分子超快动力学过程的密度矩阵理论描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用飞秒脉冲激光研究分子的超快动力学过程引起人们的广泛关注。为解释时间分辨及频率分辨光谱实验现象,用适当的理论方法探讨飞秒激光场中分子超快动力学成为一项重要的课题。在气相条件下,理论上需要在含时Schr(o|¨)dinger方程中加入外场与分子相互作用势来解释外场对分子动力学的影响。对于固相或液相情况,需要加入一些环境效应诸如退相、振动弛豫因子来描述分子动力学过程。环境效应的理论描述不便于用含时Schr(o|¨)dinger方程,人们使用密度矩阵来研究含有分子与环境耦合的量子系统。由于多数化学反应在液相中进行,故密度矩阵理论被广泛地应用于研究液相分子反应动力学。
     本论文基于密度矩阵理论来模拟、研究液相多原子分子的超快动力学过程,探讨利用超快激光脉冲优化控制双原子分子的选态过程。主要工作包括以下几个方面:
     (1)基于微扰密度矩阵方法和瞬态线性极化率理论,通过自编计算机程序,我们计算丙酮溶液中Oxazine 750分子的飞秒时间分辨荧光亏蚀光谱,理论计算结果与实验光谱吻合很好。荧光亏蚀光谱反映了分子在液相中的激发动力学过程。荧光亏蚀谱的快衰减过程描述了激发态的振动弛豫过程,慢衰减过程反映了溶剂化效应。研究了探测脉冲参数及分子与环境的耦合对荧光亏蚀谱的影响。当探测脉冲频率增加时,亏蚀谱的快衰减信号衰减得更快。随着分子与环境耦合强度的增加,分子布居从高振动能级跃迁到低振动能级所需时间缩短,亏蚀谱快衰减过程加快。
     (2)通过计算飞秒时间分辨荧光亏蚀谱,研究了液相中叶绿素a分子的内转换过程,理论计算结果与实验符合较好。探讨了两电子态间非绝热耦合对内转换时间和亏蚀谱的影响。随着两态之间耦合强度的增加,内转换时间减少,荧光亏蚀强度减弱。当特征长度的倒数增加时,内转换时间增加,荧光亏蚀强度增强。随着分子与环境耦合强度的增加,内转换时间也增加。
     (3)我们利用约化密度矩阵理论计算了热浴中氟化氢分子的基电子态的高振动态的选择激发过程,计算结果表明使用脉冲链可以增加目标振动态的选态跃迁几率,且采用合适的重叠脉冲也可增加在考虑弛豫效应时的选态跃迁几率。还研究了环境的频率分布函数及分子与环境的耦合强度对弛豫过程的影响。随着环境频率分布函数带宽的增加,弛豫速率增加。当分子与环境耦合强度增加时,弛豫速率也增加。当考虑环境的弛豫效应时,目标态的跃迁几率会减少。
     (4)通过应用可分离谐振子近似下的受激Raman散射含时微扰理论计算了rhodamine 6G分子的十三个模式的飞秒受激Raman光谱,并计算了吸收光谱。理论计算在不同延迟时间下在共振、非共振、Stokes、anti-Stokes带等几个方面与实验光谱符合较好。
There is great interest to study molecular ultrafast dynamics using femtosecond laser pulse. To elucidate the experiments of time-resolved spectroscopy, investigating the dynamics of molecules with appropriate theoretical approach becomes a crucial topic. In gas phase, an external field factor should be involved in the schr(o|¨)dinger equation to account for the field molecule interaction. For solid or liquid phases, some environmental effects, such as dephasing and vibrational relaxation, should be taken into account for studying molecular dynamics. The density matrix is used to interpret the molecule environment coupling dynamics rather than the schr(o|¨)dinger equation. Since most chemical reactions are carried out in the liquid phase, the density matrix theory has been widely used in the study of molecular reaction dynamics.
     In this thesis, based on the density matrix theory, the ultrafast dynamics process of the polyatomic molecules in liquids have been investigated using femtosecond laser pulse. The selective excitation of the high ground vibrational states of HF in an environment by a pulse train is also studied. The main works are as follows.
     (1) To accurately and efficiently simulate molecular dynamics, perturbative density matrix method and the transient linear susceptibility theory can be used to investigate the fluorescence depletion spectrum. The fluorescence depletion spectrum (FDS) of Oxazine 750 in acetone are calculated within the reduced density matrix. The theoretical calculation agrees well with the experimental results. The fluorescence depletion reflects the molecular dynamics of the excited states. Here, a faster decay of the FDS reflects the vibrational relaxation time in the S_1 state and a slower decay process reflects the solvation effects. The effects of the probe pulse frequency and system-reservoir coupling on the FDS are also discussed. When the probing frequency increases, the faster decay process of the fluorescence depletion signal becomes quicker. With the increase of the system-reservoir coupling, the population transfers more quickly from high vibrational levels to the ground vibrational level of the excited electronic state, and the faster decay process of the FDS becomes faster.
     (2) The femtosecond time-resolved FDS involving IC process of Chlorophyll a (chl a) in solvents is studied. The calculated FDS of chl a agrees well with the experimental results. The effects of diabatic coupling between two electronic states on the FDS and the IC time are investigated. With the increase of the intersite coupling parameter, the internal conversion time decreases and the fluorescence depletion intensity in a long delay time region decreases. When the characteristic inverse length increases, the internal conversion time increases and the fluorescence depletion intensity in a large decay time region increases. With the increase of the molecule-reservoir coupling, the internal conversion time increases.
     (3) The selective excitation of the high ground vibrational state of rotationless HF in an unobserved quasi-resonant thermal environment under the control of a single pulse and pulse train is studied using the reduced density matrix theory. The results have shown that the probability of transferring population to the target state can be improved for the pulse train or the use of overlapping pulses. We have also studied the effects of the environment frequency distribution and the molecule-environment coupling intensity on the relaxation rate. With broadening of the environment frequency distribution or increasing molecule-environment coupling intensity, the relaxation rate increases. When the molecule-environment coupling is taken into account, the target state occupation will obviously decrease.
     (4) The femtosecond stimulated Raman spectroscopy of rhodamine 6G (R6G)of the 13 modes is applied by the perturbation theory of stimulated Raman scattering with harmonic potentials. And the absorption spectrum of R6G is also calculated. The calculation compared very well with the R6G experimental results for off-resonance and resonance femtosecond stimulated Raman scattering spectra spanning both Stokes and anti-Stokes bands, and for negative and positive pump-probe delay times on resonance.
引文
[1] Leforestier C, Bisseling R H, Cerjan C, Feit M D, Friesner R, Guldberg A, Hammerich A, Joli- card G, Karrlein W, Meyer H D, Lipkin N, Roncero O and Kosloff R, A comparison of different propagation schemes for the time dependent schrodinger equation, J. Comput. Phys., 1991, 94:59.
    
    [2] Makri N, Time-dependent calculation of thermally averaged reaction rate constants: dynamical displacement operator treatment, J. Phys. Chem., 1991, 95:10413.
    
    [3] Lung C, LeForestier C and Wyatt R E, Wave operator and artificial intelligence contraction algo- rithms in quantum dynamics: Application to CD_3H and C_6H_6, J. Chem. Phys., 1993, 98:6722.
    
    [4] Fano U, Description of states in quantum mechanics by density matrix and operator techniques, Rev. Mod. Phys., 1957, 29:74.
    
    [5] Blum K, Density Matrix Theory and Applications, Plenum, New York, 1981.
    
    [6] Lin S H, Alden R G, Islampour R, Ma H and Villaeys A A, Density Matrix Method and Femtosecond Processes, World Scientific, Singapore, 1991.
    
    [7] Pollard W T and Friesner R A, Solution of the reclfield equation for the dissipative quantum dynamics of multilevel systems, J. Chem. Phys., 1994, 100:5054.
    
    [8] Wangsness R K and Bloch F, The dynamical theory of nuclear induction, Phys. Rev., 1953, 89:728.
    
    [9] Redfield A G, The theory of relaxation processes, Adv. Magn. Reson., 1965, 1:1.
    [10] Redfield A G, On the theory of relaxation processes, J. Res. Dev, 1957, 1:19.
    
    [11] R.Zwanzig, Statistical Mechanics of Irreversibility, Vol. 3 of Lectures in Theoretical Physics, In-terscience, New York, 1961.
    
    [12] Argyres P N and Kelley P L, Theory of spin resonance and relaxation, Phys. Rev. A, 1964, 134:A98.
    
    [13] Albers J and Deutch J M, Redfield—langevin equation for nuclear spin relaxation, J. Chem. Phys., 1971,55:2613.
    
    [14] Yoon B, Deuth J M and Freed J H, A comparison of generalized cumulant and projection operator methods in spin-relaxation theory, J. Chem. Phys., 1975, 62:4687.
    
    [15] B.Fain, Theory of Rate Processes in Condensed Media, Springer, Berlin, 1980.
    
    [16] Fain B, Lin S H and Hamer N, Two-dimensional spectroscopy theory of nonstationary time- dependent absorption and it application to femtosecond processes, J. Chem. Phys., 1989, 91:4485.
    [17] Fain B and Lin S H, Space-time coherences induced by ultrashort electromagnetic pulses, J. Chem. Phys., 1990,93:6387.
    
    [18] Stock G and Domcke W, Theory of femtosecond pump-probe spectroscopy of ultrafast internal conversion processes in polyatomic molecules, J. Opt. Soc. Am. B, 1990, 7:1970.
    
    [19] Pollard W T and Mathies R A, Analysis of femtosecond dynamic absorption spectra of nonstation- ary states, Ann. Rev. Phys. Chem., 1992,43:497.
    
    [20] Mukamel S, Femtosecond optical spectroscopy: A direct look at elementary chemical events, Ann. Rev. Phys. Chem., 1990,41:647.
    
    [21] Khidekel V, Chernyak V and Mukamel S, Interplay of multiple vibrational spectral densities in femtosecond nonlinear spectroscopy of liquids, J. Chem. Phys., 1996, 105:8543.
    
    [22] Cho M, Fleming G R and Mukamel S, Nonlinear response functions for birefringence and dichro- ism measurements in condensed phases, J. Chem. Phys., 1993,98:5314.
    
    [23] Loring R F, Yan Y J and Mukamel S, Time-resolved fluorescence and hole-burning line shapes of solvated molecules: Longitudinal dielectric relaxation and vibrational dynamics, J. Chem. Phys., 1987, 87:5840.
    
    [24] Yan Y J, Fried L E and Mukamel S, Ultrafast pump-probe spectroscopy: femtosecond dynamics in liouville space, J. Phys. Chem., 1989,93:8149.
    
    [25] Fried L E and Mukamel S, A classical theory of pump-probe photodissociation for arbitrary pulse durations, J. Chem. Phys., 1990, 93:3063.
    
    [26] Yan Y J and Mukamel S, Pulse shaping and coherent raman spectroscopy in condensed phases, J. Chem. Phys., 1989,94:997.
    
    [27] Mukamel S, Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.
    
    [28] May V and Kiihn O, Charge Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Berlin, 1999.
    
    [29] Mancal T, Laser Pulse Control of Dissipative Dynamics in Molecular Systems, Ph.D. thesis, Humboldt-University zu Berlin, Germany, 2002.
    
    [30] J. von Neumann, Mathematische Begriindung der Quanlenmechani, Nachr. Ges. Wiss., Gotingen, 1927.
    
    [31] Li-Qing Dong, The ultrafast vibrational relaxation and internal conversion dynamics of the polyatomic molecules in liquids studied in femtosecond laser pulse, Ph.D. thesis, Dalian University of Technology, The People's Republic of China, 2008.
    [32] Kondov I S, Numerical Studies of Electron Transfer in System with Dissipation, Ph.D. thesis, Humboldt-University zu Berlin, Germany, 2003.
    
    [33] Fick E and Sauermann G, The Quantum Statistics of Dynamic Processes, Springer, New York, 1990.
    
    [34] Renger T, May V and Kiihn O, Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes, Phys. Rep., 2001, 343:137.
    
    [35] M. Petkovic, Inaugural Dissertation, Ph.D. thesis, der Freien Universi tat Berlin, 2004.
    
    [36] Blum K, Density Matrix Theory and Applications, Plenum Press, New York,2nd edition, 1989.
    
    [37] A. A. Villaeys J C V and Lin S H, Non-markovian effects on optical absorption, Proc. Natl. Acad. Sci. USA, 1991,43:5030.
    
    [38] Lavoine J P and Villaeys A A, Influence of non-markovian effects in degenerate four-wave-mixing processes, Phys. Rev. Lett., 1991, 67:2780.
    
    [39] Korolkov M V and Paramonov G K, State-selective vibrational excitation of diatomic molecules coupled to a quasiresonant environment: Markov approximation and non-markov approach, Phys. Rev. A, 1997,55:589.
    
    [40] Mancal T and May V, Non-markovian relaxation in an open quantum system polynomial approach to the solution of the quantum master equation, Eur. Phys. J. B, 2000, 18:633.
    
    [41] Mancal T, Bok J and Skala L, Short time de-excitation dynamics of a two-level electron system, non-perturbative solution of the master equation, J. Phys. A: Math. Gen, 1998, 31:9429.
    
    [42] Mancal T and May V, Interplay of non-markovian relaxation and ultrafast optical state preparation in molecular systems: The laguerre polynomial method, J. Chem. Phys., 2001, 114:1510.
    
    [43] Meier C and Tannor D J, Non-markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys., 1999, 111:3365.
    
    [44] Stratt R M and Maroncelli M, Nonreactive dynamics in solution: The emerging molecular view of solvation dynamics and vibrational relaxation,J. Phys. Chem., 1996, 100:12981.
    
    [45] Horng R M, Gardecki J A, Papazyan A and Maroncelli M, Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited, J. Phys. Chem., 1995,99:17311.
    
    [46] Maroncelli M and Fleming G R, Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation, J. Chem. Phys., 1987, 86:6221.
    
    [47] Weiner A M and Ippen E P, Femtosecond excited state relaxation of dye molecules in solution, Chem. Phys. Lett., 1985,114:456.
    [48] Brito C H, Cruz R L and Shank C V, Spectral hole burning in large molecules probed with 10 fs optical pulses, Chem. Phys. Lett., 1986, 132:341.
    
    [49] Taylor A J, Erskine D J and Tang C L, Femtosecond vibrational relaxation of large organic molecules, Chem. Phys. Lett., 1984, 103:430.
    
    [50] Wild W, Seilmeier A, Gottfried N H and Kaiser W, Ultrafast investigations of vibrationally hot molecules after internal conversion in solution, Chem. Phys. Lett., 1985, 119:259.
    
    [51] Laermer F, Elsaesser T and Israel W, Ultrashort vibronic and thermal relaxation of dye molecules after femtosecond ultraviolet excitation, Chem. Phys. Lett., 1989, 156:381.
    
    [52] Zewail A H, Femtochemistry: Recent progress in studies of dynamics and control reactions and their transition states, J. Phys. Chem., 1996, 100:12701.
    
    [53] Manz J and Castleman A W, Femtosecond chemistry: The berlin conference, J. Phys. Chem., 1993,97:12423.
    
    [54] Zhong Q, Wang Z, Liu Y, Zhu Q and Kong F, The ultrafast intramolecular dynamics of phthalo- cyanine and porphyrin derivatives, J. Chem. Phys., 1996, 105:5377.
    
    [55] Zhong Q, Wang Z, Sun Y, Zhu Q and Kong F, Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion, Chem. Phys. Lett., 1996, 248:277.
    
    [56] Liu J Y, Fan W H, Han K L, Xu D L and Lou N Q, Ultrafast dynamics of dye molecules in solution as a function of temperature, J. Phys. Chem. A, 2003, 107:1914.
    
    [57] Liu J Y, Fan W H, Han K L, Deng W Q, Xu D L and Lou N Q, Ultrafast vibrational and thermal relaxation of dye molecules in solutions, J. Phys. Chem. A, 2003, 107:10857.
    
    [58] He Y, Xiong Y, Zhu Q and Kong F, Ultrafast internal conversion and vibrational relaxation of butylphthalocyanine and tetraphenylporphyrin in solution, Acta Phys.-Chim. Sin., 1999, 15:636.
    
    [59] He Y, Xiong Y, Wang Z, Zhu Q and Kong F, Theoretical analysis of ultrafast fluorescence depletion of vibrational relaxation of dye molecules in solution, J. Phys. Chem. A, 1998, 102:4266.
    
    [60] He Y, Xiong Y, Wang Z, Zhu Q and Kong F, A theoretical study on ultrafast vibrational relaxation of dye molecule in solution, Acta Phys.-Chim. Sin., 1998, 14:115.
    
    [61] Wang Z H, Xiong Y J, Sun Y and ao Kong F, Femtosecond time resolved fluorescence depletion spectra of lds 751,SpectroscSpect Anal. 1999, 19:257.
    
    [62] Zhou L C, Liu J Y, Zhao G J, Shi Y, Peng X J and Han K L, The ultrafast dynamics of near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents, Chem. Phys., 2007, 333:179.
    
    [63] Shi Y, Liu J Y and Han K L, Investigation of the internal conversion time of the chlorophyll a from s_3, s_2 to s_1, Chem. Phys. Lett., 2005,410:260.
    [64] Shi Y, Liu J Y, Han K. L and Lou N, Direct measurement of conversion time of bacterio-chlorophyll a from the s-3 to s-1 state in pyridine solution, Chin. J. Chem. Phys, 2004, 17:1.
    
    [65] Gu X Z, Hayashi M, Suzuki S and Lin S H, Vibrational coherence and relaxation dynamics in the primary donor state of the mutant reaction center of rhodabacter capsulatus: theoretical analysis pump-probe stimulated emission, Biochim. Biophys. Acta, 1995, 1229:215.
    
    [66] Gelin M F, Egorova D and Domcke W, Time-resolved spontaneous emission beyond the doorway- window approximation, Chem. Phys., 2004, 301:129.
    
    [67] Egorova D, Gelin M F and Domcke W, Time- and frequency-resolved fluorescence spectra of nonadiabatic dissipative systems: What photons can tell us, J. Chem. Phys., 2005, 122:134504.
    
    [68] Egorova D, Thoss M, Domcke W and Wang H B, Modeling of ultrafast electron-transfer processes: Validity of multilevel redfield theory, J. Chem. Phys., 2003, 119:2761.
    
    [69] Egorova D, Ph.D. thesis. Institute of Physical and Theoretical Chemistry, Technical University of Munich, Germany, 2003.
    
    [70] Lin S H and Fain B, Ultrafast processes and transitionstate spectroscopy, Adv. Chem. Phys., 1990, 79:133.
    
    [71] Renger T and May V, Theory of multiple exciton effects in the photosynthetic antenna complex lhc-ii, J. Phys. Chem. B, 1997, 101:7232.
    
    [72] Dong L Q, Niu K and Cong S L, Theoretical analysis of femtosecond fluorescence depletion spectra and vibrational relaxations of dye oxazine 750 and rhodamine 700 molecules in acetone solution, Int. J. Quantum Chem., 2007, 107:1205.
    
    [73] Mishima K, Hayashi M, Lin J T, Yamashita K and Lin S H, A numerical study on vibronic and vibrational dynamics generated by chirped laser pulses in the presence of relaxation processes, Chem. Phys. Lett., 1999,309:279.
    
    [74] Schirrmeister D H and May V, Strong-field approach to ultrafast pump-probe spectra: dye molecules in solution, Chem. Phys., 1997, 220:1.
    
    [75] Malzahn D and May V, Floquet analysis of vibrational state preparation in an open molecular system, J. Phys. B: At. Mol. Opt. Phys., 1996, 29:2739.
    
    [76] Liu J Y, The Dynamics of Ultrafast Process in Liquids Studied by Femtosecond Laser, Ph.D. Thesis, Chinese Academy of Sciences, The People's Republic of China, 2003.
    
    [77] Renger T, Voigt J, May V and Kühn O, Dissipative exciton motion in a chlorophyll a/b dimer of the light harvesting complex of photosystem ii: Simulation of pump-probe spectra, J. Phys. Chem., 1996, 100:15654.
    
    [78] Kenkre V M, Tokmakoff A and Fayer M D, Theory of vibrational relaxation of polyatomic molecules in liquids, J. Chem. Phys., 1994, 101:10618.
    [79] Kühn O, May V and Schreiber M, Dissipative vibrational dynamics in a curve-crossing system, J. Chem. Phys., 1994,101:10404.
    
    [80] Fan M G, Photochemical Basic Principles and Photoni Cmaterials Science, Science Press, Beijing, 2001.
    
    [81] Blanchet V, Zgierski M Z, Seideman T and Stolow A, Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy, Nature, 1999,401:52.
    
    [82] Stolow A, Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules, Ann. Rev. Phys. Chem., 2003, 54:89.
    
    [83] Hare P M, Crespo-Hernandez C E and Kohler B, Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution, Proc. Natl. Acad. Sci. USA, 2007, 104:435.
    
    [84] Mataga N, Shibata Y, Chosrowjan H, Yoshida N and Osuka A, Internal conversion and vibronic relaxation from higher excited electronic state of porphyrins: Femtosecond fluorescence dynamics studies, J. Phys. Chem. B, 2000, 104:4001.
    
    [85] Jean J M, Friesner R A and Fleming G R, Application of a multilevel redfield theory to electrontransfer in condensed phases, J. Chem. Phys., 1992, 96:5827.
    
    [86] Suzuki Y, Stener M and Seideman T, Multidimensional calculation of time-resolved photoelectron angular distributions: The internal conversion dynamics of pyrazine, J. Chem. Phys., 2003,118:4432.
    
    [87] Stock G and Domcke W, Theory of femtosecond pump-probe spectroscopy of ultrafast internal conversion processes in polyatomic molecules, J. Opt. Soc. Am. B, 1990, 7:1970.
    
    [88] Yan Y J, Fried L E and Mukamel S, Ultrafast pump-probe spectroscopy: Femtosecond dynamics in liouville space, J. Phys. Chem., 1989,93:8149.
    
    [89] Shi Y, The Dynamics of Ultrafast Process of Chlorophyll a in Liquids Studied by Femtosecond Laser, Ph.D. thesis, Chinese Academy of Sciences, The People's Republic of China, 2005.
    
    [90] Dong L Q, Niu K and Cong S L, Theoretical analysis of internal conversion pathways and vibrational relaxation process of chlorophyll-a in ethyl ether solvent, Chem. Phys. Lett., 2007,440:150.
    
    [91 ] Dong L Q, Niu K and Cong S L, Theoretical study of vibrational relaxation and internal conversion dynamics of chlorophyll-a in ethyl acetate solvent in femtosecond laser fields, Chem. Phys. Lett.,2006, 432:286.
    
    [92] May V, Open system dynamics approach to polyatomic molecules:excitons in chromophore complexes. Int. J. Quantum Chem., 2006, 106:3056.
    
    [93] Sun Z, Jin Z, Lu J, Zhang D H and Lee S Y, Wave packet theory of dynamic stimulated raman spectra in femtosecond pump-probe spectroscopy, J. Chem. Phys., 2007, 126:174104.
    [94] Lai T I and Lim E C, Time-resolved fluorescence spectra and energy-resolved decays of vibroni- cally coupled electronic states: effects of solvent relaxation on the excited-state dynamics of thiox- anthone, Chem. Phys. Lett., 1981, 84:303.
    
    [95] Randall L and Therese M, A resonance raman investigation of the cation radical of chlorophyll a and several derivatives, J. Phys. Chem., 1990, 94:3968.
    
    [96] Potter ED, Herek JL, Perdersen S, Liu Q and Zewail A H, Femtosecond laser control of a chemical reaction, Nature, 1992,355:66.
    
    [97] Sinha A, Hsiao M C and Crim F F, Bond-selected bimolecular chemistry: H+hod(4nuoh)→od+h2, J. Chem. Phys., 1990, 92:6333.
    
    [98] Sinha A, Hsiao M C and Crim F F, Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms, J. Chem. Phys., 1991,94:4928.
    
    [99] Bronikowski M J, Simpson W R, Girard B and Zare R N, Bond-specific chemistry: Od:oh product ratios for the reactions h+hod(100) and h+hod(001), J. Chem. Phys., 1991, 95:8674.
    
    [100] Zewail A H, Femtochemistry: Atomic-scale dynamics of the chemical bond, J. Phys. Chem. A, 2000, 104:5660-5681.
    
    [101] Gerdy J J, M. Dantus R M B and Zewail A H, Femtosecond selective control of wave packet population, Chem. Phys. Lett., 1990, 171:1.
    
    [102] Bardeen C J, Yakovlev V V, Wilson K R, Carpenter S D, Weber P M and Warren W S, Feedback quantum control of molecular electronic population transfer, Chem. Phys. Lett., 1997, 280:151.
    
    [103] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science, 1998, 282:919.
    
    [104] Brixner T, Damrauer N H, Niklaus P and Gerber G, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature, 2001, 414:57.
    
    [105] Kohler B, Yakovlev V V, Che J W, Krause J L, Messina M, Wilson K R, Schwentner N, Whitnell R M and Yan Y J, Quantum control of wave packet evolution with tailored femtosecond pulses, Phys. Rev. Lett., 1995, 74:3360.
    
    [106] Marvet U and Dantus M, Femtosecond photoassociation spectroscopy: coherent bond formation, Chem. Phys. Lett., 1995,245:393.
    
    [107] Daniel C, Full J, Gonzalez L, Lupulescu C, Manz J, Merli A, Stefan Vajda and Woste L, Deciphering the reaction dynamics underlying optimal control laser fields, Science, 2003, 299:536.
    
    [108] Bryson A E and Ho Y, Applied Optimal Control, Hemisphere, New York, 1975.
    [109] Shi S and Rabitz H, Optimal control of selective vibrational excitation of harmonic molecules: Analytic solution and restricted forms for the optimal fields, J. Chem. Phys., 1990, 92:2927.
    
    [110] Jakubetz W, Manz J and Schreier H J, Theory of optimal laser pulses for selective transitions between molecular eigenstates, Chem. Phys. Lett., 1990, 165:100.
    
    [111] Jakubetz W, Lan B L and Parasuk V, Femtosecond Chemistry and Physics of Ultrafast Processes, World Scientific, Singapore, 1996.
    
    [112] Yan Y J, Gillian R E, Whitnell R M, Wilson K R and Mukamel S, Optical control of molecular dynamics: Liouville-space theory, J. Phys. Chem., 1993, 97:2320.
    
    [113] Judson R S and Rabitz H, Teaching lasers to control molecules, Phys. Rev. Lett., 1992, 68:1500.
    
    [114] Shi S, Woody A and Rabitz H, Optimal control of selective vibrational excitation in harmonic linear chain molecules, J. Chem. Phys., 1988, 88:6870.
    
    [115] Tannor D J and Rice S A, Control of selectivity of chemical reaction via control of wave packet evolution, J. Chem. Phys., 1985,83:5013.
    
    [116] Tannor D J, Kosloff R and Rice S A, Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations, J. Chem. Phys., 1986, 85:5805.
    
    [117] Amstrup B and Henriksen N E, Control of hod photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse, J. Chem. Phys., 1992, 97:8285.
    
    [118] Shapiro M and Brumer P, Laser control of product quantum state populations in unimolecular reactions, J. Chem. Phys., 1986, 84:4103.
    
    [119] Shapiro M and Brumer P, Controlled photon induced symmetry breaking: Chiral molecular products from achiral precursors, J. Chem. Phys., 1991, 95:8658.
    
    [120] Chen C, Yin Y Y and Elliott D S, Interference between optical transitions, Phys. Rev. Lett., 1990, 64:507.
    
    [121] Park S M, Lu S P and Gordon R J, Coherent laser control of the resonance-enhanced multiphoton ionization of hcl, J. Chem. Phys., 1991,94:8622.
    
    [122] Kohler B, Krause J L, Raksi F, Rose-Petruck C, Whitnell R M, Wilson K R, Jakovlev V V and Yan Y J, Mode-locking matter with light, J. Phys. Chem., 1993,97:12602.
    
    [123] Yan Y J and Xu R X, Quantummechanics of dissipative systems, Ann. Rev. Phys. Chem., 2004, 56:187.
    
    [ 124] Xu R X, Yan Y J, Ohtsuki Y, Fujimura Y and Rabitz H, Optimal control of quantum non-markovian dissipation: Reduced liouville-space theory, J. Chem. Phys., 2004, 120:6600.
    [125] Feng H, Liu Y, Zheng Y, Ding S and Ren W, Analytical control of small molecules by intense laser pulses in an algebraic model, Phys. Rev. A, 2007, 75:063417.
    
    [126] Korolkov M V, Logvin Y A and Paramonov G K, Laser control of ultrafast state-selective preparation of oh at high vibrational levels, J. Phys. Chem., 1996, 100:8070.
    
    [127] M. V. Korolkov and GKP and Schmidt B, State-selective control for vibrational excitation and dissociation of diatomic molecules with shaped ultrashort infrared laser pulses, J. Chem. Phys., 1996, 105:1862.
    
    [128] Korolkov M V, Manz J, Paramonov G K and Schmidt B, Vibrationally state-selective photoasso-ciation by infrared sub-picosecond laserr pulses: model simulations for o+h-oh( v ), Chem. Phys. Lett., 1996,260:604.
    
    [129] Korolkov M V, Manz J and Paramonov G K, Theory of ultrafast laser control for state-selective dynamics of diatomic molecules in the ground electronic state: vibrational excitation, dissociation, spatial squeezing and association, Chem. Phys., 1997, 217:341.
    
    [130] Jakubetz W, Just B, Manz J and Schreier H J, State-selective excitation of molecules by means of optimized ultrashort infrared laser pulses, J. Phys. Chem., 1993, 97:12609.
    
    [131] Jakubetz W, Just B, Manz J and Schreier H J, Mechanism of state-selective vibrational excitation by an infrared picosecond laser pulse studied by two techniques: fast fourier transform propagation of a molecular wave packet and analysis of the corresponding vibrational transitions, J. Phys. Chem., 1990, 94:2294.
    
    [132] Just B, Manz J and Paramonov G K, Series of ultrashort infrared laser pulses with analytical shapes for selective vibrational excitations. model simulations for oh( v =0)-oh( v=10), Chem. Phys. Lett., 1992, 193:429.
    
    [133] Manz J and Paramonov G K, Laser control scheme for state-selective ultrafast vibrational excitation of the water-d molecule, J. Phys. Chem., 1993, 97:12625.
    
    [134] Combariza J E, Just B, Manz J and Paramonov G K, Isomerizations controlled by ultrashort infrared laser pulses: model simulations for the inversion of ligands (h) in the double-well potential of an organometallic compound, [(c5h5)(co)2feph2], J. Phys. Chem., 1991, 95:10351.
    
    [135] Combariza J E, Gortler S, Just B and Manz J, Control of isomerizations by series of ultrafast infrared laser pulses. model simulations for semibullvalenes, Chem. Phys. Lett., 1992, 195:393.
    
    [136] Paramonov G K, Coherent control of linear and nonlinear multiphoton excitation of molecular vibrations, Chem. Phys., 1993, 177:169.
    
    [137] Paramonov G K, Selective preparation of the zeroth-order vibrational states in the hod molecule by ultrashort infrared laser pulses, Chem. Phys. Lett., 1996, 250:505.
    [138] Paramonov G K and Saalfrank P, Time-evolution operator method for non-markovian density ma- trix propagation in time and space representation: Application to laser association of oh in an environment, Phys. Rev. A, 2009, 79:013415.
    
    [139] Kaluza M, Muckerman J T, Gross P and Rabitz H, Optimally controlled five-laser infrared multi- photon dissociation of hf, J. Chem. Phys., 1994, 100:4211.
    
    [140] Andrianov I V and Paramonov G K, Selective excitation of the vibrational-rotational states and dissociation of diatomic molecules by picosecond infrared laser pulses: Modeling for hf in the ground electronic state, Phys. Rev. A, 1999, 59:2134.
    
    [141] Korolkov M V, Manz J and Paramonov G K, Theory of ultrafast laser control of isomerization reactions in an environment: Picosecond cope rearrangement of substituted semibullvalenes, J. Chem. Phys., 1996,105:10874.
    
    [142] Korolkov M V, Manz J and Paramonov G K, State-selective control for dissipative vibrational dynamics of hod by shaped ultrashort infrared laser pulses, J. Phys. Chem., 1996, 100:13927.
    
    [143] Paramonov G K, Beyvers S, Andrianov I and Saalfrank P, Mode-selective excitation of hydrogen atoms on a si surface: Non-markovian and markovian treatment of infrared laser driven dissipative quantum dynamics, Phys. Rev. B, 2009, 75:045405.
    
    [144] Buldakov M and Cherepanov V, The semiempirical dipole moment functions of the molecules hx (x = f, cl, br, i, o), co and no, J. Phys. B: At. Mol. Opt. Phys., 2004, 37:3973.
    
    [145] Yang W, Gong S, Li R and Xu Z, Coherent population accumulations of multiphoton transitions induced by an ultrashort pulse train in polar molecules, Phys. Rev. A, 2006, 74:013407.
    
    [146] Gradshteyn I and Ryzhik I, Table of Integrals, Series, and Products, Academic, New York, 1980.
    
    [147] Yoshizawa M, Hattori Y and Kobayashi T, Femtosecond time-resolved raman gain spectroscopy in polydiacetylene, Phys. Rev. B, 1994,49:13259.
    
    [148] Yoshizawa M, Aoki H and Hashimoto H, Vibrational relaxation of the 2a_g~- excited state in all- trans-β-carotene obtained by femtosecond time-resolved raman spectroscopy, Phys. Rev. B, 2001,63:180301(R).
    
    [149] McCamant D W, Kukura P and Mathies R A, Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy, J. Phys. Chem. A, 2003, 107:8208.
    
    [150] McCamant D W, Kukura P and Mathies R A, Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy, Appl. Spectrosc, 2003, 57:1317.
    
    [151] Kukura P, McCamant D, Yoon S, Wandschneider D and Mathies R A, Structural observation of the primary isomerization in vision with femtosecond-stimulated raman. Science, 2005, 310:1006.
    
    [152] Kukura P, Yoon S and Mathies R A, Femtosecond stimulated raman spectroscopy. Anal. Chem., 2006, 78:952.
    [153] Kukura P, McCamant D W and Mathies R A, Femtosecond stimulated raman spectroscopy, Ann. Rev. Phys. Chem., 2007,58:461.
    
    [154] Frontiera R R, Shim S and Mathies R A, Origin of negative and dispersive features in anti-stokes and resonance femtosecond stimulated raman spectroscopy, J. Chem. Phys., 2008, 129:064507.
    
    [155] McCamant D W, Kukura P and Mathies R A, Femtosecond broadband stimulated raman study of excited-state evolution in bacteriorhodopsin, J. Phys. Chem. B, 2005, 109:10449.
    
    [156] Kukura P, Frontiera R and Mathies R A, Direct observation of anharmonic coupling in the time domain with femtosecond stimulated raman scattering, Phys. Rev. Lett., 2006, 96:238303.
    
    [157] Sun Z, Lu J, Zhang D H and Lee S Y, Quantum theory of (femtosecond) time-resolved stimulated raman scattering, J. Chem. Phys., 2008, 128:144114.
    
    [158] Sun Z, Fu B, Zhang D H and Lee S Y, Theoretical investigation of the direct observation of anharmonic coupling in cdcl3 in the time domain with femtosecond stimulated raman scattering, J. Chem. Phys., 2009, 130:044312.
    
    [159] Moran A M, Park S and Scherer N F, Polarizability response spectroscopy: Formalism and simulation of ultrafast dynamics in solvation, Chem. Phys., 2007, 341:344.
    
    [160] Moran A M, Nome R A and Scherer N F, Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy, J. Chem. Phys., 2007, 127(18): 184505.
    
    [161] Ploetz E, Laimgruber S, Berner S, Zinth W and Gilch P, Femtosecond stimulated raman microscopy, Appl. Phys. B: Lasers Opt, 2007, 87:389.
    
    [162] Placzek G, in: Marx, E. (Ed.), Handbuch der Radiologie, Vol. 6, Academische Verlagsgesellschaft, Leipzig, 1934, pp. 205. English Translation by Ann Werbin, UCRL Trans-526(L).
    
    [163] Kramers H A and Heisenberg W, Uber die streuung von strahlung durch atome, Z. Phys., 1925, 31:681.
    
    [164] Dirac P A M, The quantum theory of dispersion, Proc. Roy. Soc, 1927, 114:710.
    
    [165] Long D A, The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley Sons, Chichester, 2002.
    
    [166] Lee S Y and Heller E J, Time-dependent theory of raman scattering, J. Chem. Phys., 1979, 71:4777.
    
    [167] Heller E J, Sundberg R L and Tannor D, Simple aspects of raman scattering, J. Phys. Chem., 1982, 86:1822.
    
    [168] Bloembergen N and Shen Y R, Coupling between vibrations and light waves in raman laser media, Phys. Rev. Lett., 1964, 12:504.
    [169] Shen Y R and Bloembergen N, Theory of stimulated brillouin and raman scattering, Phys. Rev., 1965, 137:A1787.
    
    [170] Lee S Y, Zhang D H, McCamant D W, Kukura P and Mathies R A, Theory of femtosecond stimulated raman spectroscopy, J. Chem. Phys., 2004, 121:3632.
    
    [171] Shim S, Stuart C M and Mathies R A, Resonance raman cross-sections and vibronic analysis of rhodamine 6g from broadband stimulated raman spectroscopy, ChemPhysChem, 2008, 9:697.
    
    [172] Harris R A, Mathies R A and Pollard W T, Simple interpretation of dephasing in absorption and resonance raman theory, J. Chem. Phys., 1986, 85:3744.
    
    [173] Shen Y R, Distinction between resonance raman scattering and hot luminescence, Phys. Rev. B, 1974,9:622.
    
    [174] McCamant D W, Kukura P, Yoon S W and Mathies R A, Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods, 2004,75:4971.
    
    [175] Stock G and Domcke W, Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump-probe spectroscopy, Phys. Rev. A, 1992,45:3032.
    
    [176] Lee S Y, in Femtosecond Chemistry, Vol. 1, Chap. 7, p. 273, VCH, Weinheim, 1995.
    
    [177] Seidner L, Stock G and Domcke W, Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes, J. Chem. Phys., 1995, 103:3998.
    
    [ 178] Tannor D J and Heller E J, Polyatomic raman scattering for general harmonic potentials, J. Chem. Phys., 1982,77:202.
    
    [179] Myers A B, Harris R A and Mathies R A, Resonance raman excitation profiles of bacteri- orhodopsin, J. Chem. Phys., 1983, 79:603.
    
    [180] Myers A B and Mathies R A, Biological Applications of Raman Spectroscopy: Resonance Raman Spectra of Polyenes and Aromatics, Vol. 2, pp. 1-58, Wiley, New York, 1987.
    
    [181] Pollard W T, Dexheimer S L, Wang Q, Peteaunu L A, Shank C V and Mathies R A, Theory of dynamic absorption spectroscopy of nonstationary states. 4. application to 12-fs resonant impulsive raman spectroscopy of bacteriorhodopsin, J. Phys. Chem., 1982, 96:6147.
    
    [182] Hizhnyakov V and Tehver I, Theory of resonant secondary radiation due to impurity centres in crystals, 1967,21:755.
    
    [ 183] Lee S Y and Yeo R C K, A transform from absorption to raman excitation profile. a time-dependent approach, Chem. Phys. Lett., 1994, 221:459.
    
    [ 184] Peticolas W L and Rush T I, Ab initio calculations of the ultraviolet resonance raman spectra of uracil, J. Comput. Chem., 1995, 16:1261.
    [185] Guthmuller J and Champagne B, Resonance raman scattering of rhodamine 6g as calculated by time-dependent density functional theory: Vibronic and solvent effects, J. Phys. Chem. A, 2008, 122:3215.
    
    [186] Guthmuller J and Champagne B, Resonance raman spectra and raman excitation profiles of rhodamine 6g from time-dependent density functional theory, ChemPhysChem, 2008, 9:1667.
    
    [187] Sun Z, Qiu X Q, Lu J, Zhang D H and Lee S Y, Three-state model for femtosecond broadband stimulated raman scattering, J. Raman Spectrosc, 2008, 39:1568.
    
    [188] Myers A B, Mathies R A, Tannor D J and Heller E J, Excited state geometry changes from preres- onance raman intensities: Isoprene and hexatriene, J. Chem. Phys., 1982, 77:3857.
    
    [189] Myers A B, Resonance raman intensity analysis of excited state dynamics, Acc. Chem. Res., 1997, 30:519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700