脉冲压缩MTI雷达信号处理机的系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代作战不仅要求雷达对回波信号有足够快的处理速度以便能够对多批运动目标进行快速、准确地搜索、跟踪,同时要求对目标回波中所包含的各种信息均能够及时处理、判别和进行数据传输,以实现引导火炮、导弹等武器对目标实施攻击。而随着电子对抗、目标隐身技术的不断发展,雷达除需应对各种地、海、气象杂波干扰外,还需能够从各种人为的电子干扰背景中提取出有用的小目标信号,保证雷达与战场环境之间始终处于良好的匹配状态,这就必须具备“高灵敏、多功能、自适应”的信号处理系统。
     另一方面,伴随着电子技术特别是数字信号处理(DSP)技术、超大规模集成(VLSC)数字电路技术、计算机技术和通信技术的高速发展,使得原来很多受到硬件条件限制的自适应算法得以较简单得完成工程实现,信号处理系统由此可以承担更多的处理任务,处理领域从时域、频域的自适应处理更突破至空域实时处理,从而促进雷达整体性能大为提升。
     本论文以一部陆基情报雷达的信号处理系统作为论证对象,力求构建出满足现代作战需求的数字信号处理机。论文按照系统论证的脉络,首先阐述如何根据不同的作战需求选择合适的信号形式,然后按信号处理流程,分别阐述了A/D变换器(ADC)、脉冲压缩(PC)、动目标显示(DMTI)、自适应副瓣对消(ASLC)、副瓣消隐(SLB)、恒虚警电路(CFAR)、目标提取和杂波图等信号处理组成单元的工作原理及工程实现方案,并通过论证选择了合理的工作参数,在此基础上总结出一个较为完整的信号处理系统。
In modern warfare, it requires the radar having adequate processing speed on echo to realize accurate and fast search & track on multi-targets, meanwhile, it also requires the radar performing processing, judgment and data transmission in all the information within the echo to realize attack by guiding artillery and missile. Along with the development of ECM and target stealth technology, besides countering ground, sea and weather clutter, it requires the radar having capability of extracting useful small target under all kinds of contrived electronics jamming so as to keep good matching status between radar and battlefield. Thus, the radar should adopt a "high sensitivity, multi-function and adaptive" signal processing system.
    Moreover, along with rapid progress of DSP, VLSC digital circuit, computer and communication technology, some adaptive arithmetic that previously restricted by hardware conditions can be easily realized into engineering. So, the signal processing system can burden more adaptive processing tasks in time domain, frequency domain and even in airspace real-time processing to greatly enhance system performance.
    This article is based on the scientific research task that borne by the author. It takes the signal processing system of ground based intelligence radar as the demonstration object, and strives to configure the actual signal processor that satisfies the requirement of modern warfare. According to system demonstration structure, this article begins with description of suitable signal type for different operational requirements, then following the flow of signal processing, the operation principle and engineering implementation of each subunit of signal processor are presented, such as (A/D converter(ADC), pulse compression(PC), digital moving target indication(DMTI), adaptive side-lobe cancellation(ASLC), side-lobe blanking(SLB), constant false alarm rate(CFAR), target extraction and clutter map. After demonstration, the reasonable operation parameter is selected, thus a complete signal processing system is established.
引文
1 Merrill I. Skolnik. Radar Handbook (Second Edition), 1990
    2 M. I. Skolnik. Introduction to Radar Systems, second edition, ISBN 0-07-057909-1, McGraw-Hill, Inc., 1980
    3 M. A. Hasan. Blind speed elimination for dual displaced phase center antenna radar processor mounted on a moving platform. US Patent 4, 885, 590, December 5, 1989
    4 J. A. Didomizio, R. A. Guarino . Dual cancellation interferometric AMTI radar. USPatent 5,559,516, September 24, 1996
    5 P. J. Prinsen. Elimination of Blind Velocities of MTI Radar by Modulating the Inter-pulse Period. IEEE Trans. Aerospace and Electronic Systems (AES), vol. 9, No. 5, (Sept.) 1973, pp. 714-724
    6 Weng Zuyin. Optimal design of clutter rejection filters for MTI system . Radar, 2001 CIE International Conference on, Proceedings 15-18 Oct. 2001,pp. 475_478
    7 Leonov, S. MTI radar stability measurement error. Radar, 2001 CIE International Conference on, Proceedings 15-18 Oct. 2001, pp. 244_245 .
    8 Goodman, N. A. , Stiles, J. M. .A general signal processing algorithm for MTI with multiple receive apertures . Radar Conference, 2001. Proceedings of the 2001 IEEE 1-3 May 2001, pp. 315_320
    9 Chang Chee Hang, Wong Char Ming, Liu Weixian, Fu, J. S. . Radar MTI/MTD implementation and performance .Microwave and Millimeter Wave Technology, 2000, 2nd International Conference on. ICMMT 2000 14-16 Sept. 2000 , pp. 674_678
    10 Carlotto, M. J. . MTI data clustering and formation recognition . Aerospace and Electronic Systems, IEEE Transactions on April 2001,pp. 524_537
    11 Vergara-Dominguez, L. .Analysis of the digital MTI filter with random PRI . Radar and Signal Processing, IEE Proceedings F April 1993, pp. 129_137
    12 Misiurewicz, J. . Unambiguous Doppler frequency estimation in an MTI radar. Radar 97 (Conf. Publ. No. 449) 14-16 Oct. 1997 , pp. 530_534
    13 Arbabian, M. A. , Bastani, M. H. , Tabesh, M. . Optimization of PRF staggering in MTI radar .Radar Conference, 2005 IEEE International 9-12 May 2005 , pp. 602_607
    14 R. J. McAulay. The Effect of Staggered PRF' s on MTI Signal Detection. IEEE Trans. Aerospace and Electronic Systems (AES), (July) 1973, pp. 615-619
    15 Leatherwood, D. A. , Melvin, W. L. , Davila, C. A. .Waveform selection for spaceborne sparse aperture MTI radar . Aerospace Conference, 2004. Proceedings. 2004 IEEE Aerospace Conference, 2004. Proceedings. 2004 IEEE_1921 Vol.3
    16 L. Maisel, Performance of sjdelobe blanking systems, IEEE Trans. Aerosp. Electron. Syst. , vol. AES-4, pp. 174-180, Mar. 1968
    17 Jonathan Friedmann , Hagit Messer. Consistent CFAR Detection of a Linear Signal Based on Partially Consistent Observations, IEEE SIGNAL PROCESSING LETTERS, 2002(8)
    18 R. J. Carroll, D. B. H. Cline. An asymptotic theory for weighted least squares with weights estimated by replication,. Biometrika, 1988(1): pp. 35-43
    19 J. Friedmann. Non stationary statistical signal processing with partially consistent observations,. Ph.D. thesis, Tel Aviv Univ., Tel Aviv, Israel, 2001
    20 S. M. Kay. Fundamentals of Statistical Signal Processing—Detection Theory. Englewood Cliffs, NJ: Prentice-Hall, 1998
    21 M. Kumon and S. I. Amari, Estimation of a structural parameter in the presence of a large number of nuisance parameters, Biometrika, 1984(3): pp.445-459
    22 S. A. Murphy and A. W. Van Der Vaart, Semiparametric likelihood ration inference, Ann. Stat., 1997(4): pp. 1471-1509, 1997
    23 马晓岩.向家彬.朱裕生.秦江敏等.长沙:雷达信号处理.1999
    24 丁鹭飞,耿富录.雷达原理(修订版).西安:西安电子科技大学出版社.1995
    25 向敬成,张明友.雷达系统.北京:电子工业出版社.2001
    26 中航雷达与电子设备研究院.雷达系统.北京:国防工业出版社.2005
    27 张光义.相控阵雷达系统.北京:国防工业出版社.1994
    28 George W.Stimson.机载雷达导论(第二版).北京:电子工业出版社.2005
    29 程佩青.数字信号处理教程(第二版).北京:清华大学出版社.2001
    30 张志涌,徐彦琴.MATLAB教程——基于6.X版本.北京:北京航空航天大学出版社.2001
    31 朱炳元等.自适应雷达信号处理机.现代雷达.1997(6):23-27
    32 蒋志焱,黄银河,夏映玲.基于DSP的雷达数字信号处理通用模块.现代雷达.2003(4) :30-32、39
    33 王家增.米波雷达副瓣对消系统的设计.雷达科学与技术:2004(6):368-371
    34 刘炳奇,曹友森.副瓣对消性能改进方法.现代雷达.2003(2):59-60
    35 夏厚培.雷达天线副瓣消隐技术分析.雷达与对抗.1997(2):43-48
    36 何友等.雷达自动检测和CFAR处理器.系统工程与电子技术.2001(1):9-14
    37 刘刚.火炮定位雷达数字信号处理机设计综述.雷达与对抗.2000(2):45-48、54
    38 朱子平.雷达信号处理中通用DSP设计.现代雷达.2002(4):35-38,63
    39 陈剑,方志宏.参量CFAR技术的设计与实现.现代电子.2000(3):46-51
    40 刘爱国.雷达系统中的数字信号处理.光电系统.2001(2):25-28
    41 龙腾,毛二可.超高速雷达数字信号处理技术.电子学报.1999(12):88-91,22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700