无线传感器网络同步与接入技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于无线传感器网络(WSN, Wireless Sensor Networks)的快速部署、分布式协同工作、成本低廉等特点,学术界和工业界已经对WSN进行了广泛研究。由于节点功耗限制、分布式信息处理以及无线信道等因素的制约,作为WSN关键支撑技术的节点精确时钟同步和高效介质访问控制协议仍未得到很好的解决。如何保证无线传感器节点的有效接入,优化任务分配及提高服务质量便成了首要解决的问题。首先,时钟同步技术是组网及构建协议的基础;其次,随着移动无线传感器网络(MWSN,Mobile Wireless Sensor Networks)受到越来越多的关注,大量节点同时接入网络的增强技术和提升MWSN的移动节点接入效率问题也必须得到很好的解决。
     针对上述问题,本文从四个方面研究WSN的同步和接入增强技术:基于分组信令交互式的时钟同步协议设计;基于博弈论的多节点并行接入单信道的控制策略;基于移动性感知的移动节点的接入问题;基于时隙利用率最大化的时隙分配策略。具体研究内容如下:
     研究了WSN中的分布式时钟同步问题。考虑无线传感器网络的同步开销以及实现条件,分析比较了现有分布式时钟同步算法存在的问题,在此基础上,提出了一种降低同步开销的分布式时钟同步算法。该算法首先建立一对同步节点,然后通过该对同步节点广播消息,使位于该对节点广播域内的所有节点同步,接着建立一个树形结构(具有双根节点)将算法扩展到整个网络。仿真结果表明所提出的算法能够有效地降低整个网络的同步开销。
     研究了单信道内多节点并行传输问题。基于干扰感知的接收信干比模型,将网络中多个节点随机并行接入同一信道的控制决策过程建模为信道接入博弈。随后,求解此博弈的纳什均衡解作为传输门限,并提出一种单信道多节点并行传输策略。仿真结果表明并行传输门限可根据活动节点数、互扰比、传输成本及无线接收机的灵敏度自适应调整。本策略允许多个节点在单信道内并行传输,在提高网络吞吐量的同时降低了能量消耗和通信开销。
     研究了WSN中提升移动节点的接入效率问题。为解决移动节点连通性较弱的问题,提出一种提升移动节点连通性的保障时隙(GTS, Guaranteed Time Slot)分配策略。首先,采用卡尔曼滤波预测模型得到用户下一阶段位置;接下来,引入一种考虑速度、方向和相对移动性的节点移动程度界定方法,并在此基础上进行GTS预约优先级的初步确定;随后,根据移动节点对所预约时隙的使用反馈情况自适应调整预约优先级;最后,根据节点的优先级决定GTS时隙的使用顺序及额外预留时隙的使用权。仿真结果显示,提出的分配策略在具有不同移动性节点的网络中,能够提高移动节点接入的成功率,保证较低的分组平均传输时延及较高的分组投递率。此外,采用基于反馈机制的自适应预约优先级调整策略能够显著增加整个网络中已分配时隙的正确使用率。
     研究了在中高速情况下节点快速接入路侧单元(RSU,Road Side Unit)的机制,并考虑车载无线传感器节点可持续供电的特点,在与IEEE802.15.4协议族兼容的条件下对传统WSN的超帧结构进行修改,提出使用带有优先级及反馈机制的GTS时隙分配方法,旨在保证车辆无线传感器网络应用环境下节点的快速接入。在给定时延要求、GTS时隙数和接入节点数条件下,分析时隙利用率上限,进一步优化所提出的接入方法。仿真结果表明所提出的算法由于对剩余时隙进行有效分配,实现了时隙的最大利用率,提高了网络吞吐量,并且保证了车载移动网络中业务的时延要求。
Wireless Sensor Networks (WSN), a technology exhibiting the characteristics ofrapid deployment, self-structuring network, and the ability to be remotely controlled,has not only generated much attention academically, but researchers from the public andprivate sectors have all been very interested. Contemporary research and developmentin this field has been rapid and intense. Limited by issues with node power consumptionand widely distributed information processing, accompanied by other issues withchannel mobility, some key supporting technologies of the WSN, such as thenode-precise clock synchronization technology and efficient medium access control(MAC) protocol have not yet been perfected. Therefore, to keep the accessibility ofwireless sensor node, optimize task dispatch and increase the service quality have beenput on the first priority to deal with; Furthermore, as the new technologies of MWSN(Mobile Wireless Sensor Networks) has been becoming increasingly popular, thetechnology of enabling massive nodes connected at the same time and increasing theefficiency of access rate of MWSN have to be developed as well.
     Aimed at the resolution of these problems, this report will approach them throughfour aspects of research:(1) Synchronization protocols of clocks based upon packetinteractions or distributed synchronization signal process algorithm;(2) Employing asingle channel control strategy based upon Game Theory’s Multi-node parallel;(3)Resolving the issue based upon mobile perception’s mobile node.(4) A GuaranteedTime Slot (GTS) allocation scheme with delay requirement and slot utilizationguaranteed in vehicular sensor networks. Detailed results of the research report arecontained below.
     The first topic of research was conducted on WSN’s distributed clocksynchronization problem. In regards to the synchronization accuracy, energyconsumption and other practical conditions of the clock synchronization mechanism,while making comparisons and analysis on a few existing problems of clocksynchronization algorithm within the field of area broadcasting, we have come across alow cost, multi-hop clock synchronization algorithm. This algorithm utilizes a pair ofnodes that have already been synchronized to transmit information to all peer nodes,thus synchronizing all nodes within the specific physical area. A tree structure with adual root node will be created to spread the algorithm throughout the network. Results from simulations have shown that under circumstances where synchronization accuracyis low and the suggested algorithm is able to effectively reduce the synchronizationcosts of the whole network.
     Research was also conducted on problems with single-channel multi-node paralleltransmission. Based on the interface-aware model signal interference ratio, informationmay be assembled from multiple nodes using a stochastic parallel and into a singlechannel control strategy, modeling it into a channel access matrix. Afterwards, the Nashequilibrium of the matrix will be the network’s transmission threshold; this suggests atype of single channel multi-node transmission agreement that transmits all parallelinformation. Simulations have shown that an increase in throughput; transmissionthreshold can also be adjusted according to the activity of nodes, interface ratio,transmission cost and wireless receiver sensitivity. This strategy allows multiple nodesto transmit information in a single channel in parallel: lowing costs while increasingnetwork throughput.
     The next topic of research was conducted on problems with accessing mobilenodes in WSNs. To resolve the issue of weak signal within wireless sensor networks, wesuggest utilizations of a network of wireless sensor that contain multiple mobile nodes,in order to widen the GTS of the nodes connectivity. First, by using the Kalman FilterPrediction Model, the location of the user in the next stage of transmission could bedetermined. Next, introducing a type of cognitive speed and taking into considerationthe direction of the transmissions and their respective mobility, to calculate thereservation priority of each signal. The next step is in determining the most appropriatereservation sequences based on the feed backs of the appointed slots of mobile nodes.Lastly, determining the GTS’s order of use based on the priority level of each node, aswell as the utilization of all slack time. Simulations have shown that in a network thatcontains multiple mobile nodes, the suggested allocation strategy is able to improve therate of node successfully accessing the network while keeping failure rate at a lowerlevel even when there is high delay in node group delivery ratio. Furthermore, byutilizing a self adjusting reservation priority strategy based on a feedback mechanism,the accuracy of network time slot reservation priority can be significantly improved.
     The final topic of our research was conducted on a GTS allocation scheme withdelay requirement and slot utilization guaranteed in vehicular sensor networks. TheIEEE802.15.4protocol can provide a flexible solution to support both real-time andcontention-based services. When beacon model is enabled, the Guaranteed Time Slot(GTS) scheduling can give a contention-free access to those latency-sensitive services based on time division multiple access mechanism. This characteristic makes IEEE802.15.4the appropriate candidate for vehicular sensor networks in which nodesgenerally should exchange packets with roadside units within given delay limitconsidering their mobility. We first analyze the relation between slots utilization andcorresponding access parameters, such as packets arrival rate, burst size and mobilitylevel etc. Then, for a given number of vehicles ready to access the roadside unit, wepropose a Time-Sensitive Weighted Round Robin scheduler with service delayrequirements, packets arrival rates and vehicles’ mobility levels into account. Bydetailed analysis to our scheduler, the weights setting method and time slots allocationstrategy is presented. Numerical results show the performance of transactions delayrequirement guarantee and GTS utilization maximization in Vehicular Sensor Networks.
引文
[1]李晓维.无线传感器网络技术[M].第一版.北京:北京理工大学出版社,2009年. pp.1-19.
    [2] G. J. Pottie, Wireless Sensor Networks, IEEE Information Theory Workshop,1998.pp.139-140.
    [3]孙利民.无线传感器网络[M].第一版.北京:清华大学出版社,2005年.
    [4]黄海平等.无线传感器网络技术及其应用[M].第一版.北京:人民邮电出版社,2011年.
    [5] Kristfer S. J., Pister, Tracking vehicles with a UAV-delivered sensor network.http://robotics. eecs. Berkeley. Edu/~pister/29Palms0103/.
    [6] J. Luo and J. Hubaux, A survey of inter-vehicle communication, EPFL, Lausanne,Switzerland, Tech. Rep,2004.
    [7] Papadimitratos, P., La Fortelle, A., Evenssen, K., Vehicular communication systems:Enabling technologies, applications, and future outlook on intelligent transportation [J].IEEE Communications Magazine, November2009. vol.47, no.11, pp.84-95.
    [8] Rzayev, T., Yuan Shi, Vafeiadis, A., Pagadarai, S., Wyglinski, A.M., Implementationof a vehicular networking architecture supporting dynamic spectrum access [C].,Vehicular Networking Conference (VNC),2011IEEE, pp.33-38
    [9] Li-Ling Hung, Chih-Yung Chang, Cheng-Chang Chen, BUFE-MAC: A ProtocolWith Bandwidth Utilization and Fairness Enhancements for Mesh-Backbone-BasedVANETs [J]. IEEE Transactions on Vehicular Technology, Jun2012.Vol.61(5), pp.2208-2221.
    [10] Panichpapiboon, S., Pattara-atikom, W., A Review of Information DisseminationProtocols for Vehicular Ad Hoc Networks [J]. IEEE Communications Surveys&Tutorials, Third Quarter2012. Vol.14(3), pp.784-798.
    [11] V. C. Gungor and G. P. Hancke, Industrial wireless sensor networks: Challenges,design principles, and technical approaches [J], Industrial Electronics, IEEETransactions on,2009. Vol.56. pp.4258-4265.
    [12] Valerie Galluzzi and Ted Herman, Survey: Discovery in Wireless Sensor Networks,International Journal of Distributed Sensor Networks,2012.
    [13] Elson J., Romer K. Wireless sensor networks: a new regime for timesynchronization [C]. Proceedings of the First Workshop on Hot Topics In Networks(HotNets-I), Princeton, New Jersey,2002.10.
    [14] Mills D. L. Internet time synchronization: the network time protocol [J].Communications, IEEE Transactions on,1991,39(10), pp.1482-1493.
    [15] Hill. J, Culler. D. Mica: A Wireless platform for deeply embedded networks. IEEEMicro,2002,22(6), pp.12-24
    [16] Sheng-Po Kuo, Chun-yu Lin, Yueh-Feng Lee. The NTP experimental platform forheterogeneous wireless sensor networks. In Proceedings of the4th InternationalConference on Testbeds and research infrastructures for the development of networks&communities (TridentCom '08). ICST (Institute for Computer Sciences,Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium,Belgium,, Article35,2008.6pages.
    [17]任丰原,董思颖,林闯.无线传感器网络中基于锁相环的时间同步机制与算法.软件学报,2007,18(2), pp.372-380.
    [18] Enge P., Misra P. Special Issue on Global Positioning System,1999.
    [19] Jeremy Elson, Kay R mer, Wireless Sensor Networks: A New Regime for TimeSynchronization, Proceedings of the first workshop on hot topics in networks(hotnets--I),2002.
    [20] Sundararaman B., Buy U., Kshemkalyani A. D. Clock synchronization for wirelesssensor networks: a survey [J].2005,3(3), pp.281-323.
    [21] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, et al.,"Wireless sensor networks: asurvey"[J]. Computer networks,2002. Vol.38, pp.393-422.
    [22] M. Nicoli, S. Gezici, Z. Sahinoglu, et al., Localization in mobile wireless andsensor networks [J]. EURASIP Journal on Wireless Communications and Networking,2011. pp.1-3.
    [23] M. Cattani, S. Guna, and G. P. Picco, Group monitoring in mobile wireless sensornetworks,2011, pp.1-8.
    [24] G. Xing, M. Li, T. Wang, et al., Rendezvous Algorithms for Wireless SensorNetworks with a Mobile Base Stations [J]. Mobile Computing, IEEE Transactions on,2011. pp.1-1.
    [25] L. Shangguan, L. Mai, J. Du, et al., Energy-efficient Heterogeneous DataCollection in Mobile Wireless Sensor Networks, PMECT of IEEE ICCCN,2011.
    [26] Q. Dong and W. Dargie, A Survey on Mobility and Mobility-Aware MACProtocols in Wireless Sensor Network, Communications Surveys&Tutorials, IEEE,2011. pp.1-13.
    [27] B. M. Khan and F. H. Ali, Mobility Adaptive Energy Efficient and Low LatencyMAC for Wireless Sensor Networks,2011, pp.218-223.
    [28] M. Zareei, A. Taghizadeh, R. Budiarto, et al., EMS-MAC: Energy EfficientContention-Based Medium Access Control Protocol for Mobile Sensor Networks, TheComputer Journal,2011. Vol.54, pp.1963-1972.
    [29] B. M. Khan and F. H. Ali, Collision Free Mobility Adaptive (CFMA) MAC forwireless sensor networks, Telecommunication Systems,2011. pp.1-16.
    [30] V. Ngo, I. Woungang, and A. Anpalagan, A schedule‐based medium accesscontrol protocol for mobile wireless sensor networks, Wireless Communications andMobile Computing,2012.
    [31] Sivrikaya F., Yener B. Time synchronization in sensor networks: a survey [J].Network, IEEE,2004,18(4), pp.45-50.
    [32] Jiming Chen, Qing Yu, Yan Zhang, Hsiao-Hwa Chen, Youxian Sun.Feedback-Based clock synchronization in wireless sensor networks: a controltheoreticapproach [J]. Vehicular Technology, IEEE Transactions on,2010,59(6), pp.2963-2973.
    [33] Van Greunen J., Rabaey J. Lightweight time synchronization for sensor networks[C]. WSNA '03Proceedings of the2nd ACM international conference on Wirelesssensor networks and applications, New York, NY, USA,2003
    [34] Sichitiu M. L., Veerarittiphan C. Simple, accurate time synchronization for wirelesssensor networks [C]. Wireless Communications and Networking,2003. WCNC2003.2003IEEE,2003.3, pp.1266-1273.
    [35] Ganeriwal S., Kumar R., Srivastava M. B. Timing-Sync protocol for sensornetworks [C]. SenSys '03Proceedings of the1st international conference on Embeddednetworked sensor systems, Los Angeles, CA, USA,2003.
    [36]许剑新,冯冬芹.基于本地时钟自校正的无线传感器网络同步方法.2008,21(8), pp.1448-1452.
    [37] Elson Jeremy, Girod Lewis, Estrin Deborah. Fine-Grained network timesynchronization using reference broadcasts [C]. ACM SIGOPS Operating SystemsReview-OSDI '02: Proceedings of the5th Symposium on Operating Systems Designand Implementation, New York, NY, USA,2002,36(SI), pp.147-154.
    [38] Marco A., Casas R., Ramos J. L. S., Coarasa V., Asensio A., Obaidat M. S.Synchronization of multihop wireless sensor networks at the application layer [J].Wireless Communications, IEEE,2011,18(1), pp.82-88.
    [39] Marco A., Casas R., Sevillano J. L., Coarasa V., Falco J. L., Obaidat M. S.Multi-Hop Synchronization at the Application Layer of Wireless and Satellite Networks[C]. Global Telecommunications Conference,2008. IEEE GLOBECOM2008. IEEE,2008.11
    [40] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, The flooding time synchronizationprotocol [C], SenSys '04Proceedings of the2nd international conference on Embeddednetworked sensor systems, New York, NY, USA, ACM Press, Nov.2004, pp.39–49.
    [41]范波杰.无线传感器网络洪泛时间同步的研究和改进[D].浙江工业大学,2010.
    [42] Ping S. Delay measurement time synchronization for wireless sensor networks [R].Intel Research Berkeley Lab: Intel Research,2003.
    [43] Boukerche A., Jing Feng, Xin Fei. V-Square: An accurate time synchronizationprotocol for wireless video sensor networks [C]. Global TelecommunicationsConference,2008. IEEE GLOBECOM2008. IEEE,2008.11, pp.1-5
    [44]谷春江,徐朝农,张浩,徐勇军,李晓维.无线传感器网络的广播时间同步算法[J].计算机辅助设计与图形学学报.2006(9), pp.1432-1437.
    [45]徐朝农,赵磊,徐勇军,李晓维.无线传感器网络时间同步协议的改进策略[J].计算机学报,2007,4(30), pp.514-523.
    [46] Kyoung-lae Noh, Serpedin E., Qaraqe K. A new approach for time synchronizationin wireless sensor networks: pairwise broadcast synchronization [J]. WirelessCommunications, IEEE Transactions on,2008,7(9), pp.3318-3322.
    [47] Pai-Han Huang, Desai M., Xiaofan Qiu, Krishnamachari B. On the multihopperformance of synchronization mechanisms in high propagation delay networks[J].Computers, IEEE Transactions on,2009,58(5), pp.577-590.
    [48]肖琳,程利娟,王福豹.一种低功耗无线传感器网络时间同步算法[J].计算机研究与发展.2008,45(1), pp.126-130.
    [49] Dai H., Han R. TSync: A lightweight bidirectional time synchronization service forwireless sensor networks [J]. ACM SIGMOBILE Mobile Computing andCommunications Review,2004,8(1), pp.125-139.
    [50] Byoung-Kug Kim, Sung-Hwa Hong, Kyeong Hur, Doo-Seop Eom.Energy-efficient and rapid time synchronization for wireless sensor networks [J].Consumer Electronics, IEEE Transactions on,2010,56(4), pp.2258-2266.
    [51] Kyoung-Lae Noh, Chaudhari Q. M., Serpedin E., Suter B. W. Novel clock phaseoffset and skew estimation using two-way timing message exchanges forwireless sensornetworks [J]. Communications, IEEE Transactions on,2007,55(4), pp.766-777.
    [52] Cheng K. Y., Lui K. S., Wu Y. C., Tam V. A distributed multihop timesynchronization protocol for wireless sensor networks using pairwise broadcastsynchronization [J]. Wireless Communications, IEEE Transactions on,2009,8(4), pp.1764-1772.
    [53] Noh K. L., Wu Y. C., Qaraqe K., Suter B. Extension of pairwise broadcasting clocksynchronization for multi-cluster sensor networks [J]. EURASIP J. Advances in SignalProcessing, special issue on Distributed Signal Processing Techniques for WirelessSensor Networks,2008.
    [54] Gao Q., Blow K. J., Holding D. J. Simple algorithm for improving timesynchronization in wireless sensor networks [J]. Electronics Letters,2004,40(14), pp.889-891.
    [55] Giridhar A., Kumar P. R. Distributed clock synchronization over wireless networks:Algorithms and analysis [C] Decision and Control,200645th IEEE Conference on.2006, pp.4915-4920.
    [56] Solis R., Borkar V. S., Kumar P. R. A new distributed time synchronizationprotocol for multihop wireless networks, Decision and Control,200645th IEEEConference on,2006, pp.2734-2739.
    [57] Li Q., Rus D. Global clock synchronization in sensor networks [J]. Computers,IEEE Transactions on,2006,55(2), pp.214-226.
    [58] IEEE802.15.4Standar-2006, Part15.4: Wireless Medium Access Control andPhysical Layer Specification for Low-Rate Wireless Person Area Network [S].2006.
    [59] Approved Draft Amendment to IEEE Standard for Information technologyTelecommunications and information exchange between systems-PART15.4: WirelessMedium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-RateWireless Personal Area Networks (LR-WPANs): Amendment to add alternate PHY(Amendment of IEEE Std802.15.4), IEEE Approved Std P802.15.4a/D7, Jan2007.
    [60] Wang H, Yang Y, Ma M, He J, Wang X, Network Lifetime Maximization withCross-Layer Design in Wireless Sensor Networks, IEEE transaction on wirelesscommunications,2008,7(10), pp.3759-3768.
    [61]盛敏,李建东,李维英.应用于Ad Hoc网络中的一种新型多址接入协议[J].西安电子科技大学学报,2002,29(6), pp.713-715.
    [62] M Vutukuru, K Jamieson, H Balakrishnan. Harnessing Exposed Terminals inWireless Networks [C]//Proceedings of the IEEE Symposium on Security and Privacy,Oakland, California, USA.2008.
    [63] Mo Sha, Guoliang Xing, et al..C-MAC: Model-driven Concurrent Medium AccessControl for Wireless Sensor Networks [C]//Proceedings IEEE INFOCOM’09.Rio deJaneiro, Brazil: IEEE,2009.
    [64] D. Niyato et al..Competitive spectrum sharing in cognitive radio networks: Adynamic game approach [J].IEEE Trans. On Wireless Communications.2008(7), pp.2651-2660.
    [65] M. Cagalj, S. Ganeriwal, Aad, J.-P. Hubaux.On selfish behavior in CSMA/CAnetworks [C]//Proceedings IEEE INFOCOM’05.Miami, Florida USA: IEEE,2005(4),pp.2513-2524.
    [66] Beibei Wang et al. Distributed relay selection and power control for multiusercooperative communication networks using Buyer/Seller game [C]//Proceedings IEEEINFOCOM’07.Anchorage, AK, USA: IEEE,2007(1), pp.544-552.
    [67] CI S, SHARIF H, YOUNG A. Frame size adaptation for indoor wirelessnetworks[J]. Electronics letters,2001,37(18), pp.1135-1136.
    [68] ALI M, SULEMAN T, UZMI Z A. MMAC: a mobility-adaptive, collision-free macprotocol for wireless sensor networks. IEEE IPCCC'05[C]. Phoenix, Arizona, USA,2005, pp.401-407.
    [69] AJENDRAN V R. Energy-efficient, collision-free medium access control forwireless sensor networks. SenSys’03ACM [C]. Los Angeles, California, USA,2003, pp.63-78.
    [70] PHAM H. An adaptive mobility-aware MAC protocol for sensor networksMS-MAC. IEEE International Conference On Mobile Ad hoc and Sensor Systems [C].Fore Lauderdale, FL,2004, pp.558-560.
    [71] B. Liu, K. Yu, L. Zhang, and H. Zhang, MAC Performance and Improvement inMobile Wireless Sensor Networks, Software Engineering, Arti_cial Intelligence,Networking, and Parallel/Distributed Computing, ACIS International Conference on,2007. Vol.3, pp.109–114.
    [72] Wei Ye, John Heidemann and Deborah Estrin, Sensor-MAC (S-MAC): AnEnergy-Efficient MAC Protocol for Wireless Sensor Networks, Proceedings of the21stInternational Annual Joint Conference of the IEEE Computer and CommunicationsSocieties (INFOCOM2002)[C], New York, NY, USA, June,2002, pp.1567-1576.
    [73] PHAM H, JHA S. Addressing mobility in wireless sensor media access protocol.Intelligent sensors, sensor networks and information processing conference [C].2004.pp.113-118.
    [74]张智广.无线传感器网络中的MAC协议研究[D].中国海洋大学学位论文,2007-06-30
    [75] Puccinelli, Daniele etc. Reactive sink mobility in wireless sensor networks,5thInternational Conference on Mobile Systems, Applications and Services, Jun11,2007,San Juan, Puerto Rico.
    [76] BIAO R. The hybrid mobile wireless sensor networks for data gathering. IWCMC2006-Proceedings of the2006International Wireless Communications and MobileComputing Conference [C].2006. pp.1085-1090.
    [77] SHAH R C. Data MULEs: modeling a three-tier architecture for sparse sensornetworks [J]. Ad Hoc Networks,2003,1(2), pp.215-233.
    [78]张荣标,冯友兵,沈卓等.温室动态星型无线传感器网络通信方法研究[J].农业工程学报,2008,12,24(12), pp.107-110.
    [79] LUO J. Mobi Route: Routing towards a mobile sink for improving lifetime insensor networks.2nd IEEE International Conference-Distributed Computing in SensorSystems, DCOSS2006[C]. San Francisco, CA,2006,480-497.
    [80] YUN Y S, XIA Y. Maximizing the lifetime of wireless sensor networks with mobilesink in delay-tolerant applications [J]. IEEE Communication Journal,2010,9(9):1308-1318.
    [81]杨仁忠,侯紫峰.基于AP预先转发的802.11无线局域网切换机制研究[J].计算机研究与发展,2004,41(8):1376-1381.
    [82] ZHU C X, CORSON M S. A five-phase reservation protocol (FPRP) for mobile Adhoc networks [J]. Wireless Networks,2001,7(4):371-384.
    [83] ZHU C X, CORSONM S. An evolutionary-TDMA Scheduling Protocol (E-TDMA)for Mobile Ad Hoc Networks [R]. ISR CSHCN Technical Report. Maryland,1998,1-11.
    [84] M Seo, H Cho, J Park, J Ahn, B Choi. Distributed TDMA MAC Protocol withSource-Driven Combined Resource Allocation in Ad Hoc Networks. ICN2011. TheTenth International Conference on Networks. St. Maarten, The Netherlands Antilles.January23,2011. pp.279-284.
    [85] AIDA H, KAMBORI S. Effective use of heterogeneous wireless links in highspeed railways by predictive scheduling. International Symposium on Applications andthe Internet, SAINT2008[C].2008,459-462.
    [86] TACCONI D, CARRERAS I, et al. Supporting the sink mobility: a case study forwireless sensor networks.2007IEEE International Conference on Communications [C].Glasgow, Scotland,2007,3948-3953.
    [87] T. Kim, D. Lee, J. Ahn, et al., Priority toning strategy for fast emergencynotification in IEEE802.15.4LR-WPAN,2005.
    [88] T. H. Kim and S. Choi, Priority-based delay mitigation for event-monitoring IEEE802.15.4LR-WPANs, Communications Letters, IEEE,2006. Vol.10, pp.213-215.
    [89] A. Koubaa, M. Alves, and E. Tovar, i-GAME: an implicit GTS allocationmechanism in IEEE802.15.4for time-sensitive wireless sensor networks, in Real-TimeSystems,2006.18th Euromicro Conference on,2006, pp.10-192.
    [90] Y. Huang, A. Pang, and T. Kuo, AGA: adaptive GTS allocation with low latencyand fairness considerations for IEEE802.15.4,2006.
    [91] Xiuming Zhu; Song Han; Pei-Chi Huang; Mok, A.K.; Deji Chen, MBStar: AReal-time Communication Protocol for Wireless Body Area Networks, Real-TimeSystems (ECRTS),201123rd Euromicro Conference on,5-8July2011. pp.57-66,
    [92] Lin et al.: BOB-RED queue management for IEEE802.15.4wireless sensornetworks. EURASIP Journal on Wireless Communications and Networking20112011:107.
    [93]陈晨,高新波,李晓记等,引入非合作博弈的衰落信道下Ad Hoc协作并行传输方案[J],电子与信息学报,2011.33(3). pp.734-738
    [94] Chen Chen, X. B. Gao, Q. Q. Pei. BNE-based Concurrent TransmissionConsidering Channel Quality and Its PSO Searching Strategy in Ad Hoc Networks,Journal of Systems Engineering and Electronics,2012,23(4).
    [95] Chen Chen, X. B. Gao, Xiaoji Li, Q. Q. Pei. Concurrent Transmission Based onChannel Quality in Ad Hoc Networks: A Game Theoretic Approach. IEICETransactions on Information and Systems2012.95(2),462-471.
    [96] Yik-Chung Wu, Q. Chaudhari, and Erchin Serpedin, Clock Synchronization ofWireless Sensor Networks, IEEE Signal Processing Magazine, Jan.2011, pp.124-138
    [97] E. Serpedin, Q. M. Chaudhari, Synchronization in Wireless Sensor Networks:Parameter Estimation, Performance Benchmark and Protocols, Cambridge UniversityPress,2009.
    [98] S. Ganeriwal, R. Kumar, and M. B. Srivastava, Timing-sync protocol for sensornetworks, in Proc. SenSys03, Los Angeles, CA, Nov.2003, pp.138–149.
    [99] M. L. Sichitiu and C. Veerarittiphan, Simple, accurate time synchronization forwireless sensor networks, in Proc. IEEE WCNC, New Orleans, LA, Mar.2003, pp.1266–1273.
    [100] K. Noh, Q. Chaudhari, E. Serpedin, and B. Suter, Novel clock phase offset andskew estimation two-way timing message exchanges for wireless sensor networks,IEEE Trans. Commun., Apr.2007. Vol.55, no.4, pp.766–777.
    [101] M. Leng and Y.-C. Wu, On clock synchronization algorithms for wireless sensornetworks under unknown delay, IEEE Trans. Veh. Technol., Jan.2010. Vol.59, no.1, pp.182–190.
    [102] J. Elson, L.Girod, and D. Estrin. Fine-grained network time synchronization usingreference broadcasts [C]. Proc. of the5th Symposium on Operation System Design andImplementation,2002,36(6), pp.147–163.
    [103] S. Ping, Delay measurement time synchronization for wireless sensor networks,Technical Report IRB-TR-03-013, Intel Research, Jun2003.
    [104] A. Hu and S. D. Servetto.(2006). A scalable protocol for cooperative timesynchronization using spatial averaging [Online]. Available:http://arxiv.org/PScache/cs/pdf/0611/0611003v1.pdf
    [105] OMNeT++website. http://www.omnetpp.org.
    [106] Huang J.W., Han Z., Chiang M, et al., Auction-based resource allocation forcooperative communications, IEEE Journal of Selected Areas in Communications,2008,26(7):1226-1237.
    [107]萨缪尔森,微观经济学(第十六版).北京:华夏出版社,2002.
    [108]陈钊,信息与激励经济学.上海:格致出版社,上海三联出版社,上海人民出版社,2004.
    [109] Axelrod R. The evolution of cooperation. New York: Basic Books,1984.
    [110]张维迎,博弈论与信息经济学.上海:格致出版社,上海三联出版社,上海人民出版社,2004.
    [111]张国鹏,基于博弈论的无线网络资源竞争与协作机制研究,西安电子科技大学博士学位论文,2009.
    [112]从犁,基于博弈论的无线网络资源分配策略研究,西安电子科技大学博士学位论文,2010.
    [113] Fan Wang, O. Younis, M. Krunz.GMAC: A Game-theoretic MAC Protocol forMobile Ad Hoc Networks [C], WIOPT’06, Boston University. IEEE,2006, pp.1-9.
    [114] Fan Wang, O. Younis, M. Krunz.Throughput-oriented MAC for mobile ad hocnetworks: A game-theoretic approach..Ad Hoc Networks [J],2009(7), pp.98–117.
    [115] Y. Cho, C. Hwang, F. Tobagi.Design of robust random access protocols forwireless networks using game theoretic models [C]//Proceedings IEEEINFOCOM’08.Phoenix, USA: IEEE,2008(4), pp.2423-2431.
    [116] C. S. Hwang, K. Seong, J. M. Cioffi.Opportunistic p-persistent CSMA in wirelessnetworks [C].IEEE ICC’06, Istanbul, IEEE,2006(1), pp.183-188.
    [117] H. Lee, H. Kwon, et al..Interference-Aware MAC Protocol for Wireless Networksby a Game-Theoretic Approach [C]//Proceedings IEEE INFOCOM’09.Rio de Janeiro,Brazil: IEEE,2009(2), pp.1854-1862.
    [118] M. Ali, T. Suleman, and Z. A. Uzmi,“MMAC: a mobility-adaptive, collision-freemac protocol for wireless sensor networks,”24th IEEE International Performance,Computing, and Communications Conference, April2005. pp.401–407.
    [119] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves,“Energyefficient,collision-free medium access control for wireless sensor networks,” Proc.1stinternational conference on Embedded networked sensor systems,2003. pp.181–192.
    [120] Z. R. Zaidi and B. L. Mark, Mobility tracking based on autoregressive models,IEEE Trans. Mobile Computing, January2011. Vol.10, pp.32–43.
    [121] H. Pham and S. Jha, An adaptive mobility-aware mac protocol forsensor networks (ms-mac), IEEE International Conference on MobileAd-hoc and Sensor Systems, October2004. pp.558–560.
    [122] A. Jhumka and S. Kulkarni, On the design of mobility-tolerant tdmabased mediaaccess control (mac) protocol for mobile sensor networks, Proc.4th internationalconference on Distributed computing and internet technology,2007. Vol.4882, pp.42–53.
    [123] Z. Tang and W. Dargie, A mobility-aware medium access control protocol forwireless sensor networks, The fifth IEEE international workshop on Heterogeneous,Multi-Hop, Wireless and Mobile Networks (Globecom2010), December2010.
    [124] M. Buettner, G. V. Yee, E. Anderson, and R. Han, X-MAC: A short preamble macprotocol for duty-cycled wireless sensor networks, Proc.4th international conference onEmbedded networked sensor systems,2006. pp.307–320.
    [125] A. Jhumka and S. Kulkarni, On the design of mobility-tolerant tdma based mediaaccess control (mac) protocol for mobile sensor networks, Proc.4th internationalconference on Distributed computing and internet technology,2007. Vol.4882, pp.42–53.
    [126] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani, A fault-localself-stabilizing clustering service for wireless ad hoc networks, IEEE Trans. ParallelDistrib. Syst., September2006. Vol.17, pp.912–922.
    [127] M. Nabi, M. Blagojevic, M. Geilen, T. Basten, and T. Hendriks, MCMAC: Anoptimized medium access control protocol for mobile clusters in wireless sensornetworks,7th Annual IEEE Communications Society Conference on Sensor Mesh andAd Hoc Communications and Networks (SECON), June2010. pp.1–9.
    [128] L. van Hoesel and P. Havinga, Collision-free time slot reuse in multihop wirelesssensor networks, in The2005International Conference on Intelligent Sensors, SensorNetworks and Information Processing Conference, December2005, pp.101–107.
    [129] P.A.Anemaet, Distributed G-MAC: A flexible MAC protocol for servicing gossipalgorithms, Master’s thesis, Technical University of Delft,2008.
    [130] A. Gonga, O. Landsiedel, and M. Johansson, MobiSense: Power efficientmicro-mobility in wireless sensor networks, Proc.7th IEEE International Conference onDistributed Computing in Sensor Systems, June2011.
    [131] HAYKIN S. Adaptive Filter Theory, Fourth Edition[M]. America: Pearson Hall,2002.
    [132]陈晨.基于RSSI和LQI加权的无线传感器网络节点定位方法[P].中国专利:CN101715232A,2009.
    [133] FALL K, VARADHAN K. The ns manual [EB/OL].http://www.isi.edu/nsnam/ns/doc,2007.
    [134] Xiuming Zhu; Song Han; Pei-Chi Huang; Mok, A.K.; Deji Chen, MBStar: AReal-time Communication Protocol for Wireless Body Area Networks, Real-TimeSystems (ECRTS),201123rd Euromicro Conference on,5-8July2011. pp.57-6.
    [135] Lin et al.: BOB-RED queue management for IEEE802.15.4wireless sensornetworks. EURASIP Journal on Wireless Communications and Networking20112011:107.
    [136] N. F. Timmons and W. G. Scanlon, Analysis of the performance of IEEE802.15.4for medical sensor body area networking,2004, pp.16-24.
    [137] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, A survey on wireless multimediasensor networks, Computer networks,2007. Vol.51, pp.921-960.
    [138] E. Peterson, An Investigation into Intra vehicular sensor Networks, Citeseer2007.
    [139] Liu Kun, Fridman Emilia, Hetel Laurentiu, Network-Based Control underRound-Robin Scheduling and Quantization, Robust Control Design, Vol.7.2012
    [140] Niyato, D., Hossain, E., Ping Wang, Optimal Channel Access Management withQoS Support for Cognitive Vehicular Networks, Mobile Computing, IEEE Transactionson, April2011. Vol.10, no.4, pp.573-591.
    [141] Chitnis, M., Pagano, P.; Lipari, G., Yao Liang, A Survey on Bandwidth ResourceAllocation and Scheduling in Wireless Sensor Networks, Network-Based InformationSystems,2009. NBIS '09. International Conference on,19-21Aug.2009. pp.121-128.
    [142] Shrestha, B., Hossain, E., Camorlinga, S., Krishnamoorthy, R., Niyato, D., AnOptimization-Based GTS Allocation Scheme for IEEE802.15.4MAC with Applicationto Wireless Body-Area Sensor Networks,2010IEEE International Conference onCommunications (ICC),23-27May2010. pp.1-6.
    [143] J. Y. Le Boudec and P. Thiran, A short tutorial on network calculus Fundamentalbounds in communication networks,2000, vol.4. pp.93-96.
    [144] OPNET Modeler, http://www.opnet.com/solutions/network_rd/modeler.html
    [145] N. V. Heeb, A. M. Forss, C. Bach, et al.,"Velocity-dependent emission factors ofbenzene, toluene and C2-benzenes of a passenger car equipped with and without aregulated3-way catalyst," Atmospheric environment,2000. Vol.34, pp.1123-1137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700