甲型H1N1流感病毒A/Sichuan/01/2009株反向遗传操作系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A型流感病毒在温血动物中广泛存在,也是目前导致人类和各种动物流感疾病的主型。在自然情况下流感病毒感染的宿主范围有一定的特异性,分离自人的流感病毒一般不能在鸡、鸭等禽类体内复制,同样禽流感病毒在灵长类动物体内的复制能力也极差。但近年来不断发生禽流感病毒(包括H5N1,H9N2,H7N7亚型病毒)直接传染给人的事件。研究证实,流感病毒的致病性及跨种间传播的深层原因是病毒分子结构差异及其与宿主细胞相互作用。病毒多种结构蛋白和非结构蛋白某些功能位点上氨基酸的差异是病毒致病性及其跨种传播的分子生物学基础。
     2009年4月初,在墨西哥和美国边境发生了流感疫情,此次疫情通过人与人传播,几周后传播到了全球30多个国家,世界卫生组织(WHO)不断提升全球流感疫情警戒等级,将其升至最高级(6级)。通过对病原的分离鉴定,WHO宣布这场21世纪的第一次流感大流行是由一种新型猪源H1N1亚型流感病毒(novel swine-origin influenza virus A H1N1)引起。这种新型的流感病毒的遗传背景十分复杂,是一种多元重组病毒,其血凝素(HA)基因源于1918年猪流感病毒,其它基因源于人、禽和欧洲猪流感病毒。此前虽然也发生过多起猪流感感染人事件,但传播范围及其局限,此次的猪流感病毒为何能够跨越种间屏障,在人与人之间形成了有效传播成为人们关注的焦点。
     为了了解此次流感的传播机制,本研究选取了甲型H1N1流感病毒A/Sichuan/01/2009(SC/01)株为亲本毒株,构建了SC/01的8质粒反向遗传操作系统,并获得了甲型H1N1流感病毒救获株Rescue-A/Sichuan/01/2009(R-SC/01)。对救获毒株R-SC/01进行全基因序列测定,证明救获毒株与亲本毒株核苷酸序列完全一致。R-SC/01的小鼠半数感染量及受体结合特性与亲本野毒SC/01相一致。SC/01反向遗传操作系统的成功建立为进一步开展甲型H1N1流感病毒的生物学特性研究,特别是跨宿主传播机制研究奠定了基础。
Influenza A virus exists in amlost all of homothermal anmials and is the prime type leading to infection in humans and anmials.Under natura lcircum stances,influenza virus has certa in host range.In general, influenza virus of human origin cannot replicate in birds,such as chickens or ducks.Likewise, avian influenza virus has very low replication ability in prmiates.In the past several years ,however, there have been many incidents that avian in fluenza virus (including H5N1, H9N2 and H7N7 subtypes) have transmitted from avian to human. Studies have demonstrated that the differences in viral molecular structure and the interaction between virus and host cell determine influenza virus pathogenicity and interspecies transmission and the molecular biology basis for such changes are mutations of certa in amino acids in functional sites on structural or nonstructural proteins.
     In early April 2009, a new influenza pandemic emerged in Mexico and the United States. The surveillance results show that the virus spread worldwide to 30 countries by human-to-human transmission during the first few weeks. For which the World Health Organization (WHO) raise its pandemic alert to level 6/6. After isolation and identification of the pathogen, WHO announced that the first influenza pandemic in this 21st century caused by a novel swine-origin influenza virus A H1N1. The origin of the new influenza virus is very complex. It is a multiple reassortment virus. The hemagglutinin (HA) gene was derived from the 1918 swine influenza virus, other genes from human, avian and Europe swine influenza viruses. Although there were many incidents of human infected with swine influenza, but the scope was very limited. Now, people focus on how this swine influenza virus can break the species barrier and transmit efficiently between human.
     To understand the transmission of this pandemic, we choose the Pandemic H1N1 Influenza virus A/Sichuan/01/2009(SC/01) as parent virus. Eight plasmids containing SC/01 genome were constructed to rescue SC/01.The rescued virus is named as Rescue-A/Sichuan/01/2009(R-SC/01). The whole genome sequence showed that there was no nucleic acid change in R-SC/01, compared with SC/01. Furthermore, these two viruses showed identical 50% mouse infectious dose (MID50) and receptor binding ability. Our results could provide a technique for further study of SC/01, especially the crossing-host-barrier transmission mechanisms.
引文
1.韦平,秦爱建.重要分子病毒分子生物学[M].北京:科学出版社,2008.
    2.于海.中国部分地区猪流感病毒的分子流行病学研究[D].北京:中国农业科学院,2008.
    3. World Health Organization.Novel Influenza A(H1N 1)Update 108[EB/O L].http://www.w ho.int/csr/don/2010_07_09/en/index.hmtl.
    4. XuQ,Wang W,Cheng X,e t a l.Inf luenza H1N 1 A/So lom on island/3/06 virus receptor bind ing specificity correlates with virus Pathogenicity,antigenicity andmim unogenicity in ferrets[J].J V iro,l 2010,84(10):4936-4945.
    5. BelserJA,Wadford D A,Pappas C,et a l.Pathogenesis of pandemicin fluenzaA(H1N 1)and trip lereassortant swine influenza A(H1)viruses inmice[J].J V iro,l 2010,84(9):4194-4203.
    6. Herfst S,C hutinmiitkul S,Y e J,et a l.Introduction of virulence markers in PB2 of pandemic swine origin in fluenza virus does not result in enhanced viru lenceor transmission[J].J V irol, 2010,84(8):3752-3758.
    7. Childs R A,P a ml a1 A S,W harton S,et a l.Receptr binding specificity of pandemic influenza A(H 1N 1)2009 virus determined by carbohy dratemicro rray[J].N at Biotechno, l .2009,27(9):797-799.
    8. Biswas,S.K.,and D.P.Nayak.1996.Influenza virus polymerase basic protein 1 interacts wit influenza virus polymerase basic protein 2 at multiple sites.J Virol 70:6716-22.
    9. Biswas,S.K.,P.L.Boutz,and D.P.Nayak.1998.Influenza virus nucleoprotein interacts with influenza virus polymerase proteins.J Virol 72:5493-501.
    10. Bornholdt,Z.A.,Prasad,B.V..X-ray structure of influenza virus NS1 effector domain.Nat Struct Mol Biol.,2006,13(6):559-560.
    11. Boycott,R.,H.D.Klenk,and M.Ohuchi.1994.Cell tropism of influenza virus mediated by hemagglutinin activation at the stage of virus entry.Virology 203:313-9.
    12. Bui,M.,E.G.Wills,A.Helenius,and G.R.Whittaker.2000.Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins.J Virol 74:1781-6.
    13. Bui,M.,G.Whittaker,and A.Helenius.1996.Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins.J Virol 70:8391-401.
    14. Genetic reassortment between avian and human influenza A viruses in Italian pigs.Virology 193:503-6.
    15. Chen,W.,P.A.Calvo,D.Malide,J.Gibbs,U.Schubert,I.Bacik,S.Basta,R.O'Neill,J.Schickli,P.Palese,P.Henklein,J.R.Bennink,and J.W.Yewdell.2001.A novel influenza Avirus mitochondrialprotein that induces cell death.Nat Med 7:1306-12.
    16. Chien,C.Y.,R.Tejero,Y.Huang,D.E.Zimmerman,C.B.Rios,R.M.Krug,andG.T.Montelione. 1997.A novel RNA-binding motif in influenza A virus non-structural protein 1.Nat Struct Biol 4:891-5.
    17. Ciampor,F.,C.A.Thompson,S.Grambas,and A.J.Hay.1992.Regulation of pH by the M2 protein of influenza A viruses.Virus Res 22:247-58.
    18. Ciampor,F.,P.M.Bayley,M.V.Nermut,E.M.Hirst,R.J.Sugrue,and A.J.Hay.1992.
    19. Evidence that the amantadine-induced, M2-mediated conversion of influenza A virushemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment.Virology 188:14-24.
    20. Compans,R.W.,and A.Pinter.1975.Incorporation of sulfate into influenza virus glycoproteins.Virology 66:151-60.
    21. Rebecca J. Garten, C. Todd Davis, Antigenic and Genetic, Characteristics of Swine-Origin 2009 A(H1N1)Influenza Viruses Circulating in Humans [J]. Science, 2009, 325: 197-201.
    22. R. G. Webster, W. J. Bean, O. T. Gorman, Y. Kawaoka, Evolution and ecology of influenza A viruses [J]. Microbiology, 1992, 56: 152 -179.
    23. Hay AJ, Gregory V, Douglas AR, Lin YP., The evolution of human influenza viruses[J]. B Biol Science, 2001, 356:1861–1870.
    24. AP. Kendal, M. Goldfield, GR. Noble, Identification and preliminary antigenic analysis of swine influenza-like viruses isolated during an influenza outbreak at Fort Dix, New Jersey[J]. Infect Disease. 1977, 136: S381–385.
    25. K.P. Myers, C.W. Olsen, GC. Gray, Cases of swine influenza in humans: a review of the literature [J]. Clinic Infected Disease, 2007, 44:1084-1088.
    26. V. Shinde, B. Carolyn N. Engl,Triple-Reassortant Swine Influenza A (H1) in Humans in the United States, 2005–2009[J]. Med. 2009, 360: 2616-2619.
    27.郭威,许传田,朱启运,陈海平,莫内.H5N1亚型猪流感病毒A/Swine/Fujian/1/01感染性克隆构建及其对小鼠致病性研究.中国预防兽医学报,2009,5:400-401
    28.李泽君,焦培荣,于康震,陈化兰. H5N1亚型高致病性禽流感病毒. A/goose/Guangdong /1/96株反向基因操作系统的建立.中国农业科学, 2005, 38(8):1686-1690
    29.刘光清,刘在新,谢庆阁. RNA病毒感染性克隆的构建原理及应用.生命的化学,2003,23, (4): 317-320
    30.彭亚平,周红波,李春,等. H1N1亚型猪流感病毒的拯救.生物工程学报,2008,24(5): 857-861
    31.石火英,卢建红,陈素娟,贾立军,韦栋平.利用8质粒系统拯救A/Chicken/ Shanghai/ F/98(H9N2)株禽流感病毒.微生物学报, 2005,45(3):373-376
    32.王曲直,龙进学,胡顺林,等.神经氨酸酶茎部氨基酸缺失对H5N1亚型禽流感病毒生物学特性的影响.微生物学报, 2006 , 46(4): 542 -546
    33.钟功勋H9N2亚型禽流感病毒进化分析及H5N1亚型禽流感变异株疫苗株的构建[钟功勋硕士学位论文],北京:中国农业科学院研究生院2007
    34. Andrea, S., Grober, M., Herbert, A., Elliott, S., Gary, T., Christopher, R., et al. In?uenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO, 1992, 11:2407–2414.
    35. Abdel-Moneim A. S., Shany S. A. S., Fereidouni S. R. ,Eid B. T. M., El-Kady M. F.& Starick E. Sequence diversity of the haemagglutinin open reading frame of recent highly pathogenic avian in?uenza H5N1 isolates from Egypt. Arch. Virol. ,2009, 154:1559–1562
    36. Babiuk L.A. Broadening the approaches to developing more effective vaccines. Vaccine.1999, 17:1587–1595
    37. Bahgata M.M., Kutkatb M.A., Nasraaa M.H., Mostafaa A., Webbyc R., Bahgatd I.M., et al.Characterization of an avian in?uenza virus H5N1 Egyptian isolate. J.Virol. Method- s ,2009,159:244–250
    38. Capua, I., Cattoli, G.&Marangon, S. DIVA-a vaccination strategy enabling the detection of field exposure to avian in?uenza. Dev. Biol. (Basel) 2004, 119,229–233.
    39. Capua I., Marangon S., dalla Pozza M., Terregino C. & Cattoli G. Avian influenza in Italy 1997–2001. Avian Dis,2003,47:839-843
    40. Chandrasekaran A., Srinivasan A., Raman R., Viswanathan K., Raguram S., et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol., 2008, 26: 107–113.
    41. Chen H.L&Bu Z.G. Development and Application of Avian Influenza Vaccines in China. Curr Top Microbiol Immunol. 2009, 333:153–162.
    42. Chen H. L., Deng G. H., Li Z. J., Tian G. B., Li Y. B., Jiao P. R., et al. The evolution of H5N1 influenza viruses in ducks in southern China. Proc. Natl. Acad. Sci. USA,2004,101: 10452–10457
    43. Chen H. L., Li Y. B., Li Z. J., Shi J. Z .,Shinya K., Deng G. H., et al, Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol. ,2006,80:5976–5983
    44. Chen H. L., Yu K. Z., Jiang Y. P., Tang X. Y. DNA immunization elicits high HI antibody and protects chicken from AIV challenge. Options for the control of influenza IV, Crete, Greece, 23–28 Sept 2000, 2001,1219:917–921
    45. Chen, H., Smith, G.J., Zhang, S.Y., Qin, K., Wang, J. & Li, K.S. Avian ?u: H5N1 virus outbreak in migratory waterfowl. Nature, 2005,436, 191–192.
    46. Cheung C.L., Rayner J. M., Smith. Distribution of amantadine-resistant H5N1 avianinfluenza variants in Asia. J. Infect Dis. 2006. 193(12):1626–1629.
    47. Claas E. C., Osterhaus A. D., Van Beek R. Human influenza A H5N1 virus related to a highly pat- hogenic avian influenza virus. Lancet, 1998, 351: 472–477
    48. Comai L., Tanese N., Tjian R. The TATA-binding protein and associated factors are integral components of the RNA polymerase-I transcription factor SL1. Cell, 1992, 68:965–76.
    49. Conzelmann, K.K., Reverse genetics of mononegavirales. Curr. Top Microbiol Immunol, 2004, 283, 1–41.
    50. de Wit, E., Spronken, M. I., Bestebroer, T. M., Rimmelzwaan, G. F.,Osterhaus, A. D. & Fouchier, R. A. Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments.Virus Res ,2004,103, 155–161.
    51. de Wit, E., Spronken M. I., Vervaet G., Rimmelzwaan G. F., Osterhaus A. D.& Fouchier R. A.. A reverse-genetics system for in?uenza A virus using T7 RNA polymerase. J. Gen. Virol. 2007, 88:1281–1287.
    52. Deyde, V. M., X. Xu, R. A. Bright, M. Shaw, C. B. Smith, Y. Zhang, Y. Shu, L. V. ,Gubareva, N. J. Cox&A. I. Klimov. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide.J. Infect. Dis. 2007.196:249–257.
    53. Donnelly JJ, Liu MA, Ulmer JB Antigen presentation and DNA vaccines. Am J Respir Crit Care Med ,2000,162:S190–S193
    54. Duan L., Bahl J., Smith G.J., Wang J., Vijaykrishna D., Zhang L.J., Zhang J.X., Li K.S. et al. The development and genetic diversity of H5N1 influenza virus in China, 1996-2006. Virology, 2008,380 (2):243-254;
    55. Dudley J P. Age-specific infection and death rates for human A (H5N1) Avian influenza A in egypt Euro Surveill.,2009 ,14(18):1–2
    56. Ellis T. M., Leung C. Y., Chow M. K., Bissett L. A., Wong W., Guan Y., et al. Vaccination of chickens against H5N1 avian influenza in the face of an outbreak interrupts virus transmission. Avian Pathol.,2004,33:405–412
    57. Enami M., Palese P. High-efficiency formation of influenza virus transfectants. J Virol.,1991,65:2711-3
    58. Fan S. F., Gao Y. W., Shinya K., Li C.K., Li Y. B., Shi J.Z., et al .Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates. PLoS Pathog. 2009, 5, e100- 0409.
    59. Fasina F.O., Ifende V.I. & Ajibade A.A. Avian influenza A (H5N1) in humans: lessons from Egypt. Euro Surveill. 2010, 15(4): 19473.
    60. Fodor E., Devenish L., Engelhardt O. G., Palese P., Brownlee G .G&Garcia-Sastre A. Rescue of influenza A virus from recombinant DNA. J Virol.,1999,73:9679–9682
    61. Fynan E. F, Webster R. G, Fuller D. H, Haynes J. R, Santoro J.C&Robinson H.L DNAvaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl. Acad. Sci. USA, 1993,90:11478–11482
    62. Gao Y.W, Zhang Y., Shinya.K, Deng G. H, Jiang Y. P, Li Z.J,et al. Identification of Amino Acids in HA and PB2 Critical for he Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host. 2009,5(12): e1000709
    63. Garmory H. S.&Brown K. A., Titball R.W. DNA vaccines: improving expression of antigens. Genet. Vaccines Ther ,2003,1:2
    64. Garten W., Linder D., Rott R., Klenk H.D. The cleavage site of the hemagglutinin of fowl plague virus. Virol. 1982, 122:186–190.
    65. Ge J. Y., Deng G. H., Wen Z. Y., Tian G. B., Wang Y., Shi J. Z., et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol. ,2007,81:150–158
    66. Glaser L., Stevens J., Zamarin D., Wilson I.A, Garc?′a-Sastre A., Tumpey T.M., et al. A Single Amino Acid Substitution in 1918 In?uenza Virus Hemagglutinin Changes Receptor Binding Specificity J. Virol., 2005, 79(17):11533–11536
    67. Gubareva L.V Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res,2004,103(2):199–203
    68. Halperin, S. A., Smith B., Mabrouk T., Germain M., Trepanier P., Hassell T., et al.Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived in?uenza vaccine in healthy adults, seniors, and children. Vaccine, 2002, 20:1240–1247.
    69. Halvorson, D. A. The control of H5 or H7 mildly pathogenic avian Influenza: A role for inactivated vaccine. Avian Pathol., 2002, 315–12.
    70. Hara K., Schmidt F. I, Crow M. & Brownlee G. G. Amino Acid Residues in the N-Terminal Region of the PA Subunit of Influenza A Virus RNA Polymerase Play a Critical Role in Protein Stability, Endonuclease Activity, Cap Binding, and Virion RNA Promoter Binding. J. Virol., 2006, 7789–7798.
    71. Hatta M. , Gao P. ,Halfmann P. &Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001, 293 (5536):1840–1842.
    72. He X. J., Zhou J., Bartlam M., Zhang R. G. , Ma J. Y., Lou Z. Y., et al Crystal structure of the polymerase PA-PB1 complex from an avian influenza H5N1 virus. Nature, 2008, 454: 1123–1127
    73. Higa, H. H. & Paulson, J. C. Host-mediated selection of influenza virus receptor variants. Sialic acid-a2, 6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-a2, 3Gal-specific wild type in ovo. J Biol. Chem., 1985,260, 7362–7367.
    74. Hirst G.K. The agglutination of red cells by allantoic ?uid of chick embryos infected with in?uenza virus. Science .1941, 94:22–23.
    75. Hoffmann E., Neumann, G., Hobom, G., Webster, R. G. & Kawaoka, Y.‘Ambisense’approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology, 2000a, 267, 310–317.
    76. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. U S A, 2000b, 97, 6108–6113.
    77. Hoffmann, E., Krauss, S., Perez, D., Webby, R., Webster, R.G. Eight-plasmid system for rapid generation of in?uenza virus vaccines. Vaccine, 2002, 20:3165–3170.
    78. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all in?uenza A viruses. Arch Virol. 2001, 146:2275–89.
    79. Hooker L., Sully R., Handa B., Ono N., Koyano H. & Klumpp K. Quantitative Analysis of Influenza Virus RNP Interaction with RNA Cap Structures and Comparison to Human Cap Binding Protein eIF4E. Biochemistry, 2003, 42, 6234–6240.
    80. Horimoto, T., Murakami S., Muramoto Y., Yamada S., Fujii K., Kiso M., et al.Enhanced growth of seed viruses for H5N1 in?uenza vaccines. Virology, 2007, 366:23–27.
    81. Hurt A.C, Ho H. T& Barr I. Resistance to anti-influenza drugs: adamantanes and neuraminidase inhibitors. Expert Rev. Anti. Infect. Ther, 2004, 9(4):577–581.
    82. Hurt A.C., Iannelb P., Jachno K., Komadina N., Hampson A.W., Barr L.G, et al. Neuraminidase inhibitor-resistant and sensitive influenza B viruses isolated from an untreated human patient. Antimicrob Agents Chemother,2006,50(5):1872–1874
    83. Ikegami, T., Won, S., Peters, C. J. & Makino, S. Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol. , 2006, 80, 2933–2940.
    84. Itoh Y., Shinya K., Kiso M., et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature, 2009, 460(7258):1021–1025.
    85. Jiang Y P, Yu K Z, Zhang H B, Zhang P, Li C J, Tian G B, Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res ,2007,75:234–241
    86. Jiao P R, Tian G B, Li Y B, Deng G. H,Jiang Y.P, Liu C,et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J.Virol., 2008, 82:1146-1154
    87. Klenk H.D, Rott R., Orlich M.&Blodorn J. Activation of in?uenza a viruses by trypsin treatment. Virol. 1975; 68:426–439.
    88. Li C. J., Ping J. H., Jing B., Deng G. H., Jiang Y. P., Li Y. B., et al. H5N1 influenza markervaccine for serological differentiation between vaccinated and infected chickens. Biochem. Biophys. Res. Commun., 2008,3722:293–297
    89. Li S. Q., Liu C. G., Klimov A., Subbarao K., Perdue M. L., Mo D., et al. Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. J Infect. Dis. ,1999,179:1132–1138
    90. Lin Y. P., Shaw M., Gregory V., et al. Avian-to-human transmission of H9N2 subtype in?uenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci. USA 2000, 97(17):9654–8.
    91. Liu J., Xiao H., Lei F., Zhu Q., Qin K., Zhang X.W., et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science,2005, 309:1206
    92. Liu M. A., Fu T. M., Donnelly J J., Caulfield M. J.&Ulmer J. B. DNA vaccines. Mechanisms for generation of immune responses. Adv. Exp. Med. Biol. 1998,452:187–191
    93. Luytjes,W., Krystal,M., Enami,M., Pavin, J. D. &Palese, P. Amplification, expression, and packaging of foreign gene by influenza virus. Cell, 1989, 59, 1107–1113.
    94. Li Z. J., Chen H. L., Jiao P. R., Deng G. H, Tian G.B., Li Y.B., et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J.Virol, 2005, 79: 12058-12064.
    95. Massin, P., Rodrigues, P., Marasescu, M., van der Werf, S. & Naffakh, N. Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells. J Virol, 2005, 79, 13811–13816.
    96. Massin, P., van der Werf, S. & Naffakh, N. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol., 2001, 75, 5398–5404.
    97. Maines T.R., Chen L.M., Matsuoka Y. et al. Lack of transmission of H5N1 avian-human reassortant in?uenza viruses in a ferret model. Proc. Natl. Acad. Sci. USA 2006, 103:12121–12126
    98. Maines T.R., Lu X.H., Erb S.M., et al. Avian in?uenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol. 2005, 79: 11788–11800.
    99. Murakami S., Horimoto T., Yamada S., Kakugawa S., Goto H. & Kawaoka Y. Establishment of Canine RNA Polymerase I-Driven Reverse Genetics for In?uenza A Virus: Its Application for H5N1 Vaccine Production. J. Virol., 2008,82 (3) :1605–1609
    100.Munster V. J, Wit E. , Brand J.M., Herfst S., Schrauwen E.J, Bestebroer T.M,et al. Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets. Science,2009,325: 481–483
    101.Nakazawa M., Kadowaki S., Watanabe I., Kadowaki Y., Takei M.&Fukuda H. PA subunit of RNA polymerase as a promising target for anti-influenza virus agents. Antiviral Research,2008, 78:194–201.
    102.Neumann, G., Fujii, K., Kino, Y. & Kawaoka, Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. U S A, 2005, 102: 16825–16829.
    103.Neumanna G., Horimotob T.&Kawaoka Y. Reverse Genetics of Influenza Viruses– Applications in Research and Vaccine Design. Monogr. Virol. Basel, Karger ,2008, 27:118–133
    104.Neumann, G.&Kawaoka, Y. Synthesis of influenza virus :new impetus from an old enzyme RNA polymerase I .Virus Res., 2002, 82:153–158
    105.Neumann G, Watanabe T, Ito H , Watanabe S., Goto H., Gao P., Hughes M., et al. Generation of influenza A viruses entirely from cloned cDNAs . Proc. Natl. Acad. Sci. USA, 1999, 96: 9345– 9350.
    106.Nicolson, C., Major D., Wood J. M., & Robertson J. S. Generation of in?uenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine, 2005, 23:2943–2952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700