用户名: 密码: 验证码:
MIMO系统的信号检测及迭代接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在MIMO(Multi-Input Multi-Output)和MIMO-OFDM(MIMO-Orthogonal Frequency Division Multiplex)系统中,往往涉及高复杂度的多维信号检测和联合参数估计问题,为系统实现带来很大困难。迭代参数估计技术可以降低联合参数估计的复杂度,并获得渐近最优的性能。本文以寻求最佳性能与复杂度折中方案为原则,针对V-BLAST(Vertical-Bell Labs lAyered Space-Time)系统的信号检测问题和MIMO-OFDM系统的迭代参数估计问题展开研究,取得以下研究成果:
     1.论文针对V-BLAST系统,基于信道矩阵的最小均方误差(MMSE,Minimum Mean Square Error )排序QR分解( MMSE-SQRD , MMSE-Sorted QR Decomposition),分别提出了半径约束的QRD-M算法和半径约束的Stack的树搜索检测算法,并建立了半径的自适应更新策略。与传统的QRD-M和Stack算法相比,所提算法不仅可以改善检测性能,还显著降低了计算复杂度。
     2.论文针对编码V-BLAST系统,基于最大似然(ML,Maximum Likelihood)度量提出了宽度优先的低复杂度列表检测(BrF-LCLD)算法,此外基于最大后验概率(MAP,Maximum A Posteriori)度量提出了降低复杂度的列表QRD-M(RC-QRD-M)算法,并为所提算法设计了合适的排序QR分解算法。相对于ML度量下和MAP度量下的列表QRD-M算法,所提算法均以较小的性能损失为代价有效降低了检测的复杂度。此外,所提算法还具有复杂度固定和易于并行实现的优势。
     3.论文针对MIMO-OFDM系统,基于变分贝叶斯期望最大化(VBEM,Variational Bayesian Expectation Maximization)算法,首先推导了贝叶斯意义上最优的联合信道估计和信号检测译码的迭代接收机,然后提出了适用于该接收机的时频域联合递推信道估计(SFD-RVBCE)算法,最后通过合理的近似得到了只在频域递推的FD-RVBCE估计算法。理论分析和仿真表明,所提接收机可以接近具有理想信道信息情况下最优接收机的性能。而且,与现有的变分贝叶斯迭代接收机相比,所提接收机具有更好的性能和更低的计算复杂度。
     4.论文针对MIMO-OFDM系统,基于信号的分解模型提出了低复杂度的软判决指导递推信道跟踪算法。基于非分解的原始信号模型,推导了所提递推跟踪算法的简化算法。所提算法通过在时域上进行信道预测,在频域上进行递推估计,完全避免了矩阵求逆运算,有效降低了计算复杂度。在快时变多径信道下,与性能较好的Turbo-Kalman和Turbo-RLS算法相比,所提算法的复杂度大大降低,性能与它们几乎相同或相差较小。另外,所提算法具有统一的递推跟踪架构,只需进行较小的改变就可适用不同的应用环境,比较利于硬件实现。
In Multiple-Input Multiple-Output (MIMO) and MIMO-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, receivers usually need to solve the problems of high dimensional signal detection and iterative parameter estimation, which leads to prohibitively high complexity. The iterative parameter estimation technique can obtain asymptotically optimal performance and reduce the complexity of joint parameter estimation. On the purpose of pursuing good tradeoff between performance and complexity, the signal detection in V-BLAST (Vertical-Bell Labs lAyered Space-Time) systems and the iterative parameter estimation in MIMO-OFDM systems are studied respectively. The main contributions of the dissertation are summarized as follows:
     1. By exploiting the minimum mean square error based sorted QR decomposition (MMSE-SQRD) of the channel matrix, a sphere constraint QRD-M algorithm and a sphere constraint Stack algorithm were proposed for V-BLAST systems. Accordingly, the strategies of updating sphere radius were developed for the proposed two algorithms. The newly proposed algorithms not only outperform the conventional algorithms, but also dramatically reduce the computational complexity. Moreover, they can achieve almost the same performance as the SE sphere decoding (SE-SD) algorithm while visiting much fewer nodes in the tree-search procedure.
     2. Base on the maximum likelihood (ML) metric and the maximum a posteriori (MAP) metric, a breadth-first low complexity list detection (BrF-LCLD) algorithm and a reduced complexity QRD-M (RC-QRD-M) algorithm were presented for coded V-BLAST systems. Furthermore, the original sorted QR decomposition (SQRD) algorithm of the channel matrix was modified to improve performance. Compared with the ML and MAP QRD-M algorithm, the proposed algorithms efficiently reduce the computational complexity at the price of slight performance loss. In addition, they are quite suitable to practical implementation and maintain fixed computational complexity.
     3. Using the Variational Bayesian EM (VBEM) algorithm, an asymptotically optimal Bayesian iterative receiver with joint channel estimation and signal detection/decoding was firstly derived for MIMO-OFDM systems. And then, a space-frequency domain (SFD) combined recursive variational Bayesian channel estimation (SFD-RVBCE) algorithm was proposed for the novel VBEM iterative receiver. By making some reasonable approximations, a frequency domain RVBCE (FD-RVBCE) algorithm was finally obtained. Theoretical analysis and simulation results demonstrate that the proposed receiver not only achieves near optimal performance, but also shows better performance and lower computational complexity than the existing VBEM iterative receiver.
     4. Based on the decomposed signal model, several soft-decision-directed recursive channel tracking algorithms were developed to reduce complexity. Based on the original signal model, the corresponding simplified algorithms were derived subsequently. The proposed algorithms completely avoid matrix inversion by performing channel prediction on time domain and recursive channel estimation on frequency domain. Theoretical analysis and simulation results show that they can significantly reduce the computational complexity, and approach the performance of the excellent Turbo-Kalman and Turbo-RLS algorithms. In addition, they can be applied to different environment after small modifications due to their common recursive tracking framework, therefore are of benefit to hardware implementation.
引文
[1] Telatar E. Capacity of Multi-Antenna Gaussian Channels [J]. AT&T-Bell Labs Internal Tech. Memo., June 1995.
    [2] Foschini G J, Gans M J. On Limits of Wireless Communication in a Fading Environment When Using Multiple Antennas [J]. Wireless Personal Commun., Mar. 1998, 6 (3):311-335.
    [3] Foschini G J. Layered Space-Time Architecture for Wireless Communication in a Fading Enviroment When Using Multi-Element Antennas [J]. Bell Labs Tech. J., 1996, 1 (2):41-59.
    [4] Foschini G J, Golden G D, Valenzela R A, et al. Simplified Processing for High Spectral Efficiency Wireless Communication Employing Multi-Element Arrays [J]. IEEE J. Select Areas Commun., 1999, 17 (11):1841-1852.
    [5] Wolniansky P W, Foschini G, Golden G, et al. V-BLAST: An Architecture for Realizing Very High Data Rates over the Rich-Scattering Wireless Channel [C]. in Proc. IEEE International Symposium on Signals, Systems, and Electronics (ISSSE). Pisa, Italy.1998:295-300.
    [6] Alamouti S M. A Simple Transmit Diversity Technique for Wireless Communications [J]. IEEE J.Select.Areas Commun., Oct.1998, 16 (9):1451-1458.
    [7] Tarokh V, Seshadri N, R.Calderbank A. Space-Time Codes for High Data Rate Wireless Communication:Performance Criterion and Code Construction [J]. IEEE Trans. Inform. Theory, Mar. 1998, 44 (2):744-765.
    [8] Golden G D, Foschini G J, Valenzuela R A, et al. Detection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture [J]. IEE, Electronics Letters, Jan. 1999, 35 (1):14-16.
    [9] Gans M J, Amitay N, Yeh Y S, et al. Outdoor BLAST Measurement System at 2.44 Ghz: Calibration and Initial Results [J]. IEEE J. Select. Areas Commun., Apr. 2002, 20 (3):570-583.
    [10] Xiang W, Waters D, Pratt T G, et al. Implementation and Experimental Results of a Three-Transmitter Three-Receiver OFDM/BLAST Testbed [J]. IEEE Communications Magazine, Dec. 2004, 42 (12):88-95.
    [11] Local and Metropolitan Area Networks-Part16, Air Interface for Fixed Broadband Wireless Access Systems. IEEE Standard IEEE 802.16a.
    [12] Airgo. Airgo Networks to Demonstrate True MIMO Technology at Consumer Electronics [EB/OL]. http://www.airgonetworks.com/news pr.html.
    [13] Atheors. Atheros Communications Launches Smart-Antenna Wireless ChipsetDelivering MIMO Performance to Standard 802.11 Products [EB/OL]. http://www.atheros.com/news/index.html.
    [14] D-Link. D-Link Launches Super G with MIMO Wireless Networking Using Smart Antenna Technology to Boost Speed and Range [EB/OL]. http://presslink.dlink.com/pr.
    [15] Linksys. Linksys Announces New Line of MIMO-Based Wirless-G Products [EB/OL]. http://www.linksys.com/press.
    [16] Torabit M, Soleymanit M R, Aissa S. On the Performance of MIMO-OFDM Systems with Imperfect Channel Information [C]. in Proc. International Conference on Wireless Networks Communications and Mobile Computing (WIRELESSCOM). Maui, Hawaii, USA.2005:600-605.
    [17] Vikalo H, Hassibi B. On the Sphere Decoding Algorithm. I. Expected Complexity II. Generalizations, Second-Order Statistics, and Applications to Communications [J]. IEEE Trans. Signal Processing, Aug. 2005, 53 (8):2806–2834.
    [18] Murugan A D, Gamal H E, Damen M O, et al. A Unified Framework for Tree Search Decoding: Rediscovering the Sequential Decoder [J]. IEEE Trans. Inform. Theory, 2006, 52 (3):933-953.
    [19] Guo Z, Nilsson P. Algorithm and Implementation of the K-Best Sphere Decoding for MIMO Detection [J]. IEEE J. Select. Areas Commun., Mar. 2006, 24 (3):491–503.
    [20] Benesty J, Huang Y, Chen J. A Fast Recursive Algorithm for Optimum Sequential Signal Detection in a BLAST System [J]. IEEE Trans. on Signal Processing, July 2003, 51 (7):1722-1730.
    [21] Hassibi B. An Efficient Square-Root Algorithm for BLAST [C]. in Proc. IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP). Istanbul, Turkey.Jan. 2000, 2:5-9.
    [22] Zhu H, Lei Z, Chin F P S. An Improved Square-Root Algorithm for BLAST [J]. IEEE Signal Process. Lett., Sept. 2004, 11 (9):772-775.
    [23] Wübben D, B?hnke R, Rinas J, et al. Efficient Algorithm for Decoding Layered Space-Time Codes [J]. IEE, Electronics Letters, Oct. 2001, 37 (22):1348-1350.
    [24] B?hnke R, Wübben D, Kuhn V, et al. Reduced Complexity MMSE Detection for BLAST Architectures [C]. in Proc. IEEE GLOBECOM. San Francisco, USA.Dec. 2003, 4:2258-2262.
    [25] Akhtar J. Enhanced Detection for Zero-Forced V-BLAST [C]. in Proc. IEEE Vehicular Technology Conference 2004-Spring. Milan, Italy. May 2004, 2:848-852.
    [26] Kim S W. Log-Likelihood Ratio Based Detection Ordering for the V-BLAST [C]. in Proc. IEEE GLOBECOM. San Francisco, USA. Dec. 2003, 1:292-296.
    [27] Sezgin A, Jorswieck E A, Jungnickel V. Maximum Diversity Detection forLayered Space-Time Codes [C]. in Proc. IEEE Semi-annual Vehicular Technology Conference (VTC) 2003-Spring. Jeju Island, Korea. April 2003, 2:833-837.
    [28] Li D, Cai L, Yang H. New Iterative Detection Algorithm for V-BLAST [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2004-Fall. Los Angeles, CA, USA. Sept. 2004, 4:2444-2448.
    [29] Shen C, Zhuang H, Dai L, et al. Detection Algorithm Improving V-BLAST Performance over Error Propagation [J]. IEE, Electronics Letters, June 2003, 39 (13):1007-1008.
    [30] Chin W H, Constantinides A G, Ward D B. Parallel Multistage Detection for Multiple Antenna Wireless Systems [J]. IEE, Electronics Letters, June 2002, 38 (12):597-599.
    [31] Choi J. A Bi-Directional Zero-Forcing BLAST Receiver [J]. IEEE Trans. on Signal Processing, Sept. 2004, 52 (9):2670-2673.
    [32] Choi W-J, Negi R, Cioffi J M. Combined ML and DFE Decoding for the V-BLAST System [C]. in Proc. IEEE International Conference on Communications (ICC). New Orleans, Louisianna, USA.June 2000, 3:1243-1248.
    [33] Yang L, Chen M, Cheng S, et al. Combined Maximum Likelihood and Ordered Successive Interference Cancellation Grouped Detection Algorithm for Multistream MIMO [C]. in Proc. IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA). Sydney, Australia. 2004:250-254.
    [34] Gui B, Qu D. Performance Evaluation of V-BLAST Detection Algorithms and a Novel Segmented Detection Algorithm [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2004-Spring. Milan, Italy. May 2004, 2:674-678.
    [35] Waters D W, Barry J R. The Chase Family of Detection Algorithms for Multiple-Input Multiple-Output Channels [C]. in Proc. IEEE GLOBECOM. Dallsa. Texas, USA. Dec. 2004, 4:2635-2639.
    [36] Chase D. A Class of Algorithms for Decoding Block Codes with Channel Measurement Information [J]. IEEE Trans. Inform. Theory, Jan. 1972, 18 (1):170-182.
    [37] Yao H, Wornell G. Lattice-Reduction-Aided Detectors for MIMO Communication Systems [C]. in Proc. IEEE GLOBECOM. Taipei, China. Nov. 2002, 1:424-428.
    [38] D. Wübben R B, V. Kühn, and K. Kammeyer. Near-Maximum-Likelihood Detection of MIMO Systems Using MMSE-Based Lattice-Reduction [C]. in Proc. IEEE International Conference on Communications (ICC). Paris, France.June 2004, 2:798-802.
    [39] Lenstra A K, Lenstra H W, Lovasz L. Factoring Polynomials with RationalCoefficients [J]. Math. Ann., 1982:515-534.
    [40] Wübben D, Kühn V, Kammeyer K D. On the Robustness of Lattice Reduction Aided Detectors in Correlated MIMO Systems [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2004-Fall. Los Angeles, CA, USA. Sept. 2004, 5:3639-3643.
    [41] Gan Y H, Mow W H. Complex Lattice Reduction Algorithms for Low Complexity MIMO Detection [C]. in Proc. IEEE GLOBECOM. St. Louis, Missouri. Dec. 2005:2953-2957.
    [42] Taherzadeh M, Mobasher A, K.Khandani A. LLL Reduction Achieves the Receive Diversity in MIMO Decoding [J]. IEEE Trans. Inform. Theory, 2007, 53 (12):4801-4805.
    [43] Jalden J, Seethaler D, Matz G. Worst- and Average-Case Complexity of LLL Lattice Reduction in MIMO Wireless Systems [C]. in Proc. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP). Las Vegas, Nevada, USA. Apri. 2008:2685-2688.
    [44] Windpassinger C, Lampe L, F.H.Fischer R, et al. A Performance Study of MIMO Detectors [J]. IEEE Trans. Wireless Commun., Aug. 2006, 5 (8):2004-2008.
    [45] Fincke U, Pohst M. Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Complexity Analysis [J]. Math. Comput., Apr. 1985, 44 (4):463-471.
    [46] Viterbo E, Boutros J. A Universal Lattice Code Decoder for Fading Channels [J]. IEEE Trans. Inform. Theory, July 1999, 45 (5):1639-1642.
    [47] Damen M O, Chkeif A, Belfiore J C. Lattice Code Decoder for Space-Time Codes [J]. IEEE Commun. Lett., May 2000, 4 (5):161–163.
    [48] Damen M O, Abed-Meraim K, Lemdani S. Further Results on the Sphere Decoder [C]. in Proc. IEEE International Symposium on Information Theory (ISIT). Washington, USA. June 2001:333-333.
    [49] Jalden J, Ottersten B. On the Complexity of Sphere Decoding in Digital Communications [J]. IEEE Trans. Signal Processing, Apri. 2005, 53 (4):1474-1484.
    [50] Hochwald B M, Brink S t. Achieving near-Capacity on a Multi-Antenna Channel [J]. IEEE Trans. Commun., Mar. 2003, 51 (3):389-399.
    [51] Su K, Wassell L J. A New Ordering for Efficient Sphere Decoding [C]. in Proc. IEEE International Conference on Communications (ICC). Seoul, Korea.May 2005, 3:1906-1910.
    [52] Damen M O, Gamal H E, Caire G. On Maximum-Likelihood Detection and the Search for the Closest Lattice Point [J]. IEEE Trans. Inform. Theory, Oct. 2003, 49 (10):2389-2402.
    [53] Schnorr C P, Euchner M. Lattice Basis Reduction: Improved Practical Algorithmsand Solving Subset Sum Problems [J]. Math. Programming, 1994, 66:181-191.
    [54] Su K. Efficient Maximum Likelihood Detection for Communication over MIMO Channels [DB/OL]. Technical report, University of Cambridge, Feb. 2005. http://www.cl.cam.ac.uk/Research/DTG/publications/public/ks349/Su05B.pdf.
    [55] Chan A M, Lee I. A New Reduced Complexity Sphere Decoder for Multiple Antenna Systems [C]. in Proc. IEEE International Communications Conference (ICC). Anchorage Alaska, USA, Apri. 2002, 1:460-464.
    [56] Han H G, Oh S K, Lee S J, et al. Computational Complexities of Sphere Decoding According to Initial Radius Selection Schemes and an Efficient Initial Radius Reduction Scheme [C]. in Proc. IEEE GLOBECOM. St. Louis, MO.Dec. 2005, 4:2354-2358.
    [57] Gowaikar R, Hassibi B. Statistical Pruning for near-Maximum Likelihood Decoding [J]. IEEE Trans. on Signal Processing, June 2007, 55 (6):2261-2275.
    [58] Cui T, Ho T, Tellambura C. Statistical Pruning for near Maximum Likelihood Detection of MIMO Systems [C]. in Proc. IEEE International Conference on Communications (ICC). Glasgow, Scotland.June 2007:5462-5467.
    [59] Kim K J, Iltis R A. Joint Detection and Channel Estimation Algorithms for QS-CDMA Signals over Time-Varying Channel [J]. IEEE Trans. Commun., 2002, 50:845-855.
    [60] Li Y, Winters J H, Sollenberger N R. MIMO-OFDM for Wireless Communications: Signal Detection with Enhanced Channel Estimation [J]. IEEE Trans. Commun., Sept. 2002, 50:1471-1477.
    [61] Barbero L G, Thompson J S. Extending a Fixed-Complexity Sphere Decoder to Obtain Likelihood Information for Turbo-MIMO Systems [J]. IEEE Trans. Vehicular Technology, Sept. 2008, 57 (5):2804-2814.
    [62] Dai Y, Sun S, Lei Z. A Comparative Study of QRD-M Detection and Sphere Decoding for MIMO-OFDM Systems [C]. in Proc. IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Berlin, Germany.Sept. 2005, 1:186-190.
    [63] Kim K J, Yue J, Iltis R A, et al. A QRD-M/Kalman Filter Based Detection and Channel Estimation Algorithm for MIMO-OFDM Systems [J]. IEEE Trans. Wireless Commun., 2005, 3 (2):710-721.
    [64] Lloyd S P. Least Squares Quantization in PCM [J]. IEEE Trans. Inform. Theory, Mar. 1982, IT-28 (3):129-137.
    [65] Wang K-W, Tsui C-Y, Cheng R S-K, et al. A VLSI Architecture of a K-Best Lattice Decoding Algorithm for MIMO Channels [C]. in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS). Scottsdale, Arizona.May 2002, 3:273-276.
    [66] Chen S, Zhang T, Xin Y. Relaxed K-Best MIMO Signal Detector Design and VLSI Implementation [J]. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,Mar. 2007, 15 (3):328–337.
    [67] Jeon K, Kim H, Park H. An Efficient QRD-M Algorithm Using Partial Decision Feedback Detection [C]. in Proc. ASILOMAR Conference on Signals, Systems and Computers. Pacific Grove, California.Oct. 2006, C:1658-1661.
    [68] Zigangirov K S. Some Sequential Decoding Procedures [J]. Probl. Pered. Inform., Nov. 1966:19-35.
    [69] Jelinek F. A Fast Sequential Decoding Algorithm Using a Stack [J]. IBM J. Res. Devel., Nov. 1969, 13:675-685.
    [70] B?ro S, Hagenauer J, Witzke M. Iterative Detection of MIMO Transmission Using a List-Sequential (LISS) Detector [C]. in Proc. IEEE International Conference on Communications (ICC). Anchorage, Alaska, USA.May 2003, 4:2653 - 2657.
    [71] Chin W H. QRD Based Tree Search Data Detection for MIMO Communication Systems [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2005-Spring. Stockholm, Sweden.May 2005, 3:1659-1662.
    [72] Li Y, Wang X, Wei J. Pruning Stack Algorithm and Complexity Analysis [C]. in Proc. International Symposium on Signals, Systems and Electronics. Montréal, Québec, Canada.2007:463-466.
    [73] Kim S, Cha J, Kang J. Low Complexity Iterative Sequential Detection Algorithm for V-BLAST Systems [C]. in Proc. IEEE Military Communications Conference. Orlando, Florida.2007:1-5.
    [74] Rho S, Cha J, Kang J. Stack-Based Tree Searching Algorithm for V-BLAST Detection with Implementation Friendly Reduction Techniques [C]. in Proc. IEEE IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Athens, Greece.Sept. 2007:1-5.
    [75] Cha J, Kang J. Efficient V-BLAST Detection Using Modified Fano Algorithm [J]. IEICE Trans. Commun., June 2006, E89-B (6):1955-1959.
    [76] Jong Y L C d, Willink T J. Iterative Tree Search Detection for MIMO Wireless Systems [J]. IEEE Trans. Commun., June 2005, 53 (6):930-935.
    [77] Ruyet D L, Bertozzi T, Ozbek B. Breadth First Algorithms for App Detectors over MIMO Channels [C]. in Proc. IEEE International Conference on Communications (ICC). Paris, France 2004:926-930.
    [78] Jong Y L C d, Willink T J. Iterative Tree Search Detection for MIMO Wireless Systems [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2002-Fall. Vancouver, BC, Canada.Sept. 2002, 2:1041-1045.
    [79] Hagenauer J, Kuhn C. Turbo Equalization for Channels with High Memory Using a List-Sequential (LISS) Equalizer [C]. in Proc. International Symposium on Turbo Codes and Related Topics (ISTC). Brest, France.Sept. 2003:9-13.
    [80] Ernesto Z, Gerhard F. Improved Length Term Calculation and MMSE Extensionfor LISS MIMO Detection [C]. in Proc. IEEE Information Theory Workshop (ITW). Punta del Este, Uruguay.2006:650-654.
    [81] Vikalo H, Hassibi B, Kailath T. Iterative Decoding for MIMO Channels Via Modified Sphere Decoding [J]. IEEE Trans. Wireless Commun., Nov.2004, 3 (6):2299-2311.
    [82] Boutros J, Gresset N, Brunel L, et al. Soft-Input Soft-Output Lattice Sphere Decoder for Linear Channels [C]. in Proc. IEEE GLOBECOM San Francisco, USA.Dec. 2003, 3:1583-1587.
    [83] Wübben D, B?hnke R, Kühn V, et al. MMSE Extension of V-BLAST Based on Sorted QR Decomposition [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2003-Fall. Orlando, Florida, USA, Oct. 2003, 1:508-512.
    [84] Barbero L G, Thompson J S. List-Sphere Decoder with Channel Matrix Ordering for MIMO Systems [C]. in Proc. Joint Conference on Communications and Coding (JCC). Solden, Austria, Mar. 2006, 1:10-10.
    [85] Wiesel A, Mestre X, Pages A, et al. Efficient Implementation of Sphere Demodulation [C]. in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communication (SPAWC). Rome, Italy, June 2003:36-40.
    [86] Kashima T, Fukawa K, Suzuki H. Adaptive MAP Receiver Via the EM Algorithm and Message Passings for MIMO-OFDM Mobile Communications [J]. IEEE J. Select Areas Commun., 2006, 24 (3):437-447.
    [87] Hagenauer J. The Turbo Principle: Tutorial Introduction and State of the Art [C]. in Proc. Int. Symp. on Turbo Codes & Rel. Topics (ISTC). Brest, France.1997:1–11.
    [88] Ariyavisitakul S L. Turbo Space-Time Processing to Improve Wireless Channel Capacity [J]. IEEE Trans. Commun., 2000, 48 (8):1347-1359.
    [89] Rossi P S, Müller R R. Joint Twofold-Iterative Channel Estimation and Multiuser Detection for MIMO-OFDM Systems [J]. IEEE Trans. Wireless Commun., Nov. 2008, 7 (11):4719-4729.
    [90] Berrou C, Glavieux A, Thitimajshima P. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes(1) [C]. in Proc. IEEE International Communication Conference. Geneva, Switzerland.May 1993:1064-1074.
    [91]刘东华. Turbo码原理与应用技术[M].北京:电子工业出版社, 2004.
    [92] Douillard C, Jezequel M, Berrou C, et al. Iterative Correction of Intersymbol Interference: Turbo-Equalization [J]. Eur. Trans. Telecommun., Sept. 1995, 6 (5): 507-511.
    [93] Tuchler M, Brink S T, Hagenauer J. Measures for Tracing Convergence of Iterative Decoding Algorithm [C]. in Proc. International ITG Conference on Source and Channel Coding. Berlin, Germany, Jan. 2002:53-60.
    [94] Brink S T, Speidel J, R.-H. Yan. Iterative Demapping and Decoding for Multilevel Modulations [C]. in Proc. IEEE GLOBECOM. Sydney, Australia.1998, 1:579-584.
    [95] Moher M. An Iterative Multiuser Decoder for near-Capacity Communications [J]. IEEE Trans. on Commun., 1998, 46 (7):870-880.
    [96] Sandell M, Luschi C, Strauch P, et al. Iterative Channel Estimation Using Soft Decision Feedback [C]. in Proc. IEEE GLOBECOM. Sydney, Australia.Nov. 1998, 6:3278-3733.
    [97] Brink S T, Sanzi F, Speidel J. Two-Dimensional Iterative App Channel Estimation and Decoding for OFDM Systems [C]. in Proc. IEEE GLOBECOM. San Francisco, CA, USA, Nov. 2000, 2:741-745.
    [98] Colavolpe G, Ferrari G, Raheli R. Noncoherent Iterative (Turbo) Decoding [J]. IEEE Trans. Commun., 2000, 48 (9): 1488–1498.
    [99] Sanzi F, Brink S t. Iterative Channel Estimation and Decoding with Product Codes in Multicarrier Systems [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2000-Fall. Boston, MA, USA.Sept. 2000, 3:1338-1344.
    [100] Tonello A M. Space-Time Bit-Interleaved Coded Modulation over Frequency Selective Fading Channels with Iterative Decoding [C]. in Proc. IEEE GLOBECOM. San Francisco,USA.Nov. 2000, 3:1616-1620.
    [101] Richardson T, Urbanke R. An Introduction to the Analysis of Iterative Coding Systems [C]. in Proc. Codes,Systems,and Graphical Models in Mathematics and Its Applications.2001, IMA:1-37.
    [102] Lu B, Yue G, Wang X. Performance Analysis and Design Optimization of Lpdc-Coded MIMO OFDM Systems [J]. IEEE Trans. Signal Processing, Feb. 2004, 52 (2):348-361.
    [103] John T S, Nallanathan A, Armand M A. A Pilot-Aided Non-Resampling Sequential Monte Carlo Detector for Coded MIMO Systems [C]. in Proc. IEEE GLOBECOM. St. Louis, Missouri.Dec. 2005, 4:2250-2254.
    [104] Liu D N, Fits M P. Low Complexity Affine MMSE Detector for Iterative Detection-Decoding MIMO OFDM Systems [C]. in Proc. IEEE International Conference on Communications (ICC). Istanbul, TURKEY. Jun. 2006, 10:4654-4659.
    [105] Lee H, Lee I. New Approach for Coded Layered Space-Time OFDM System [C]. in Proc. IEEE International Conference on Communications (ICC). Seoul Korea. May 2005, 1:608-612.
    [106] Lee H, Lee B, Lee I. Iterative Detection and Decoding with an Improved V-BLAST for MIMO-OFDM Systems [J]. IEEE J. Select Areas Commun., Mar. 2006, 24:504-513.
    [107] Cozzo C, Hughes B L. Joint Channel Estimation and Data Detection inSpace-Time Communications [J]. IEEE Trans. Commun., Aug. 2003, 51 (8):1266-1270.
    [108] Dempster A P , Land N M , Rubin D B. Maximum Likelihood from Incomplete Data Via the EM Algorithm [J]. Journal of the Royal Statistical Society, 1977, Series B, 39 (1):1-38.
    [109] Wu C. On the Convergence Properties of the EM Algorithm [J]. Ann.Statistics, 1983., 11 (1):95-103.
    [110] Feder M, Weinstein, E. Parameter Estimation of Superimposed Signals Using the EM Algorithm [J]. IEEE Trans. Acoust, Speech, Signal Processing, Aril. 1988, 36 (4):477-489.
    [111] Song B, Zhang W, Gui L. EM Based Joint Channel Estimation and Signal Detection for V-BLAST in MIMO OFDM Systems [C]. in Proc. International Conference on Wireless Communications, Networking and Mobile Computing 2005. Wuhan, China.2005, 1:135-138.
    [112] Al-Naffouri T Y, Bahai A, Paulraj A. An EM-Based OFDM Receiver for Time-Variant Channels [C]. in Proc. IEEE GLOBECOM. Taipei, China.Nov. 2002, 1:589-593.
    [113] Ferre, Syed G, Cances M J, et al. Turbo EM Based Equalization for Multi-User Multi-Carrier Space Time System [C]. in Proc. IEEE International Conference on Networks, ICON , jointly held with IEEE Malaysia International Conference on Communication (MICC). Boston, Massachusetts, USA 2005:440-445.
    [114] Gallo A S, Vitetta G M. Soft-in Soft-Output Detection in the Presence of Parametric Uncertainty Via the Bayesian EM Algorithm [J]. EURASIP Journal on Wireless Communications and Networking, 2005, 2:100-116.
    [115] Gallo A S, Chiavaccini E, Vitetta G M. A Novel BEM-Based Multiuser Detector for Co-Channel Signals Transmitted over Frequency-Flat Fading Channels [C]. in Proc. IEEE GLOBECOM 2003. San Francisco, USA.Dec. 2003, 1:241-246.
    [116] Jia Y, Andrieu C, Piechocki R J, et al. SGA Based Symbol Detection and EM Channel Estimation for MIMO Systems [C]. in Proc. IEEE 63rd Vehicular Technology Conference (VTC) 2006-Spring. Melbourne, Vic., May 2006, 4:1743-1747.
    [117] Khalighi M A, Boutros J. Modified Unbiased EM-Based Channel Estimation for MIMO Turbo Receivers [C]. in Proc. IEEE Symposium on Signal Processing and Information Technology (ISSPIT) Rome, Italy.2004:127-131.
    [118] Kobayashi M, Boutros J, Caire G. Successive Interference Cancellation with SISO Decoding and EM Channel Estimation [J]. IEEE Trans. Vehicular Technology, Aug.2001, 19 (8):1450-1460.
    [119] Kocian A, Fleury, B.H. EM-Based Joint Data Detection And. Channel. Estimation of DS-CDMA Signals [J]. IEEE Trans. on Commun., Oct. 2003, 51(10):1709-1720.
    [120] Souza R D, Garcia-Frias J, Haimovich A M. Semi-Blind EM-Based Iterative Receivers for Space-Time Coded Modulation and Quasi-Static Frequency Selective Fading Channels [J]. IEEE Trans. on Vehicular Technology, July 2006, 55 (4):1259-1268.
    [121] Sun Y, Xiong Z, Wang X. EM-Based Iterative Receiver Design with Carrier-Frequency Offset Estimation for MIMO OFDM Systems [J]. IEEE Trans. Commun., Apri. 2005, 53 (4):581-587.
    [122] Lu B, Wang X, Narayanan K R. LDPC-Based Space–Time Coded OFDM Systems over Correlated Fading Channels: Performance Analysis and Receiver Design [J]. IEEE Trans. Commun., January 2002, 50 (1):74-88.
    [123] Kashima T, Fukawa K, Suzuki H. Iterative-MAP Adaptive Detection Via the EM Algorithm for LDPC-Coded MIMO-OFDM Mobile Communications in Fast Fading Channels [C]. in Proc. IEEE Vehicular Technology Conference (VTC) 2005-Spring. Stockholm, Sweden.May 2005, 3:1681-1685.
    [124] Wang M, Quevedo D E, Goodwin G C. Joint Data Detection and Channel Estimation for MIMO-OFDM Systems Via EM Algorithm and Sphere Decoding [C]. in Proc. IEEE GLOBECOM. San Francisco, USA.Nov. 2006:1-5.
    [125] Al-Naffouri T Y, Awoniyi O, Oteri O, et al. Receiver Design for MIMO-OFDM Transmission over Time Variant Channels [C]. in Proc. IEEE GLOBECOM. San Franciso, California.Nov. 2004:2487-2492.
    [126] Christensen L P B, Larsen J. On Data and Parameter Estimation Using the Variational Bayesian EM-Algorithm for Block-Fading Frequency-Selective MIMO Channels [C]. in Proc. IEEE Intl. Conf. Acoustic, Speech, Signal Processing (ICASSP). Toulouse, France, May 2006, 4:IV465-IV468.
    [127] Jordan M, Ghahramani Z, Jaakkola T, et al. Introduction to Variational Methods for Graphical Models [J]. Machine Learning, 1999, 37:183-233.
    [128] Mackay D J C. Information Theory, Inference, and Learning Algorithms [M]. Cambridge University Press, 2003.
    [129] Beal M. Variational Algorithms for Approximate Bayesian Inference [D]. Ph.D. thesis, Gatsby Computational Neuroscience Unit, London’s Global University, UK, 2003.
    [130] Smidl V, Quinn A. The Variational Bayes Method in Signal Processing [M]. Springer, 2006.
    [131] Hu B, Land I, Piton R, et al. A Bayesian Framework for Iterative Channel Estimation and Multiuser Decoding in Coded DS-CDMA [C]. in Proc. IEEE GLOBECOM. New Orleans, LA.Nov. 2007:1582-1586.
    [132] Lin D D, Lim T J. The Variational Inference Approach to Joint Data Detection and Phase Noise Estimation in OFDM [J]. IEEE Trans. on Signal Processing,May 2007, 55 (5):1862-1874.
    [133] Stefanatos, Stelios K, Aggelos K. Joint Data Detection and Channel Tracking for OFDM Systems Using the Variational Bayes Method [C]. in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Helsinki, Finland.June 2007:1-5.
    [134] Mauri N. Iterative Receivers for Digital Communications Via Variational Inference and Estimation [D]. Ph.D. thesis, Department of Electrical and Information Engineering, INFORTECH OULU, University of OULU, Finland, 2008.
    [135] Zhang X-Y, Wang D-G, Wei J-B. Joint Symbol Detection and Channel Estimation for MIMO-OFDM Systems Via Variational Bayes EM Algorithm [C]. in Proc. IEEE Wireless Communications and Networking Conference (WCNC). Las Vegas, USA.Mar. 2008:13-17.
    [136] Wu S-H. Factor Graph EM Algorithm for Joint Channel Tracking and MAP Detection of MIMO-Ofdma in Fading Channels [C]. in Proc. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Las Vegas, Nevada, USA.Mar. 2008:2701-2704.
    [137] Kschischang F R, Frey B J, Loeliger H-A. Factor Graphs and the Sum-Product Algorithm [J]. IEEE Trans. Inform. Theory, Feb. 2001, 47 (2):498-519.
    [138] Merli F Z, Wang X, Vitetta G M. A Bayesian Multiuser Detection Algorithm for MIMO-OFDM Systems Affected by Multipath Fading, Carrier Frequency Offset, and Phase Noise [J]. IEEE J. Select Areas Commun., Apr. 2008, 26 (3):506-516.
    [139] Cappe O, Godsill S J, Moulines E. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo [J]. Proceedings of the IEEE, May 2007, 95 (5):899-924.
    [140] Zhang X-Y, Wei J-B. MAP Receiver with Enhanced EM Channel Estimation for MIMO-OFDM Systems [C]. in Proc. IEEE Wireless Communications and Networking Conference (WCNC). Hong Kong, China.Mar. 2007:933-937.
    [141] Boher L, Rabineau R, Hélard M. FPGA Implementation of an Iterative Receiver for MIMO-OFDM Systems [J]. IEEE J. Select Areas Commun., Aug. 2008, 26 (6):857-866.
    [142] Bahl L R, Cocke J, Jelinek F, et al. Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate [J]. IEEE Trans. Inform. Theory, Mar. 1974, 20 (2):284-287.
    [143] Vogt J, Finger A. Improving the Max-Log-Map Turbo Decoder [J]. Electronics Letters, Nov. 2000, 36:1937–1939.
    [144] Wan F, Zhu W-P, Swamy M N S. A Semiblind Channel Estimation Approach for MIMO-OFDM Systems [J]. IEEE Trans. on Signal Processing, July 2008, 56 (7):2821-2834.
    [145] Barhumi I, Leus G, Moonen M. Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels [J]. IEEE Trans. on Signal Processing, June,2003, vol.51 (no.6):1615-1624.
    [146] Biguesh M G A B. MIMO Channel Estimation:Optimal Training and Tradeoffs between Estimation Techniques [C]. in Proc. IEEE International Conference on Communications (ICC). Paris, France.2004, 5:2658-2662.
    [147] Hassibi B, Hochwald B M. How Much Training Is Needed in Multiple-Antenna Wireless Links? [J]. IEEE Trans. Inform. Theory., Apri. 2003, 49 (4):951-963.
    [148] Yang L, Ma X, G.B. G. Optimal Training for MIMO Fading Channels with Time- and Frequency-Selectivity [C]. in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Montreal, Canada.2004, 3:821-824.
    [149] Xiaoli M, Giannakis G B, Ohno S. Optimal Training for Block Transmissions over Doubly Selective Wireless Fading Channels [J]. IEEE Trans. on Signal Processing. , 2003, 51 (5):1351-1365.
    [150] Minn H, Al-Dhahir N. Optimal Training Signals for MIMO OFDM Channel Estimation [J]. IEEE Trans. Wireless Commun., May 2006, 5 (5):1158-1168.
    [151] Orozco-Lugo A G, Lara M M, McLernon D C. Channel Estimation Using Implicit Training [J]. IEEE Trans. on Signal Processing, 2004, 52 (1):240-254.
    [152] Yuan W, Fan P. Implicit MIMO Channel Estimation without Dc-Offset Based on ZCZ Training Sequences [J]. IEEE Trans. on Signal Processing, 2006, 13 (9):521-524.
    [153] Ghogho M M D, Alameda-Hemandez E, Swami A. SISO and MIMO Channel Estimation and Symbol Detection Using Data-Dependent Superimposed Training [C]. in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Philadelphia, PA, USA.2005, 3:461-464.
    [154] Tugnait J K, Luo W. On Channel Estimation Using Superimposed Training and First-Order Statistics [J]. IEEE Communications Letters., 2003, 7 (9):413-415.
    [155] Meng X, Tugnait J K. MIMO Channel Estimation Using Superimposed Training [C]. in Proc. Proc. IEEE International Conference on Communications (ICC). Paris, France.2004:2663-2667.
    [156] Xiaohong Meng, Tugnait J K. Semi-Blind Channel Estimation and Detection Using Superimposed Training [C]. in Proc. in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP. Montreal, Canada.2004:417-420.
    [157] Zhou G T, Chen N. Superimposed Training for Doubly Selective Channels [C]. in Proc. IEEE Workshop on Statistical Signal Processing (SSP). St. Louis, Missouri,USA.2003:82-85.
    [158] Zhou T G, Viberg M, Mckelvey T. A First-Order Statistical Method for ChannelEstimation [J]. IEEE Signal Processing Letters, 2003, vol. 10 (No. 3):57-60.
    [159] Wautelet X, Herzet C, Dejonghe A, et al. Comparison of EM-Based Algorithms for MIMO Channel Estimation [J]. IEEE Trans. on Commun., Jan. 2007, 55 (1):216-226.
    [160] Zhou S, Muquet B, Giannakis G B. Subspace-Based (Semi-) Blind Channel Estimation for Block Precoded Space-Time OFDM [J]. IEEE Trans. Signal Processing, 2002, 50 (5):1215-1228.
    [161] B?lcskei H, Heath R W J, Paulraj A J. Blind Channel Identification and Equalization in OFDM-Based Multiantenna Systems [J]. IEEE Trans. Signal Processing, Jan. 2002, 50 (1):96-109.
    [162] Yatawatta S, Peropulu A P. Blind Channel Estimation in MIMO OFDM Systems [C]. in Proc. IEEE Workshop Statistical Signal Processing. St. Louis, MO.Sept. 2003:363-366.
    [163] Zeng Y, Ng T-S. A Semi-Blind Channel Estimation Method for Multiuser Multiantenna OFDM Systems [J]. IEEE J. Select Areas Commun., July 2001, 19:1352-1364.
    [164] Gao F, Zeng Y, Nallanathan A, et al. Robust Subspace Blind Channel Estimation for Cyclic Prefixed MIMO OFDM Systems: Algorithm, Identifiability and Performance Analysis [J]. IEEE J. Select Areas Commun., Feb. 2008, 26 (2):378-388.
    [165] Shin C, Powers E J. Blind Channel Estimation for MIMO-OFDM Systems Using Virtual Carriers [C]. in Proc. IEEE GLOBECOM. Texas, USA.Nov. 2004, 4:2465-2469.
    [166] Chen B, Petropulu A P. Frequency Domain Blind MIMO System Identification Based on Second- and Higher Order Statistics [J]. IEEE Trans. on Signal Processing, 2001, 49 (8):1677-1688.
    [167] Yatawatta S, Petropulu A P. Blind Channel Estimation in MIMO OFDM Systems with Multiuser Interference [J]. IEEE Trans. on Signal Processing, 2006, 54 (3):1054-1068.
    [168] Shin C, Heath R W, Powers E J. Blind Channel Estimation for MIMO-OFDM Systems [J]. IEEE Trans. Vehicular Technology, 2007, 56 (2):670-685.
    [169] Abuthinien M, Chen S, Wolfgang A. Joint Maximum Likelihood Channel Estimation and Data Detection for MIMO Systems [C]. in Proc. IEEE International Conference on Communications (ICC). Glasgow, Scotland.June 2007:5354-5358.
    [170] Aldana C H, Carvalho E D, Cioffi J M. Channel Estimation for Multicarrier Multiple Input Single Output Systems Using the EM Algorithm [J]. IEEE Trans. on Signal Processing, 2003, 51 (12):3280-3292.
    [171] Wu S-H, Mitra U, Kuo C-C J. Iterative Joint Channel Estimation and MultiuserDetection for DS-CDMA in Frequency-Selective Fading Channels [J]. IEEE Trans. Signal Processing, July 2008, 56 (7):3261-3277.
    [172] Nissila M, Pasupathy S. Adaptive Bayesian and EM-Based Detectors for Frequency-Selective Fading Channels [J]. IEEE Trans. on Commun., Aug. 2003, 51 (8):1325-1336.
    [173] Xie Y Z, Georghiades C N. Two EM-Type Channel Estimation Algorithms for OFDM with Transmitter Diversity [J]. IEEE Trans. on Commun., Jan. 2003, 51 (1):106-115.
    [174] Morelli M, Sanguinetti L, Mengali U. Channel Estimation for Adaptive Frequency-Domain Equalization [J]. IEEE Trans. Wireless Commun., Sept. 2005, 4 (5):2508-2518.
    [175] Al-Naffouri T Y. An EM Based Forward-Backward Kalman Filter for the Estimation of Time Variant Channels in OFDM [J]. IEEE Trans. on Signal Processing, July 2007, 55 (7):3924-3930.
    [176] Zamiri-Jafarian H, Pasupathy S. EM-Based Recursive Estimation of Channel Parameters [J]. IEEE Trans. on Commun., 1999, 47 (9):1297-1302.
    [177] Song S, Singer A C, Sung K M. Soft Input Channel Estimation for Turbo Equalization [J]. IEEE Trans. Signal Processing, Oct. 2004, 52 (10):2885–2894.
    [178] Akino T K. Optimum-Weighted RLS Channel Estimation for Rapid Fading MIMO Channels [J]. IEEE Trans. Wireless Commun., Nov. 2008, 7 (11):4248-4260.
    [179] Balakumar B, Shahbazpanahi S, Kirubarajan T. Joint MIMO Channel Tracking and Symbol Decoding Using Kalman Filtering [J]. IEEE Trans. Signal Processing, Dec. 2007, 55 (12):5873-5879.
    [180] Komninakis C, Fragouli C, Sayed A H, et al. Multi-Input Multi-Output Fading Channel Tracking and Equalization Using Kalman Estimation [J]. IEEE Trans. Signal Processing, May 2002, 50 (5):1065-1076.
    [181] Kashima T, Fukawa K, Suzuki H. Recursive Least Squares Channel Estimator with Smoothing and Removing for Iterative-MAP Receiver of MIMO-OFDM Mobile Communications [C]. in Proc. IEEE International Conference on Communications (ICC). Istanbul, TURKEY.June 2006, 7:3052-3057.
    [182] Roy S, Duman T M. Soft Input Soft Output Kalman Equalizer for MIMO Frequency Selective Fading Channels [J]. IEEE Trans. Wireless Commun., Feb. 2007, 6 (2):506-514.
    [183] Wu Y, Zhu X, Nandi A K. Soft Input Turbo Frequency-Domain Channel Estimation for Single-Carrier Multiuser Detection [C]. in Proc. IEEE International Conference on Communications (ICC). Beijing, China.May 2008:1-5.
    [184] Zamiri-Jafarian H, Pasupathy S. Recursive Channel Estimation for WirelessCommunication Via the EM Algorithm [C]. in Proc. IEEE International Conference on Personal Wireless Communications (ICPWC). Mumbay, India.Dec. 1997:33-37.
    [185] Chung P-J, B?hme J F. Recursive EM and SAGE-Inspired Algorithms with Application to DOA Estimation [J]. IEEE Trans. on Signal Processing, Aug. 2005, 53 (8):2664-2667.
    [186] Frenkel L, Feder M. Recursive Expectation-Maximization Algorithms for Time-Varying Parameters with Applications to Multiple Target Tracking [J]. IEEE Trans. on Signal Processing, 1999, 47 (2):306-320.
    [187] Chiu F-H, Wu S-H, Kuo C-C J. Receiver Design for Bit-Interleaved MIMO-OFDM Systems over Time-Varying Channels [C]. in Proc. IEEE Wireless Communications and Networking Conference (WCNC). Las Vegas, Nevada.Apri. 2006, 2:844-849.
    [188] Vazquez-Araujo F J, Gonzalez-Lopez M, Luis C, et al. Serially-Concatenated LDGM Codes for MIMO Channels [J]. IEEE Trans. Wireless Commun., 2007, 6 (8):2860-2871.
    [189]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [190] Golub G, Loan C V. Matrix Computations [M]. Baltimore, MD: Johns Hopkins University Press, 1996.
    [191] Mazet L, Buzenac-Settineri V, Courville M d, et al. EM-Based Semi-Blind Estimation of Time-Varying Channels [J]. IEEE Trans. Signal Processing, 2004, 52 (2):406-417.
    [192] Peter H. A Statistical Discrete Time Model for the WSSUS Multipath Channel [J]. IEEE Trans. Vehicular Technology, Nov. 1992, 41 (4):461-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700