防止大电网连锁跳闸事故的广域后备保护策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“一特三大”电力发展新格局的构建,我国的电网规模日益庞大。大规模的输电网络在提高了系统经济性的同时,也使得系统发生连锁故障的几率大大增加。近年来,在世界范围内发生了多起大规模的停电事故,暴露了电力系统继电保护和安全自动控制方面的许多不足。从对多次大停电事故分析的结果看,传统后备保护本身隐藏的不安全因素、保护彼此之间以及保护与安全自动装置之间缺乏配合,是引起和扩大电网连锁跳闸事故的重要原因。广域测量系统和通信技术的发展为后备保护的改进提供了有力的技术支持。本文将广域信息引入到后备保护系统中,对传统后备保护的整定原则和结构功能进行了改进,在完成传统保护功能的同时,可以有效避免后备保护隐藏故障,实现与其他支路后备保护及安全自动装置之间的配合,防止大电网连锁跳闸事故的发生。论文主要完成了以下几个方面的工作:
     为满足后备保护控制的需要,在分析支路切除后其原有潮流的转移将对部分支路造成较大影响的基础上,提出了能反映潮流转移影响范围的线路相关集的概念及其搜索方法。电网中的支路切除会造成系统潮流的重新分布,但只有部分支路受潮流转移影响较大,有可能影响其后备保护的动作行为。本文用线路相关集的概念来表示这些支路。文中对线路相关集进行了数学描述与定义,分别介绍了基于决策树理论和基于改进最短路径算法两种方法来搜索线路相关集。线路相关集的确定为广域后备保护彼此之间进行信息交换及信息采集划定了范围。
     在线路相关集的基础上,定义了线路相关因子,介绍了并行路径法和矩阵法两种线路相关因子的计算方法。利用线路相关因子能够对支路开断引起的潮流转移进行定量的分析。通过对线路相关因子的计算,可以快速准确地预测出支路断开后转移潮流在其线路相关集中各支路上的分布,从而为后备保护控制策略提供可靠的数据支持。
     针对多支路连锁切除事件引起的潮流转移问题,研究了发生多支路切除事件时的线路相关集及线路相关因子的搜索方法和计算方法。通过数学推导得出多支路切除事件的线路相关集及线路相关因子计算公式,将线路相关集进一步从单支路切除推广到多条支路切除的情况,建立了完备的线路相关集理论体系。
     对近年来造成大停电事故的主要原因——后备保护的隐藏故障问题进行了详细的分析,在此基础上发展了系统脆弱态的概念。针对整定原因造成的后备保护隐藏故障,本文基于线路相关集理论,结合后备保护隐藏故障发生的机理,提出了在系统正常运行时对脆弱态的辨识方法和识别判据,为系统的安全校验提供了新的方法。
     针对传统后备保护整定原则的局限性,借助先进的通信手段,对当前广泛使用的距离Ⅲ段后备保护整定方法进行了改进,在根据系统运行方式进行调整的自适应整定原则的基础上,增加了过负荷保护的功能,并在识别本支路短路故障、相邻支路短路故障和过负荷状态的基础上提出了变时限的整定方法,可以有效避免后备保护隐藏故障的出现。
     对广域后备保护实时减载控制系统的总体结构、功能配置、流程设计等关键问题进行了研究,利用线路相关集理论提出了一种新的实时减载算法,包括最佳减出力点和减负荷点的选取原则以及最优减载量的计算方法,构建了广域后备保护的控制方案,可实现线路相关集内各支路后备保护彼此之间以及后备保护与安全自动装置之间的配合,可以有效预防大电网连锁跳闸事故的发生。
With the construction of new pattern about "one EHV and three LARGE" for power system, the scale of power networks in China becomes larger and larger. The large-scale transmission networks improve the economy of power system; but at the same time the probability of great cascading failure is increased too. In recent years, many widely spread outages have been happened in many countries which reveal the defects in protection and stability and emergency control. By analyzing these outages, it could be known that the unwanted operation of backup protection which based on local information worsened the situation in the expanding of outages and accelerate the collapse of power system no matter what the reason and course of the outages. Therefore, the wide area information is introduced into the backup protection system in this dissertation in order not to protect the transmission line but also to realize the cooperation between the backup protection of other lines and the safety automatic device to prevent the power network from cascading failures. Major work can be summarized as follows.
     The definition and searching method of RCTL (relative cluster of transmission line) which can reflect the transferring direction of power flow is presented based on the fact that when the faulted line is cut, the transferring of original power flow will seriously affect some transmission lines. The cut of the branch line will lead to the redistribution of the flow of total power network. However, only several power flow of transmission lines are affected severely. In a certain operation mode, each transmission line possesses its fixed and close related transmission lines. So in the dissertation the mathematic description and definition of RCTL is processed, and two searching methods-decision tree theory based and shortest paths based-are also presented. For wide area backup protection, the collection of wide area information is limited. The definition of RCTL not only decides the range in choosing wide area information, but also establishes the base of realizing the load-shedding controlling strategy of backup protection.
     Based on the RCTL, line relative factor (RF) is defined and two calculating methods-parallel route method and matrix method-are also presented. Quantitative analysis of power flow transferring caused by tripped branch circuit can be processed by using line relative factor. By calculating the line relative factor, the power flow transferring distribution in each branch circuit within RCTL can be accurately forecast, which can provide the reliable data for load-shedding controlling strategy of backup protection.
     The searching method and calculating method of RCTL and line relative factor when multi-lines are cut off are presented to deal with the power flow transferring problem caused by cascading cut of multi-lines. The calculation formula of RCTL and line relative factor of cascading cut of multi-lines is obtained by mathematical derivations, which extends the RCTL from single line cutoff to multi-lines cutoff and establishes the complete theory system of RCTL.
     The concept of system frangibility mode of hidden failure is developed by detailed analysis of the hidden failure of backup protection-the main reason of wide spread blackouts in recent years. An evaluating method of hidden failure happening probability of backup protection is also presented based on the RCTL. To eliminate the hidden failure of backup protection caused by the protecting setting, the identification method and criterion system frangibility mode during the normal operation are presented based on the RCTL theory and the mechanism of hidden fault of backup protection.
     Against the setting principle limitation and defect of traditional backup protection and using the electrical information provided by data acquisition system and modern communication, the widely used distance stage III of backup protection is improved and the method of identifying short circuit and over-load status is also presented. Based on the above achievements, self-adaptability setting principle which can adjust itself according to the power operational mode and over-load protection function are enhanced in distance stage III protection. The setting method of varying time limit is presented on the basis of short circuit fault identification of this line and the neighboring line and the over-load status identification, which can lessen the occurring probability of setting hidden fault effectively.
     The real time load-shedding controlling strategy of backup protection is presented based on the wide area information, which can realize the corporation between the backup protections of each line and the corporation between backup protection and safety automation devices, which can effectively prevent the power network from cascading failures. The key problems of overall configuration, function allocation and process design of load-shedding controlling system of backup protection are studied. A new real time load-shedding algorithm is put forward and the realizing scheme of wide area backup protection is made up according to the change of load and power flow, which can prevent the power grid from cascading trip effectively.
引文
[1]U.S.-Canada Power systems Outage Task Force.Final Report on the August 14,2003 Blackout in the United States and Canada.http://www.ferc.gov/,April,2004.
    [2]甘德强,胡江溢,韩祯祥,等.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4,9.
    [3]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14大停电的警示”[J].电力系统自动化,2003,27(1 8):1-5.
    [4]郭永基.力口强电力系统可靠性的研究和应用——北美东部大停电的思考[J].电力系统自动化,2003,27(19):1-5.
    [5]李再华,白晓民,丁剑,周子冠,方竹.西欧大停电事故分析[J].电力系统自动化,2007,31(1):1-3
    [6]E.ON Netz Gmb H.Report on the status of the investigations of the sequence of events and causes of the failure in the continental European electricity grid on Saturday,Nov 4,2006,after 22:10 hours.Bayreuth(Germany):E.ON Netz Gmb H,2006.
    [7]UCTE.First facts about the system disturbance on 4 Nov.Brussels(Belgium):UCTE,2006.
    [8]Resources for Understanding the Moscow Blackout of 2005.Power System Engineering Research Center[Z].Comell University.
    [9]鲁顺,高立群,王坷,刘佳,Zhengyu Fan,郭春雨.莫斯科大停电分析及启示[J].继电器,2006,34(16):27-31.
    [10]C W Taylor.Improving GRID behavior.IEEE Spectrum.1999,18(6):40-45.
    [11]Carson W.Taylor,Dennis C.Erickson Recording and Analyzing the July 2 Cascading Outage IEEE Computer Applications in Power,1999(1):26-30
    [12]唐斯庆,张弥,李建设,吴小辰,蒋琨,舒双焰.海南电网“9.26”大面积停电事故的分析与总结[J].电力系统自动化,2006,30(1):1-7.
    [13]Pourbeik P,Kundur P S,Taylor C W.The Anatomy of a Power Grid Blackout-Root Causes and Dynamics of Recent Major Blackouts[J].IEEE Power and Energy Magazine,2006,4(5):22-29.
    [14]赵希正.强化电网安全 保障可靠供电[J].中国电力企业管理,2003.9,4-8.
    [15]李莉华等.“美加8.14大停电初步分析与各方评论”[J].华东电力,2003.9,18-21.
    [16]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16.
    [17]傅书遢.IEEE PES 2004会议电网安全问题综述及防止大面积停电事故建议[J].电力系统自动化,2005,29(8):1-4.
    [18]何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5.
    [19]赵自刚,张洪,赵春雷.美加大停电后关于继电保护的一些思考[J].继电器,2004,32(21):76-79.
    [20]印永华,郭剑波,赵建军,卜广全.美加“8.14”大停电事故初步分析以及应吸取的教训[J]. 电网技术,2003,27(10):8-11,16.
    [21]高洵.从“8.14”美加大停电看保电网安全的第三道防线[J].华北电力技术,2004,No.7:5-6.
    [22]供用电编辑部.意大利2003年9月28日大停电简介[J].供用电,2003,20(6):3-5
    [23]Corsi S,Sabelli C.General blackout in Italy Sunday September 28,2003[C].IEEE Power Engineering Society General Meeting,June 2004,2004(2):1691-1702.
    [24]蓝毓俊.2003年世界上几起大停电事件的经验教训和启示[J].电力设备,2004,5(12):67-70.
    [25]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996.
    [26]]袁季修.防御大停电的广域保护和紧急控制[M].中国电力出版社,2007.
    [27]王梅义,吴竞昌,蒙定中.大电网系统技术[M].中国电力出版社,1995.
    [28]电力系统安全稳定控制技术导则,中华人民共和国国家经济贸易委员会,2001.
    [29]张志竟,黄玉铮.电力系统继电保护原理与运行分析(上册).中国电力出版社,1994.
    [30]李晓明.现代高压电网继电保护原理[M].中国电力出版社,2005.
    [31]王宁.继电保护及安全自动装置存在问题分析及措施[J].华北电力技术,2004,34(7):50-53.
    [32]贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社,1994:1-150.
    [33]杨奇逊,黄少峰.微型机继电保护基础[M].北京:中国电力出版社,2005:1-100.
    [34]陆延昌.继电保护和自动化技术的进步[J].继电器,2004,24(8):30-33.
    [35]杨冠成.电力系统自动装置原理,北京:中国电力出版社,2000.
    [36]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7),1-6.
    [37]王亮.电力系统静态电压稳定性快速评估方法研究.[博士学位论文].济南,山东大学,2007.
    [38]PHADKE A G.Synchronized Phasor Measurements in Power Systems.IEEE Computer Applications in Power,1993,6(2):10-15.
    [39]丁仁杰,闵勇,熊炜华,等.基于GPS的电力系统动态安全监测装置及其动态模拟实验.清华大学学报(自然科学版),1997,37(7):78-81.
    [40]阂勇,丁仁杰,韩英铎等.一次系统事故的同步相量侧量结果分析.电力系统自动化。1998,22(7):10-13
    [41]BURNETT R O,BUTTS M M,STERLINA P S.Power Systems Application for Phasor Measurement Units.IEEE Computer Applications in Power,1994,7(1):10-15.
    [42]BEGOVIC M,NOVOSEL D,KARLSSON D et al.Wide-Area Protection and Emergency Control.Proceedings of the IEEE,2005,93(5):876-891.
    [43]IEEE Standard for Synchrophasors for Power Systems,IEEE Std.C37.118-2005,2005.
    [44]BEGOVIC M,NOVOSEL D,KARLSSON D et al.Wide-Area Protection and Emergency Control.Proceedings of the IEEE,2005,93(5):876-891.
    [45]Bhargava B.Synchronized Phasor Measurement System Project at Southern California Edison Co[C].IEEE Power Engineering Society Summer Meeting,July 1999,1999(1):16-22.
    [46]蔡运清,汪磊,Morison K,Kundur P,周逢权,郭志忠.广域保护(稳控)技术的现状及展望[J].电 网技术,2004,28(8):20-25.
    [47]Karlsson D,Hemmingsson M,Lindahl S.Wide Area System Monitoring and Control-Terminology,Phenomena,and Solution Implementation Strategies[J].IEEE Power and Energy Magazine,2004,2(5):68-76.
    [48]张启平,曹路,励刚,等.广域测量系统及其在华东电网的应用.华东电力,2005,33(1):5-10.
    [49][49]常乃超,兰洲,甘德强,倪以信.广域测量系统在电力系统分析及控制中的应用综述[J].电网技术,2005,29(10):46-52.
    [50]王兆家,岑宗浩,陈汉中.华东电网多功能功角实时监测系统的开发及应用[J].电网技术,2002,26(8):73-77.
    [51]苗世洪,王少荣,刘沛,等.基于GPS的电网状态监测系统的设计与实现.电力系统自动化,2000,24(12):52-54
    [52]郭强,刘小鹏,吕世荣,等.GPS同步时钟用于电力系统暂态稳定性预测和控制.电力系统自动化,1998,22(6):11-13
    [53]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景[J].电网技术,2005,29(2):45-49.
    [54]李丹,韩福坤,郭子明,等.华北电网广域实时动态监测系统[J].电网技术,2004,28(23):52-56.
    [55]王英涛,印永华,蒋宜国,等.我国实时动态监测系统的发展现状及实施策略研究[J].电网技术,2005,29(11):44-48.
    [56]李刚,王少荣,程时杰.广域电网同步状态监测系统中的实时通信[J].电网技术,2004,28(18):39-43.
    [57]严登俊,袁洪,高维忠,吴峰,鞠平.利用以太网和ATM技术实现电网运行状态实时监测[J].电力系统自动化,2003,27(10):67-70.
    [58]季坤,王克英,蔡泽祥.广域测量系统中PMU的通信方案[J].电力系统自动化,2005,29(3):77-80.
    [59]李营.继电保护信息网络实践与设想[J].中国电力,1999,32(6):21-22.
    [60]崔沅,程林,孙元章,黎雄,彭疆南,钟志安,张剑云.电力系统实时决策系统中的实时通信[J].电力系统自动化,2002,26(8):6-10.
    [61]江全元,邹振宇,曹一家,韩祯祥.考虑时滞影响的电力系统稳定分析和广域控制研究进展[J].电力系统自动化,2005,29(3):1-7.
    [62]Naduvathuparambil B,Valenti M C,Feliachi A.Communication Delay in Wide Area Measurement Systems[C].IEEE Proceedings of the Thirty-fourth Sourtheastern Symposium on System Theory,2002,2002(1);118-122.
    [63]Min Y.Phasor Measurement Applications in China[C].Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition 2002,2002,2002(1):485-489.
    [64]Chaudhuri B,Majumder R,Pal B.Wide-Area Measurement-Based Stabilizing Control of Power System Considering Signal Transmission Delay[J].IEEE Trans on Power Systems,2004,19(4):1971-1979.
    [65]Xie X R,Xin Y Z,Xiao J Y,Wu J T,Han Y D.WAMS Applications in Chinese Power Systems[J].IEEE Power and Energy Magazine,2006,4(1):54-63.
    [66]Hauer J F.Validation of phasor culations in the macrodyne PMU for california-oregon transmission project tests of March 1993.IEEE Transmissions on Power Delivery,1996,11(3):1224-1231.
    [67]Burmett R O,Jr.,Butts M M,Cease T W,et al.Synchronized phasor measurements of a power system event.IEEE Transactions on Power System,1994,9(3):1643-1650
    [68]胡志祥,谢小荣,肖晋宇,童陆园.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-43.
    [69]Brunello G.,Smith R,Campbell C B.An application of a protective relaying scheme over an Ethernet LAN/WAN[C].Transmission and Distribution Conference and Exposition,IEEE/PES,28 Oct.-2 Nov,2001:522-526.
    [70]周乐荣,韦岗.一种基于UCA体系的网络化远动通信结构[J].电力系统自动化,2001,28(10):65-68.
    [71]肖晋宇,谢小荣,李建,张涛,罗建裕,王小英,吴玉林.电网广域动态安全监测系统及其动态模拟试验[J].电网技术,2004,28(6):5-9.
    [72]W Cong,Z Pan and L Ding.Study of a high-speed communication network based wide-area protection system[C].IEE the Eighth International Conference and Exhibition on Developments in Power System Protection,Amsterdam,The Netherlands,April 2004
    [73]许正亚.输电线路新型距离保护[M].中国水利水电出版社,2002.
    [74]崔家配,孟庆炎,陈永芳,熊炳耀.电力系统继电保护与安全自动装置整定计算[M].中国电力出版社,1993.
    [75]贺家李.电力系统继电保护技术的现状与发展[J].中国电力,1999,32(10):38-40.
    [76]中国电力科学研究院系统研究所.跨区电网动态稳定监控系统可行性研究[R].北京:中国电力科学研究院,2004:1-50.
    [77]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述[J].电网技术,2005,29(13):1-9
    [78]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(9):14-18.
    [79]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探[J].电力系统自动化,2001,Aug 10:25-28
    [80]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估模型和算法[J].电力系统自动化,2001,Oct 25:30-34
    [81]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5.
    [82]曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型[J].中国电机工程学报,2005,25(18):13-19.
    [83]余晓丹,贾宏杰,陈建华.电力系统连锁故障预测初探[M].电网技术,2006,30(13):20-25.
    [84]Dobson I,Carreras B A,Newman D E.A loading—dependent model of probabilistic cascading failure[C].Proceedings of 36th Hawaii International Conference on System Sciences,2003,2:65-74.
    [85]Dobson I,Chen J,Thorp J S,et al.Dynamics criticality and self-organization in a model for blackouts in power transmission systems[C].Proceedings of 35th Hawaii International Conference on System Sciences,2002,2:63-71.
    [86]Cong wei,Pan Zhencun,Ding Lei,et al.Study of a synthetic protection and control system for medium-low voltage network contains distributed generation[C].2003 The Asia Conference on Power System Protection,2003,10.
    [87]Lu Z X,Meng Z W,Zhou S X.Cascading failure analysis of bulk power system using small-word network model[C].International Conference on Probabilistic Methods Applied to Power System,2004:635-640.
    [88]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
    [89]K.Walve:Modeling of Power System Components at Severe Disturbances,CIGRE Report,1996:38-18.
    [90]李生虎,丁明,王敏,汪兴强.考虑故障不确定性和保护动作性能的电网连锁故障模式搜索[M].电网技术,2004,28(13):27-31,44.
    [91]WATTS D J.Small worlds——the dynamics of networks between order and randomness.Princeton,NJ,USA:Princeton University Press,1998.
    [92]Watts D J,Strogatz S H.Collective dynamics 'small-world' networks[J].Nature,1998,393(4):440-442
    [93]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析.电力系统自动化,2004,28(15):21-29
    [94]A.G.Phadke and J.S.Thorp.Expose Hidden Failures to Prevent Cascading Outages.IEEE Computer Applications in Power,July 1996:20-23.
    [95]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型[J].电力系统自动化,2006,30(14):1-5.
    [96]易俊,周孝信.基于连锁故障搜索模型的降低电网发生连锁故障风险的方法[J].电网技术,2006,31(6):19-22.
    [97]Koeunyi Bae,James S.Thorp.A stochastic study of hidden failures in power system protection.Decision Support Systems 24(1999):259-268.
    [98]S.Tamronglak,S.H.Horowitz,A.G.Phake,J.S.Thorp.Anatomy of power system blackouts:preventive relaying strategies[C].IEEE Transactions on Power Delivery,1996,11(2):708-715.
    [99]J.S.Thorp,A.G.Phadke,S H Horowitz,S Tamronglak.Anatomy of power system disturbances:importance sampling.Electrical Power & Energy System,1998,20(2):147-152.
    [100]Jie Chen,James S.Thorp,Ian Dobson.Cascading dynamics and mitigation sddessment in power system disturbances via a hidden failure model.Electrical Power & Energy System,27(2005):318-326.
    [101]David C.Elizondo,J.de la Ree,Arun G.Phadke,Stan Horowitz.Hidden Failures in Protection Systems and their Impact on Wide-area Disturbances.2001 IEEE:710-714.
    [102]王明俊.大电网继电自动装置的隐藏故障、脆弱性和适应性问题[J].电力自动化设备,2005,25(3):1-4.
    [103]Suraehet Tamronglak.Analysis of Power System Disturbances due to Relay Hidden Failures,Ph.D.Dissertation.Virginia Polytechnic and State University,Blacksburg,Virginia,March 1994.
    [104]David C.Elizondo,"A Methodology to Assess and Rank the Effects of Hidden Failures in Protection Schemes based on Regions of Vulnerability and Index of Severity," Ph.D,dissertation,Virginia Polytechnic and State University,Blacksburg,Virginia,April 2003.
    [105]Dick Curtner,David Burns,David Kidd,"Development,Application and Field Experience of a Trip Security System for Transmission Line Protective Relays," 25th Annual Western Protective Relay Conference,Spokane,Washington,October,15,1998.
    [106]J.C.Tan,P.A.Crossley,D.Kirschen,et al.An expert system for the back-up protection of a transmission network[J].IEEE Trans on Power Delivery,2000,15(2):508-513.
    [107]Tan J C,Crossley P A,Mclaren P G et al.Application of a wide area backup protection expert system to prevent cascading outages[J].IEEE Trans on Power Delivery,2002,17(2):375-380.
    [108]Tan J C,Crossley P A,Mclaren P G,et al.Sequential tripping strategy for a transmission network back-up protection expert system[J].IEEE Trans on Power Delivery,2002,17(1):68-74.
    [109]J C Tan,P A Crossley,I Hall,J Farrell,P Gale.Intelligent Wide Area Back-up Protection and It's Role in Enhancing Transmission Network Reliability.Developments in Power System Protection,Conference Publication No.479@ IEE 2001.pp.446-449
    [110]J.C.Tan,P.A.Crossley,I.Hall,J.Farrell,P.Gaie.Evaiuation of Uncertainties in the Back-up Protection Expert System for a Transmission Network.0-7803-6420-1/00/$10.00(c)2000 IEEE.pp.1338-1343
    [111]熊小伏,周家启,等.快速后备保护研究[J].电力系统自动化,2003,27(11):45-47.
    [112]林霞,高厚磊.新型广域后备保护方案的研究[J].继电器,2005,33(7):84-88
    [113]高厚磊,江世芳,贺家李.输电线路新型电流差动保护的研究.中国电机工程学报,1999,19(8):49-53
    [114]李营,张全.超高压电网后备保护问题探讨[J].中国电力,2000,33(5):80-82
    [115]殷建刚,余鸿等.湖北电网强化主保护简化后备保护的设想[J].湖北电力,2004,28(6):28-29
    [116]Y.Serizawa,M.Myoujin,etc."Wide-Area Current Differential Backup Protection Employing Broadband Communications and Time Transfer Systems",IEEE Trans on Power Delivery,Vol.13,No.4,October 1998:1046-1052
    [117]K.Kangvansaichol,P.A.Crossley."Multi-Zone Differential Protection for Transmission Networks",2004 The Institution of Electrical Engineers,428-431.
    [118]苏盛,K K Li,w L Chan,曾祥君,段献忠.广域电流差动保护区划分专家系统[J].电网技术,2005,29(3):55-58.
    [119]X.R.Wang,K.M.Hopkinson,J.S.Thorp,R.Giovanini,K.birman,D.Coury.Developing an Agent-based Backup Protection System for Transmission Networks".Power System and Communications Infrastructures for Futurre,Beijing,September 2002.
    [120]陈艳霞,尹项根,张哲,等.基于多Agent技术的继电保护系统[J].电力系统自动化,2002,26(12):48-53.
    [121]Innocent Kamwa,Robert Grondin,Yves Hebert.Wide-Area Measurement Based Sabilizing Control of Large Power System-A Decentralized/Hierarchical Approach".IEEE TRANSACTIONS ON POWER SYSTEMS,16(1),Feb 2001.pp.136-153
    [122]Christian Rehtanz,Joachim Bertsch.Wide Area Measurement and Protection System for Emergency Voltage Stability Control.2002 IEEE,pp.842-847
    [123]Cong wei,Pan Zhencun,Ding Lei,A wide area protection system based on "three defensive lines" and its application in power system[C].2004 International Conference on Power SystemTechnology,Singapore,October,2004.
    [124]Damborg M J,Kim M,HuangJ,et al.Adaptive protection as preventive and emergency control.Proceedings of 2000 IEEE Power Engineering Society Summer Meeting,Seattle,USA.Jul,2000:1208-1212.
    [125]H.M.Xu,T.S.Bi,S.F.Huang,Q.X.Yang.Study on Wide Area Backup Protection to Prevent Cascading Trips Caused by Flow Transferring.Tsinghua-Myongji Joint Seminar on Pretection and Substation Automation",October,2005:64-69
    [126]从伟,潘贞存,丁磊,高湛军.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):30-33.
    [127]Kanu R S,Edson D D.Feasibility of adaptive distribution protection using computer over current relaying concept[J].IEEE Trans.on Power Delivery,1998,24(5):792-797.
    [128]Tomita Y,Fukui C.A cooperative protection systems with an agent model[J].IEEE Trans.on Power Systems,1998,13(4):1060-1066.
    [129]葛耀中.自适应继电保护及其前景展望[J].电力系统自动化,1997,21(9):42-45.
    [130]陈皓.自适应技术在电力系统继电保护中的应用[J].电力自动化设备,2001,21(10):56-61
    [131]M.J.Damborg,M.Kim,J.Huang,S.S.Venkata,A.G.Phadke.Adaptive Protection as Preventive and Emergency Control.Power Engineering Society Summer Meeting,July 2000.IEEE,Vol.2, pp1208-1212.
    [132]M.Jonsson,J.E.Daalder.An adaptive scheme to prevent undesirable distance protection operation during voltage instability.IEEE Trans.on Power Delivery,oct.2003.18(4):1174-1180
    [133]曹国臣,韩蕾,祝滨.大电网分布式自适应继电保护系统的实现方法[J].电力系统自动化,2000,24(13):19-22.
    [134]J.Huang,S.Venkata,V.Ajjarapu,and Z.Zhou,"Adaptive Wide area protection to mitigate voltage collapse"[C],presented at the 35~(th)Annual North American Power Symposium,Oct.20-21,2003,Rolla,Missouri,USA.
    [135]蔡运清,汪磊,Kip Morison,Prabha Kundur,周逢权,郭志忠.广域保护(稳控)技术的现状及展望[J].电网技术,2004,28(8):20-25
    [136]张智星,孙春在,水谷英二.神经-模糊和软计算.西安交通大学出版社,2000.2.
    [137]石文孝。通信网理论基础[M].吉林,吉林大学出版社,2001.
    [138]徐俊明.图论及其应用[M].合肥:中国科学技术大学出版社,1998.
    [139]李成江.新的k最短路算法.山东大学学报(理学版),2006,41(4):40-43
    [140]Eppstein D.Finding the k shortest paths[J].SIAM Journal on Computing,1999,28(2):652-673
    [141]王锡凡.现代电力系统分析,科学出版社,北京,2003.
    [142]王锡凡,王秀丽.实用电力系统静态安全分析.西安交通大学学报,Vol.22(1),1988
    [143]吕国英.算法设计与分析,北京:清华大学出版社,2006.
    [144]陈树柏.网络图论及其应用,科学出版社,北京,1982.
    [145]丁磊.多微网配电系统的分层孤岛运行及保护控制.[博士学位论文].济南,山东大学,2007
    [146]殷剑宏,吴开亚.图论及其算法,合肥:中国科学技术大学出版社,2003.
    [147]B Stedall,P Moore,A Johns,J Goody,M Burt.An investigation into the use of adaptive setting techniques for improved distance backup protection.IEEE Transactions on Power Delivery,1996,11(2):757-762
    [148]徐慧明,毕天姝,黄少峰,杨奇逊.基于WAMS的潮流转移识别算法[J].电力系统自动化,2006,30(14):14-19
    [149]丛伟.广域保护系统结构及故障判别算法研究.[博士学位论文].济南,山东大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700