterations in the gene-transcript content of dopamine D(1)- and D(2)-receptors in the rat brain [J]. Brain Res, 2003, 979(1-2): 37-42
    130 Ricci LA, Connor DF, Morrison R, et al. Risperidone exerts potent anti-aggressive effects in a developmentally immature animal model of escalated aggression [J]. Biol Psychiatry, 2007, 62(3): 218-225
    131 Schwartzer JJ, Connor DF, Morrison RL, et al. Repeated risperidone administration during puberty prevents the generation of the aggressive phenotype in a developmentally immature animal model of escalated aggression [J]. Physiol Behav, 2008, 95(1-2): 176-181
    132 Schwartzer JJ, Morrison RL, Ricci LA, et al. Paliperidone suppresses the development of the aggressive phenotype in a developmentally sensitive animal model of escalated aggression [J]. Psychopharmacology (Berl), 2009, 203(4): 653-663
    133 Virkkunen M, Goldman D, Nielsen DA, et al. Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence [J]. J Psychiatry Neurosci, 1995, 20(4): 271-275
    134 Lindqvist AS, Johansson-Steensland P, Nyberg F, et al. Anabolic androgenic steroid affects competitive behaviour, behavioural response to ethanol and brain serotonin levels [J]. Behav Brain Res, 2002, 133(1): 21-29
    135 Popova NK. From gene to aggressive behavior: the role of brain serotonin [J]. Neurosci Behav Physiol, 2008, 38(5): 471-475
    136 Martinez-Conde E, Leret ML, Diaz S. The influence of testosterone in thebrain of the male rat on levels of serotonin (5-HT) and hydroxyindole-acetic acid (5-HIAA) [J]. Comp Biochem Physiol C, 1985, 80(2): 411-414
    137 Bonson KR, Johnson RG, Fiorella D, et al. Serotonergic control of androgen-induced dominance [J]. Pharmacol Biochem Behav, 1994, 49(2): 313-322
    138 Grimes JM, Melloni RH Jr. Serotonin-1B receptor activity and expression modulate the aggression-stimulating effects of adolescent anabolic steroid exposure in hamsters [J]. Behav Neurosci, 2005, 119(5): 1184-1194
    139 Ricci LA, Rasakham K, Grimes JM, Melloni RH Jr, et al. Serotonin-1A receptor activity and expression modulate adolescent anabolic/androgenic steroid-induced aggression in hamsters [J]. Pharmacol Biochem Behav, 2006, 85(1): 1-11
    140 de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis [J]. Eur J Pharmacol, 2005, 526(1-3): 125-139
    141 Birgner C, Kindlundh-H?gberg AM, Alsi? J, et al. The anabolic androgenic steroid nandrolone decanoate affects mRNA expression of dopaminergic but not serotonergic receptors [J]. Brain Res, 2008, 1240: 221-228
    142 Matsumoto AM. Andropause: clinical implications of the decline in serum testosterone levels with aging in men [J]. J Gerontol A Biol Sci Med Sci, 2002, 57(2):M76-99
    143 Haren MT, Kim MJ, Tariq SH, et al. Andropause: a quality-of-life issue in older males [J]. Med Clin North Am, 2006, 90(5): 1005-1023
    144 Nieschlag E. Testosterone treatment comes of age: new options for hypogonadal men [J]. Clin Endocrinol (Oxf), 2006, 65(3): 275-281
    145 Jockenh?vel F. Testosterone therapy--what, when and to whom [J]? Aging Male, 2004, 7(4): 319-324
    146 Tenover JL. The androgen-deficient aging male: current treatment options [J]. Rev Urol, 2003, 5 Suppl 1: S22-28
    147 Wang C, Swerdloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men [J]. J Clin Endocrinol Metab, 2000, 85(8): 2839-2853
    148 Swerdloff RS, Wang C, Cunningham G, et al. Long-term pharmacokinetics of transdermal testosterone gel in hypogonadal men [J]. J Clin Endocrinol Metab, 2000, 85(12): 4500-4510
    149 Spielberg TE. Abnormal testosterone levels in partners of patients using testosterone gels [J]. J Sex Med, 2005, 2(2): 278
    150 Bagchus WM, Hust R, Maris F, et al. Important effect of food on the bioavailability of oral testosterone undecanoate [J]. Pharmacotherapy, 2003, 23(3): 319-325
    151 Wittert GA, Chapman IM, Haren MT, et al. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status [J]. J Gerontol A Biol Sci Med Sci, 2003, 58(7): 618-625
    152 Houwing NS, Maris F, Schnabel PG, et al. Pharmacokinetic study in women of three different doses of a new formulation of oral testosterone undecanoate, Andriol Testocaps [J]. Pharmacotherapy, 2003, 23(10): 1257-1265
    153 Danner C, Frick J. Androgen substitution with testosterone containing nasal drops [J]. Int J Androl, 1980, 3(4): 429-435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700