小型全固态激光雷达焦平面成像系统仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文小型全固态焦平面成像激光雷达是以盖革模式(Geiger mode)雪崩光电二极管(APD)为探测器的三维成像雷达。比扫描式成像雷达有以下优点:
     能够实现单次脉冲发射成像,时间短,可以安装在运动平台上,对伪装掩盖的目标在短时间内实现多次探测并获得多帧图像,然后通过叠加算法获得较清晰的目标图像。
     本文首先介绍了有关雪崩光电二极管(APD)探测器的工作原理,及其探测概率模型,分析了单脉冲探测概率和多脉冲探测概率。
     根据激光器的参数利用雷达方程定量计算了回波强度,为仿真工作提供可靠的现实依据。在本实验室原有目标场景库的基础上,添加了适合本文分析的目标模型,并进行了仿真实验。首先,为了分析距离反常,引入均方根误差评价法(RMSE),对表面结构不同目标进行了仿真探测,计算了本雷达系统受信噪比(SNR)的影响程度,并根据实验数据,拟合了RMSE-SNR曲线。第二,针对高斯光束在本雷达中成距离像做了仿真实验,通过与均匀光照射所成距离像的比较,得出了高斯光束在本雷达系统中成像的特点,并提出了生成用于仿真高斯强度像的高斯系数矩阵的算法。第三,针对相干光成像过程中总会受到散斑噪声的影响情况,设计了散斑影响距离像仿真方案,进行了仿真实验,通过与其它噪声(背景光、暗电流、散射回波)引起的距离像的距离反常做了比较分析。第四,对于接收机孔径与目标探测概率的关系,设计了仿真方案,编写了仿真程序,通过仿真实验得到了单脉冲和多脉冲情况下探测概率—接收机孔径的关系曲线。并且发现接收机孔径在其他参数确定的情况下,有最优孔径大小。最后,在第四章根据本雷达应用的特点,进行了应用方面的仿真实验,分析了在飞行平台没有抖动和有抖动的不同情况下的仿真结果。
In this paper, the small solid-state laser radar imaging focal plane is Geiger mode avalanche photodiode tube (APD) detector for 3D imaging radar. It has the following advantages compared to scanning imaging radar :
     Be able to achieve single-pulse emission imaging, the time is short, that can be installed in the campaign platform, right camouflage is the target repeatedly in a short period of time to achieve detection, access to a few frames, Then stack algorithm is useed to aquire a clear target image.
     This paper introduced first avalanche photodiode (APD) detector principle. And analysised thedetection probability of single-pulse and multi-pulse.
     According to the parameters of the use of laser radar equation, the echo intensity was calculated ,which provided a reliable basis for simulation. On the basis of the original target scene in our laboratory ,to which this paper added new targets .And some simulation were done as following. First, in order to analyse the unusual distance analysis, the surface structure of the different targets were simulated . The root mean square error (RMSE) was introdued , and impact of signal-to-noise ratio (SNR) to the radar system was thought and caculated. According to experimental data, RMSE - SNR curve was fit. Secondly, in order to learn about the impact of Gaussian beam to the range image,simulation experiment was done. A simulation experiment with the uniform illumination and the Gaussian beam was done ,the characteristic of the gauss beam to a range image was obtained. A algorithm to built Gauss coefficient matrix was raised here. Third, in the face of coherent light imaging process will be speckle noise impact, designed speckle simulation program. Compared with other noise (background light, dark current, Scattering Echo) ,the the RMSE was analysised. Fourthly, in order to find relationship between the receiver aperture and target detection probability, simulation program was designed ,and then the result was obtained . Finally, in the fourth chapter, simulation was done about the characteristics of the application of the radar, the flight platform without jitter and jitter under different circumstances was analysised in the simulation results.
引文
1 Marius A. Albota, Brian F. Aull, Daniel G. Fouche, Richard M. Heinrichs.Three-Dimensional ImagingLaser Radars with Geiger-ModeAvalanche Photodiode Arrays. Linc. Lab. J..2002,13(2): 351~70
    2 Richard M. Marino and William R. Davis, Jr.. Jigsaw: A Foliage-Penetrating 3D Imaging Laser Radar System, Linc. Lab. J.. 2005,15(1):23~36
    3 Brian F. Aull, Andrew H. Loomis, Douglas J. Young, Richard M. Heinrichs.Geiger-Mode AvalanchePhotodiodes for Three-Dimensional Imaging. LINC. LAB. J.. 2002,13(2):335~348
    4 J.J. Zayhowski. Microchip Lasers. Linc. Lab. J..1990, 3 (3) 427~446.
    5 B.F. Aull, A.H. Loomis, D.J. Young, R.M. Heinrichs, B.J.Felton, P.J. Daniels, and D.J. Landers. Geiger-Mode AvalanchePhotodiodes for Three-Dimensional Imaging. Linc.Lab. J..1990,3(5):323~340
    6 W.E. Keicher, W.E. Bicknell, R.M. Marino, T. Stephens, W.R.Davis, and S.E. Forman.Laser Radar Technology for BallisticMissile Defense .Linc. Lab. J.. 2001,3 (1): 205~228.
    7 R.M. Heinrichs, B.F. Aull, R.M. Marino, D.G. Fouche, A.K.McIntosh, J.J. Zayhowski, T. Stephens, M.E. O’Brien, andM.A. Albota. Three-Dimensional Laser Radar with APDArrays .SPIE. 2001,4377: 106~117.
    8 B.F. Aull, A.H. Loomis, D.J. Young, R.M. Heinrichs, B.J.Felton, P.J. Daniels, and D.J. Landers.Geiger-Mode AvalanchePhotodiodes for Three-Dimensional Imaging.Linc.Lab. J.. 2002,13 (2):335~350.
    9 A.C. van den Broek, R.J. Dekker, and P. Steeghs.Robustness of Features for Automatic Target Discrimination in High-Resolution Polarimetric SAR Data .SPIE. 2003,5095:242~253.
    10 R.M. Marino, T. Stephens, R.E. Hatch, J.L. McLaughlin,J.G. Mooney, M.E. O’Brien, G.S. Rowe, J.S. Adams, L. Skelly,R.C. Knowlton, S.E. Forman, and W.R. Davis.A Compact 3D Imaging Laser Radar System Using Geiger-Mode APD Arrays: System and Measurements . 2003, 5086: 1~15
    11 Paul FMcManamon, et al. Laser radar development. SP IE. 1999, 3707: 50 ~ 57
    12 Richard Richmond, et al. Laser radar focal p lane array forthree dimensional imaging. SP IE. 1998, 3380:138~ 143
    13 R M Heinrichs, et al. Three dimensionnal laser radarwith APD array. SPIE. 2001, 4377: 106 ~117
    14 M M Marino, et al. high resolution 3D laser radar flightest experiments. SP IE.2005, 5791: 138~151
    15伏·耶·祖也夫.激光的大气传播,北京:中国工程物理研究院《国外科技资料》编辑部. 1990: 20~153
    16 G.Kamerman W. Laser Radar. ActiveElectro Optical System.SPIE.1993:30~35
    17 Michael E. O’Brien and Daniel G. Fouche.Simulation of 3D LaserRadar Systems. Linc. Lah. J. .2005,15(1): 37~60.
    18王广君,田金文,柳健.激光成像雷达前视成像仿真及障碍物识别方法研究.电波科学学报. 2001 ,16 (2) :2492251.
    19易翔,王蔚然.激光雷达系统仿真软件.电子科技大学电子工程学院.遥测遥控. 2003,24(1):23~40
    20张宇,唐勐.直接探测激光雷达系统的建模与仿真.红外与激光工程.2004,
    33(6): 573~575
    21岳玉芳,张玉双,陶应学.激光雷达仿真视频文件的制作和播放.北京应用物理与计算数学研究所计算机工程与应用. 2006: 229~232
    22王正清,胡渝,林崇杰.光电探测技术.电子工业出版社.1984:52~74.
    23吴健,乐时晓.随机介质中的光传播理论.成都:电子科技大学出版社.1988:100~150
    24 John O.Limb. Distortion Criteria of the Human Viewer. IEEE trans.Syst.Man. Cybern.1979, 9(12):778~793
    25王行仁.面向二十一世纪,发展系统仿真技术.系统仿真学报.1999, 10(2):73~82
    26王行仁.先进仿真技术.测控技术.1999 ,18(6):5~11
    27 Stytz M.R.Distributed Virtual Environment. IEEE Computer Graphics and Applitaions.1996:17~16
    28 J. Streicher, I. Leike , C.Werner AL IENS:Atmospheric ladar Simulator. SPIE . 1998:3585~3802
    29 W.E. Keicher, W.E. Bicknell, R.M. Marino, T. Stephens, W.R.Davis, and S.E.Forman. Laser Radar Technology for BallisticMissile Defense. Linc. Lab. J.. 2001, 13 (1): 205~228
    30 B.F. Aull. Geiger-Mode Avalanche Photodiode Arrays Integrated with CMOS Timing Circuits. 56th Annual Device ResearchConf. Dig., Charlottesville, Va..1998:58~59
    31 B.F. Aull.Geiger-Mode Avalanche Photodiode Arrays for ImagingLaser Radar. Solid State Research Report, LincolnLaboratory .1997:31~33
    32 B.F. Aull.Geiger-Mode Avalanche Photodiode Arrays for ImagingLaser Radar. Solid State Research Report, LincolnLaboratory.1996: 39~41
    33戴永江.激光雷达原理.国防工业出版社2002:236~237
    34 J. W.顾德门.统计光学.秦克诚等译.科学出版社.1989:135~140
    35裴鹿成.MonteCarlo方法及其应用.海洋出版社.1999:1~13
    36方再根.计算机模拟和蒙特卡洛方法.北京工业学院出版社.1988:50~68
    37 A.L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfred.On theBremsstrahlung Origin of Hot-Carrier-Induced Photons inSilicon Devices. IEEE Trans. Electron Devices.1993, 40 (3):577~582
    38 A.H. Loomis and B.F. Aull.Bridge Bonding of Geiger-ModeAvalanche Photodiode Arrays to CMOS Timing Circuits.Solid State Research Report, Lincoln Laboratory.1999:33~37
    39 J.J. Zayhowsk.Periodically Poled Lithium Niobate OpticalParametric Amplifiers Pumped by High-Power Passively QswitchedMicrochip. lasers.Opt.Lett..1997, 22 (3):169~171
    40 K.A.McIntosh,J.P. Donnelly.InGaAsP/InP Avalanche Photodiodes for Photon Counting at 1.06μm.Appl. Phys.Letter 81. 2002:2505~2507
    41 Daniel G. Fouche . Detection and false-alarm probabilities for laserradars that use Geiger-mode detectors. Appl. Opt..2003,42(27):5338~5398
    42 R.M. Heinrichs, B.F. Aull, R.M. Marino, D.G. Fouche, A.K.McIntosh, J.J. Zayhowski, T. Stephens, M.E. O’Brien, andM.A. Albota.Three-Dimensional Laser Radar with APDArrays. SPIE. 2001, 4377:106~117
    43 M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E.Player, M. E. O’Brien, B. F. Aull. Three-dimensional imaginglaser radar with a photon-counting avalanche photodiode arrayand microchip laser. Appl. 002:7671~7678
    44 J.J. Zayhowski, C. Dill III, C. Cook, and J.L. Daneu.MidandHigh-Power Passively Q-Switched Microchip Lasers. Advanced Solid-State Lasers. 1999:178~186
    45 J.J. Zayhowski.Ultraviolet Generation with Passively Qswitched Microchip Lasers. Opt. Lett.. 1996,21 (8): 588~590
    46 J.J. Zayhowski.Periodically Poled Lithium Niobate Optical Parametric Amplifiers Pumped by High-Power Passively Qswitched Microchip Lasers. Opt. Lett..1997,22 (3): 169~171
    47 W.E. Keicher, W.E. Bicknell, R.M. Marino, T. Stephens, W.R.Davis, and S.E. Forman.Laser Radar Technology for BallisticMissile Defense. Linc. Lab. J..2001, 13 (1): 205~228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700