激光成像雷达目标识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的发展,激光成像雷达在现代战争复杂战场环境中逐渐获得了广泛的应用,其相关目标识别技术已成为国内外研究的热点问题。本文基于激光成像雷达距离像,围绕噪声抑制、图像分割和目标分类与识别这三个方面展开深入研究。论文的主要内容如下:
     绪论部分首先阐述了论文的研究背景及意义,然后概述了激光成像雷达目标识别的研究现状及存在的问题,最后介绍论文的主要工作。
     第二章研究了距离像噪声抑制。针对距离像中距离反常的形成机理和噪声特性,提出了三种距离反常噪声抑制算法。(1)提出了基于排序差分和自适应中值滤波的距离反常噪声抑制算法,通过对大滤波窗口内的像素值进行排序差分,选择低于门限的最大连续差分值所对应的像素值作为距离正常值,实现对距离反常噪声的自适应中值滤波。(2)提出了基于最优参数自适应中值滤波的距离反常噪声抑制算法,通过计算当前像素值与中值的差,再与两个门限比较来获取滤波结果。(3)提出了基于包围准则的距离反常噪声抑制算法,根据包围准则检测噪声,结合中值滤波和加权均值滤波,达到噪声抑制目的。实验结果表明,这三种算法都能够有效抑制距离反常噪声,同时保护目标的边缘细节信息。
     第三章研究了距离像图像分割。针对经典边缘检测算子在检测距离像边缘与分割距离像时的功能局限,提出了两种改进算法。(1)提出了基于Canny算子的深度区域边缘检测算法,先利用排序差分初步分割,再采用Canny算子检测边缘信息并修正,提取出完整的目标轮廓边缘。(2)提出了基于边缘控制区域生长的图像分割算法,自主选取目标区域的生长起始点,并利用目标轮廓边缘控制区域生长过程,实现了完整目标区域的图像分割。实验结果表明,将两种算法组合应用于激光雷达距离像,能够收到较好的图像分割效果。
     第四章研究距离像目标分类与识别。基于图像特征和模型匹配两种技术途径提出了几种距离像识别算法。基于图像特征的技术途径,提出了四种距离像识别算法:(1)提出了基于奇异值特征的距离像识别算法,通过分析识别率与奇异值特征数目的关系,找出有效特征并应用最优参数支持向量机进行分类识别。(2)提出了基于小波变换的距离像识别算法,先对距离像进行二维小波变换,然后从近似分量和细节分量中提取分类特征,应用最优参数支持向量机进行分类识别。(3)提出了基于矩特征的距离像识别算法,分别从距离像中提取Hu矩和Zernike矩特征,作为输入矢量训练RBF神经网络实现分类识别。(4)提出了基于纹理特征的距离像识别算法,通过计算距离像的灰度共生矩阵,提取出13个纹理特征作为输入矢量训练RBF神经网络用于分类识别。根据模型匹配的原理,提出了一种基于模型匹配的距离像识别算法,包括矩形估计、模型匹配和相似度测量三个主要步骤:(1)提出了SLEC矩形估计算法,通过将点云栅格化得到二值图像并以形态学闭运算填充内部孔洞,采用Sobel算子提取边界并用Hough变换得到其角度参数,以边界直线的角度为约束条件寻找面积最小矩形得到目标的方向和尺寸估计。(2)提出了一种改进迭代最近点算法,将标准ICP算法点与点之间的匹配扩展到点与面之间的匹配,通过寻找达到点云和CAD模型之间欧氏距离之和最小的刚体变换实现精确匹配。(3)提出了一种点云和CAD模型之间的目标相似度测量方法,将归一化欧氏距离作为相似性的测度,据此实现目标的分类识别。仿真实验表明,这几种距离像识别算法均取得了较好的识别效果。
     结束语总结了论文的创新性成果,并给出下一步的研究方向。
With the development of laser technology, laser imaging radar was gradually gained wide application in complicated battlefield of modern warfare. The target recognition technology for laser imaging radar has become a hot issue at home and abroad. This dissertation researches on the target recognition technology for laser imaging radar range image, which includes the noise reduction, the image segmentation, and the target classification and recognition. The main contributions of the dissertation are demonstrated as follows:
     In the introduction, firstly, the research background and significance of this dissertation are set forth. Then the research state and problem of laser imaging radar target recognition are summarized. Finally, the main work of this paper is introduced.
     In chapter 2, the noise reduction of range image is studied. Based on the formation mechanism and noise characteristic of rang anomalies in range image, three types of noise reduction algorithm is proposed. (1) A range anomalous suppression algorithm based on differential sorting and adaptive median filter is proposed. Firstly, the sorting and difference are carried out for pixels with big filtering window. Then, the pixels corresponding to the maximum continuous difference value below threshold are regarded as normal range values. Finally, a self-adaptive median filtering is carried out for range anomalies. (2) A range anomalies reduction algorithm based on parameter optimization adaptive median filter is proposed. The filtering value is achieved by calculating the difference between present pixel and median and comparing the difference with two thresholds. (3) A range anomalies reduction algorithm of laser imaging radar range image based on surrounding criterion is proposed. Firstly, the noise is detected based on surrounding criterion. Then using a combining median filter with weighted mean filter, the noise reduction is carried out on range image. The experimental results show that the range anomalies noises can be efficiently suppressed based on these three algorithms and the detail of object in range image is well protected.
     In chapter 3, the image segmentation of range image is studied. According to the functional limitations of classical edge detection operators in detecting the edge of range image and segmenting the range image, two improved algorithm are proposed. (1) An edge detection method of depth region based on Canny operator is proposed. Firstly, the initial segmentation is carried out by using sort differential operator. Then, the edge detection and correction is carried out based on Canny operator. Finally, the contour edge of object is extracted completely. (2) An image segmentation method based on edge control region growth is proposed. Firstly, the initial pixel of edge region growth is automatically selected, and then the region growth process is dominated based on object contour edge. Finally, the image segmentation of integral target region is realized. Experimental results show that combining these two methods can gain good image segment effect of laser imaging radar range image.
     In chapter 4, the target classification and recognition of range image is studied. According to two technical approaches (image features and model matching), some recognition algorithms of range image are proposed. Based on image features, four recognition algorithms of range image are proposed. (1) A recognition algorithm of range image based on singular value feature is proposed. According to the relationship between recognition rate and the number of singular value feature, important features are obtained. Then, target recognition is carried out using the support vector machines of optimal parameter. (2) A recognition algorithm of range image based on wavelet transform is proposed. Firstly, two dimensional wavelet transform of range image is carried out. Then features are extracted from approximate part and detail part. Finally the target is identified using the support vector machines of optimal parameter. (3) A recognition algorithm based on moment feature is proposed. Firstly, Hu moment and Zernike moment features of range images are extracted separately. Then the target is identified using the RBF neural network. (4) A recognition algorithm based on texture feature is proposed. Thirteen texture features based on Gray Level Co-occurrence Matrix are extracted from range image. Then the target is identified using the RBF neural network. According to model matching principle, a recognition algorithms of range image is proposed, including three major steps: rectangle estimation, model matching and similarity measure. (1) A SLEC rectangle estimation algorithm is proposed. Firstly, a binary image is got by rasterizing point cloud and the internal holes are filled through morphological closing operation. Then, the edge is extracted based on Sobel operator and angle parameters are got by Hough transform. Finally, the target direction and size estimation are got by searching the smallest rectangle with constraint of the boundary line angle. (2) A modified ICP algorithm is proposed. The standard ICP algorithm only matches point to point, while the modified ICP algorithm is expanded to matching point and surface. The accurate matching is carried out a rigid body transformation which searches the minimum euclidean distance between the point cloud and CAD models. (3) To measure the similarity between target point cloud and CAD models, a measurement algorithm is proposed which using the normalized euclidean distance as similarity measure. The target recognition is based on this similarity measure. Experimental results show that these recognition algorithms have good recognition results.
     Finally, the innovation of this paper is summarized. The last chapter also discusses the future work to be further researched.
引文
[1]马超杰,许鹏程,吴丹,杨华.成像激光雷达在自动目标识别中的应用[J].航空兵器, 2008(4): 3~10.
    [2]梅遂生等.光电子技术--信息化武器装备的新天地(第2版) [M].北京:国防工业出版社, 2008.
    [3]黄培康,袁起,朱振福,费锦东.光学精确制导技术的发展现状与展望[J].红外与激光工程, 2007, 36(Z2): 1~6.
    [4]安东,任思聪,郑谬.图像辅助的惯性导航系统[J].系统工程与电子技术, 1996, 18(3): 62~67.
    [5]王广君,田金文,柳健.激光成像雷达在飞行器避障过程中的应用[J].电波科学学报, 2001, 16(2): 249~251.
    [6] Steinvall O, Carlsson T, Larsson C G H, Andersson P, et al. Laser based 3-D imaging new capabilities for optical sensing [R]. FOI, Sweden: FOI-R--0856-SE, ISSN 1650-1942, 2003.
    [7]胡春生.脉冲半导体激光器高速三维成像激光雷达研究[D].长沙:国防科技大学博士学位论文, 2005.
    [8]孙志慧,邓甲昊,闫小伟.国外激光成像探测系统的发展现状及其关键技术[J].科技导报, 2008, 26(3): 74~79.
    [9]王春晖,成向阳,田兆硕,李宁等. CO2激光主动成像雷达扫描成像实验[J].中国激光, 2002, 29(6): 569~572.
    [10]曾宪林,田新伟. CO2激光相干成像雷达及其在精确制导中的应用前景[J].红外技术, 2000, 22(4): 42~46.
    [11]赵远,蔡喜平,陈锺贤,韩权.成像激光雷达技术概述[J].激光与红外, 2000, 30(6): 328~330.
    [12]刘立宝,蔡喜平,乔立杰,杨洋.激光主动成像制导雷达的研究方向[J].红外与激光工程, 2000, 29(2): 36~40.
    [13] Savage J C, O'Neal J K, Brown R A. Powered low cost autonomous attack system: a network-centric munition concept demonstration [A]. in Defense Transformation and Network-Centric Systems [C], 2006, Orlando, FL, USA, SPIE Vol. 6249: 0B-1~0B-11.
    [14]李洪儒,吴甲生,马洪忠.低成本自主攻击系统的先进技术浅析[J].飞航导弹, 2007(7): 8~11.
    [15]李自勤,李金新,王骐.激光雷达距离像背景抑制算法研究[J].中国激光, 2005, 32(11): 1469~1472.
    [16]熊辉飞.激光雷达[M].北京:宇航出版社, 1994.
    [17]戴永江.激光雷达原理[M].北京:国防工业出版社, 2002.
    [18] Der S Z, Redman B, Chellappa R. Simulation of error in optical radar range measurements [J]. Applied Optics, 1997, 36(27): 6869~6874.
    [19]蒋立辉,王春晖,王骐,尚铁良.脉冲相干激光雷达的散斑成像模型及其散斑噪声压缩[J].光学学报, 2000, 20(12): 1623~1628.
    [20]李自勤,李琦,王骐.由统计特性分析激光主动成像系统图像的噪声性质[J].中国激光, 2004, 31(9): 1081~1085.
    [21]李自勤,王骐,李琦等.激光成像雷达系统中散斑像的乘法模型及其滤除[J].中国激光, 2003, 30(8): 717~720.
    [22] Verly J G, Delanoy R L. Model-based automatic target recognition (ATR) system for forwardlooking groundbased and airborne imaging laser radars (LADAR) [J]. Proceedings of the IEEE, 1996, 84(2): 126~163.
    [23]王祥科.小型化激光主动成像系统研究[D].长沙:国防科技大学,硕士学位论文, 2007.
    [24]阮秋琦,阮宇智.数字图像处理[M].北京:电子工业出版社, 2006.
    [25] Saban I, Faibish S. Image processing techniques for laser images [A]. in Proceedings of CCECE 96 [C], 1996: 462~465.
    [26]王永珍.相干激光成像雷达距离像噪声抑制与边缘检测算法研究[D].哈尔滨:哈尔滨工业大学硕士论文, 2005.
    [27] Green T J, Shapiro J H. Maximum-likelihood laser radar range image profiling with the expectation-maximization algorithm [J]. Opt. Eng, 1992, 31(11): 2349~2354.
    [28] Greer D R, Fung I, Shapiro J H. Maximum-likelihood multiresolution laser radar range imaging [J]. IEEE transations on image processing, 1997, 6(1): 36~46.
    [29] Umasuthan M, Wallace A M. Outlier removal and discontinuity preserving smoothing of range data [A]. in IEE Proc.-Vis. Image Signal Process [C], 1996, 143(3): 191~200.
    [30] Acton S T. Multigrid anisotropic diffusion [J]. IEEE Transaction on Image Processing, 1998, 7(3): 284~287.
    [31] Torkamani-Azar F, Tait K E. Image recovery using the anisotropic diffusion equation [J]. IEEE Transaction on Image Processing, 1996, 5(11): 1573~1578.
    [32] Lin Z C, Shi Q Y. An anisotropic diffusion PDE for noise reduction and thin edge preservation [A]. in Proc Tenth International Conference on Image Analysis and Processing [C], 1999, Venice, Italy.
    [33]沈严,杨志卿.距离图像的分层滤波处理算法[J].西安电子科技大学学报(自然科学版), 2003, 30(1): 136~140.
    [34]李自勤,王骐,李琦,孙剑峰.相干激光雷达距离像噪声机理及距离反常抑制[J].中国激光, 2005, 32(3): 356~360.
    [35]李琦,王永珍,王骐,李自勤.相干激光雷达距离像的噪声抑制算法研究[J].光学学报, 2005, 25(5): 581~584.
    [36]李琦,王骐,李自勤,李霖, et al. CO2激光成像雷达图像处理分析[J].中国激光, 2002, 29(9): 826~828.
    [37]熊先越,张汗灵.基于边缘检测的空间自适应小波去噪[J].计算机工程与应用, 2006(07): 59~61.
    [38]徐效文.应用激光主动成像探测小暗目标的技术研究[D].长春,中国科学院光学精密机械与物理研究所,博士学位论文, 2004.
    [39]章毓晋.图像工程(第二版) [M].北京:清华大学出版社, 2007.
    [40]张小红.机载激光雷达测量技术理论与方法[M].武汉:武汉大学出版社, 2007.
    [41]孙龙祥,程义民,王以孝等.深度图像分析[M].北京:电子工业出版社, 1996.
    [42]李琦,傅俊诚,李自勤等.激光雷达含噪图像边缘检测算法比较[J].红外与激光工程, 2003, 32(3): 239~243.
    [43]赖旭东,万幼川.机载激光雷达距离图像的边缘检测研究[J].激光与红外, 2005, 35(6): 444~446.
    [44]唐四春,袁保宗.基于拓扑图及三维特征的三维物体识别方法[J].通信学报, 1993, 14(2): 35~39.
    [45]杨烜,梁德群.基于边缘视觉描述的自适应多尺度小波边缘检测方法[J].电子科学学刊, 1998, 20(6): 721~725.
    [46]邓世伟,袁保宗.基于数学形态学的深度图象分割[J].电子学报, 1995, 23(4): 6~9.
    [47] Bellon O R P, Silva L. New improvements to range image segmentation by edge detection [J]. IEEE Signal Processing Letters, 2002, 9(2): 43~45.
    [48] Sappa A D, Devy M. Fast range image segmentation by an edge detection strategy [A]. in Proceeding of 3rd International Conference on 3D Digital Imaging and Modeling [C], 2001, Quebec: 292~299.
    [49] Besl P J, Jain R C. Segmentation through variable-order surface fitting [J]. IEEE Trans. PAMI, 1988, 10(2): 167~192.
    [50] Zhu S C, Yuille A. Region competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9): 884~900.
    [51]张涛,平西建,柳葆芳等.一种深度图像中的表面曲率估计算法[J].数据采集与处理, 2001, 16(1): 47~51.
    [52] Schmitt F, Chen X. Fast segmentation of range images into planar regions [J]. Computer Vision, Graphics and Image Processing, 1989, 45(1): 42~60.
    [53] Hoover A, Baptiste G J, Jiang X. An experimental comparison of range image segmentation algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 18(7): 673~689.
    [54] Lavalle S M, Hutchinson S A. A Bayesian segmentation methodoloy for parametric image models [J]. IEEE Trans on PAMI, 1995, 17(2): 211~217.
    [55] Jolion J M, Meer P, Bataouche S. Robust clustering with application in computer vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 791~802.
    [56]丁益洪,平西建,胡敏.基于随机Hough变化的深度图像分割[J].计算机辅助设计与图形学学报, 2005, 17(5): 902~907.
    [57]向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报, 2003, 14(7): 1250~1257.
    [58] Hu G, Stockman G. Representation and segmentation of a cluttered scene using fused edge and surface data [A]. in Proc. IEEE Conf. Comput. Vision Patern Recog [C], 1989: 313~318.
    [59] Yokoya N, Levine M D. Range image segmentation based on differential geometry: a hybrid approah [J]. IEEE Trans on PAMI, 1989, 11(6): 643~649.
    [60] Chu C C, Aggarwal J K. The integration of image segmentation maps using region and edge information [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(12): 1241~1252.
    [61] Lim A W T, Tech E K, Mital D P. Edge detection in range images with multiple window operators [J]. IEEE Trans Pattern Anal, 1992, 1(3): 11~15.
    [62]郭雷.宽带雷达目标极化特征提取与核方法识别研究[D].长沙:国防科技大学博士学位论文, 2009.
    [63] Holmes Q A, Zhang X, Zhao D. Multi-resolution surface feature analysis for automatic target identification based on laser radar images [A]. in Proceedings of International conference on Image Processing [C], 1997, Sanfa Barbara, CA, USA: 468~471.
    [64] Philomin V, Harwood D, Davis L S. Appearance-based automatic target recognition in overhead LADAR range imagery [A]. in Proceedings of the 14th International Conference on Pattern Recognition [C], 1998, 2: 1320~1324.
    [65] deFigueiredo R J P, Kehtarnavaz N. Model-based orientation independent 3-D machine vision techniques [J]. IEEE Trans on Aerospace and Electronic Systems, 1988, 24(5): 597~607.
    [66] Stein F, Medioni G. Structural indexing: Efficient 3-D object recognition [J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(2): 125~144.
    [67] Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(5): 433~449.
    [68] Sun Y, Paik J, Koschan A. Point fingerprint: a new 3-D object representation scheme [J]. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 2003, 33(4): 712~717.
    [69] Hu M. Visual pattern recognition by moment invariant [J]. IRE Trans on Inf.Theory, 1962, 1(2): 179~87.
    [70] Schwartz E L. Spatial mapping in the primate sensory projection: analytic structure and relevance to perception [J]. Biol. Cybernetics, 1977, 25(4): 181~194.
    [71] Kadyrov A, Petrou M. The trace transform and its application [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(8): 811~828.
    [72] Teague M. Image analysis via the general theory moments [J]. J. Opt. Soe. Am., 1980, 70(8): 920~930.
    [73] Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition [J]. Optical Society of America, 1994, 11(6): 1748~1757.
    [74] Shen D, Ip H H S. Discriminative Wavelet Shape Descriptors for Recognition of 2-D Pattern [J]. Pattern Recognition, 1999, 32(2): 151~165.
    [75] Green T J, Shapiro J H. Detecting objects in three-dimensional laser radar range images [J]. Optical Engineering, 1994, 33(3): 865~874.
    [76] Lanterman A D. A Jump-diffusion algorithm for multiple target recognition using laser radar range data [J]. Optical Engineering, 2001, 40(8): 1724~1728.
    [77] Zhou X, DeVore M D. Shape recognition from point measurement with range and direction uncertainty [J]. Optical Engineering, 2005, 44(12): 127~202.
    [78] DeVore M D, Zhou X. Minimum probability of error recogntion of three-dimensional laser-scanned targets [A]. in Automatic Target Recognition XVI [C], 2006, Kissimmee, Florida, USA, SPIE vol. 6234: 07-1~07-11.
    [79] Garten H, Tal Y, Swirski Y, Imber A. Recognition of tanks in laser radar(LADAR) images [A]. in Military Remote Sensing [C], 2004, London, UK, SPIE Vol. 5613: 166~176.
    [80] Soliday S W, Perona M T, McCauley D G. Hybrid fuzzy-neural classifier for feature level data fusion in LADAR autonomous target recognition [A]. in Automatic Target Recognition XI [C], 2001, Orlando, FL, USA, SPIE Vol. 4379: 66~77.
    [81] Pal N R, Cahoon T C, Bezdek J C, Pal K. A new approach to target recognition for LADAR data [J]. IEEE trans. on Fuzzy Systems, 2001, 9(1): 44~52.
    [82]孙剑峰,李琦,陆威,王骐.基于数字信号处理器的激光成像雷达目标识别算法实现[J].中国激光, 2006, 33(11): 1467~1471.
    [83]孙剑峰,李琦,陆威等.相关滤波器与支持向量机结合的激光成像雷达目标识别算法[J].激光与红外工程, 2008, 37(5): 916~919.
    [84] Sun J F, Li Q, Wang Q. Object recognition of ladar with support vector machine [A]. in Infrared Components and Their Applicaions [C], 2005, Beijing, China, SPIE Vol. 5640: 434~439.
    [85] Sun J F, Lu W, Li Q, Wang Q, et al. Correlation target recognition for laser radar [A]. in ICO20: Optical Information Processing [C], 2006, SPIE Vol. 6027: 1~7.
    [86] Sun J F, Lu W, Li Q, Wang Q. Target recognition of laser radar using correlation filter with in-plane rotation invariance [A]. in Multispectral Image Processing [C], 2007, SPIE Vol. 6787: 1F-1~1F-6.
    [87] Dudgeon D E, Verly J G, Delanoy R L. An experimental target recognition system for airborne laser radar imagery [A]. in IEEE International Conference on Systems Engineering [C], 1990, Pittsburgh, PA, USA: 478~481.
    [88] Zheng Q F, Der S Z, Mahmoud H I. Model-Based Target Recognition in Pulsed Ladar Imagery [J]. IEEE Trans on Image Processing, 2001, 10(4): 565~572.
    [89] Youmans D G, Hart G A. Three-dimensional template correlations for direct-detection laser-radar target recognition [R]. Chelmsford, MA, USA: Schafer Corp, ADA390244, 1999.
    [90] Forman A V, Sullivan J D J, Chang A W. Parallel algorithm for automatic target recognition using radar imagery [A]. in Advanced Signal Processing Algorithms Architectures, and Implementations [C], 1990, San Diego, CA, USA, SPIE Vol. 1348: 493~502.
    [91] Perona M T. Abhijit Mahalanobis. LADAR automatic target recognition using correlation filters [A]. in Automatic Target Recognition IX [C], 1999, Orlando, FL, USA, SPIE Vol. 3718: 388~396.
    [92] Armbruster W. Comparison of deterministic and probabilistic model matching techniques for laser radar target recognition [A]. in Automatic Target Recognition XV [C], 2005, Orlando, FL, USA, SPIE Vol. 5807: 233~240.
    [93] Koksal A E, Shapiro J H, Wells W M. Model-based object recognition using laser radar range imagery [A]. in Automatic Target Recognition IX [C], 1999, Orlando, FL, USA, SPIE Vol. 3718: 256~266.
    [94] Vasile A N, Marino R M. Pose-independent automatic target detection and recognition using 3D laser radar imagery [J]. Lincoln Laboratory Journal, 2005, 15(1): 61~78.
    [95] Zhou X, Devore M D. Analysis of data and model accuracy requirements fortarget classification using ladar data [J]. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(4): 1417~1432.
    [96]任建国.半导体激光成像雷达接收电路的研制[D].长沙:国防科技大学硕士学位论文, 2005.
    [97]王曦.激光成像雷达目标实时探测与处理的研究[D].成都:电子科技大学硕士学位论文, 2000.
    [98]李洪儒,吴甲生,马洪忠.成像激光雷达及其在小型弹药上的应用[J].飞航导弹, 2007(5): 47~49.
    [99] Keller J M, Gader P, Krishnapuram R, Wang X, et al. A fuzzy logic automatic target detection system for LADAR range images [A]. in Fuzzy systems Proceedings of IEEE international conference on computational intelligence [C], 1998, 1: 71~76.
    [100]王海虹,曾妮,陆威,王骐.基于小波变换和数学形态学的激光成像雷达图像边缘检测[J].中国激光, 2008, 35(6): 903~906.
    [101]沈婷梅,顾瑛,王天时,马国江.光学相干层析成像中散斑噪声减小算法[J].中国激光, 2008, 35(9): 1437~1440.
    [102]卢京晶,方中华,孙胜利.一种自适应的加权均值滤波器[J].传感技术学报, 2005, 18(4): 880~882.
    [103]郎锐.数字图像处理学Visual C++实现[M].北京:北京希望出版社, 2003.
    [104]陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社, 2005.
    [105]何明一,卫保国.数字图像处理[M].北京:科学出版社, 2008.
    [106]刘榴娣,刘明奇,党长民.实用图像处理[M].北京:北京理工大学出版社, 2003.
    [107]曹茂永等.数字图像处理[M].北京:北京大学出版社, 2007.
    [108]陈传波,金先级.数字图像处理[M].北京:机械工业出版社, 2004.
    [109] Steinvall O, Carllsson T. Three-dimensional laser radar modeling [A]. in Proc. of SPIE 4377 [C], 2001: 701-710.
    [110] Gineken B, Stavridi M, Koenderink J J. Diffuse and speckular reflectance from rough surfaces [J]. Applying Optics, 1998, 37: 130-139.
    [111]赖旭东,万幼川.一种针对激光雷达强度图像的滤波算法研究[J].武汉大学学报(信息科学版), 2005, 30(2): 158~160.
    [112]陈哲,李琦,王骐.相干激光雷达距离像背景抑制方法比较和分析[J].激光与红外, 2006, 36(12): 1120~1123.
    [113]李俊山,李旭辉.数字图像处理[M].北京:清华大学出版社, 2007.
    [114]吴镇扬,周琳.数字信号与图像处理[M].北京:高等教育出版社, 2006.
    [115] Mashor M Y, Osman M, Arshad M R. 3D Object recognition using 2D moments and HMLP network [A]. in Proceedings of the International Conference on Computer Graphics, Imaging and Visualization (CGIV'04) [C], 2004, Washington, IEEE Computer Society: 126~130.
    [116]孙洁,马惠敏,李凤亭.基于仿射不变性特征的视点空间划分[J].清华大学学报(自然科学版), 2009, 49(1): 53~56.
    [117]杨蕊红,潘泉,程咏梅.三维飞机目标识别的一种新方法[J].计算机仿真, 2006, 23(6): 82~84, 216.
    [118]王松伟,李言俊,张科.基于局部小波矩的易混淆三维目标识别[J].红外与激光工程, 2008, 37(6): 1106~1110.
    [119]王松伟,薛淑磊.基于混合特征提取的易混淆三维目标识别研究[J].计算机测量与控制, 2008, 16(7): 1036~1039.
    [120] Mahalanobis A, Nevel A J V. Performance of multidimensional algorithms for target detection in ladar imagery [A]. in Algorithms and Systems for Optical Information Processing VI [C], 2002, Seattle, WA, USA, SPIE Vol. 4789: 134~147.
    [121] Gr?nwall C, Chevalier T R, Persson A. Methods for recognition of natural and man-made objects using laser radar data [A]. in Laser Radar Technology and Applications IX [C], 2004, Orlando, FL, USA, SPIE Vol. 5412: 310~320.
    [122] Gr?nwall C, Gustafsson F, Millnert M. Ground target recognition using rectangle estimation [J]. IEEE Transactions on Image Processing, 2006, 15(11): 3401~3409.
    [123] Gr?nwall C, Anderson P, Gustafsson F. Least squares fitting of articulated objects [A]. in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) [C], 2005, Washington, IEEE Computer Society: 116.
    [124] Neulista J, Armbruster W. Segmentation, classification and pose estimation of military vehicles in low resolution laser radar images [A]. in Laser Radar Technology and Applications X [C], 2005, Orlando, FL, USA, SPIE vol. 5791: 218~225.
    [125]吴翊,李超,罗建书等.应用数学基础[M].北京:高等教育出版社, 2006.
    [126]徐伯勋,白旭滨,傅孝毅.信号处理中的数学变换和估计方法[M].北京:清华大学出版社, 2004.
    [127] Vapnik(张学工译).统计学习理论的本质[M].北京:清华大学出版社, 2000.
    [128] Cortes C, Vapnik V N. Support-vector networks [J]. Machine Learning, 1995, 20: 1~25.
    [129]焦李成,张向荣,侯彪等.智能SAR图像处理与解译[M].北京:科学出版社, 2008.
    [130]吴翊,屈田兴.应用泛函分析[M].长沙:国防科技大学出版社, 2002.
    [131]杜卓明,冯静.改进遗传算法和支持向量机的特征选择算法[J].计算机工程与应用, 2009, 45(29): 28~30.
    [132]冯静,舒宁.改进型遗传算法和支持向量机的波段选择研究[J].武汉理工大学学报, 2009, 31(18): 120~123.
    [133]郑春红,焦李成,郑贵文.基于GA的遥感图像目标SVM自动识别[J].控制与决策, 2005, 20(11): 1212~1215, 1220.
    [134]鲜明,庄钊文,郭桂蓉,肖顺平等.基于时频分析的飞机目标识别[J].国防科技大学学报, 1997, 19(3): 7~11.
    [135]张贤达.现代信号处理[M].北京:清华大学出版社, 2002.
    [136]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社, 2004.
    [137]成礼智,郭汉伟.小波与离散变换理论及工程实践[M].北京:清华大学出版社, 2005.
    [138]陈三宝,闫军.基于小波变换的一种多普勒雷达目标识别方法[J].武汉交通科技大学学报, 2000, 24(3): 233~236.
    [139]葛哲学,陈仲生. Matlab时频分析技术及其应用[M].北京:人民邮电出版社, 2006.
    [140] Khotanzad A. Zernike moment based rotation invariant features for pattern recognition [A]. in SPIE Conference on Intelligent Robots and Computer Vision [C], 1988, Combridge, MA, USA, SPIE V01.1002: 212~219.
    [141] Prokop R J, Reeves A P. A survey of moment-based techniques for unoccluded object representation and recognition [J]. Graphical Models and Image Processing, 1992, V01.54(5): 438~460.
    [142] Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments [J]. IEEE Trans on Pattem Analysis and Machine Intelligence, 1990, 12(5): 489~497.
    [143]许智榜,石晓瑛.基于RBF神经网络的车牌自动识别系统设计与实现[J].南昌大学学报(工科版), 2009, 31(2): 147~150.
    [144]方卫宁,胡清梅,李娜等.基于RBF神经网络的复杂场景人群目标的识别[J].北京交通大学学报, 2009, 33(4): 29~33.
    [145]戴玉超,何明一,等张.基于径向基神经网络的立体匹配算法[J].计算机应用研究, 2008, 25(11): 3477~3479.
    [146]夏德深.现代图像处理技术与应用[M].南京:东南大学出版社, 1997.
    [147]李弼程.智能图像处理技术[M].北京:电子工业出版社, 2004.
    [148] Haralick R M, Shanmugam K. Textural features for image classification [J]. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 1973, 3(6): 610~621.
    [149] Schwartz W R, Pedrini H. Texture classification based on spatial dependence features using co-occurrence matrices and Markov random fields [A]. in International Conference on Image Processing(ICIP) [C], 2004, Singapore, 1: 239~242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700