用户名: 密码: 验证码:
基于复合式基层的耐久性沥青路面结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
截止2008年底,我国高速公路总里程达到6.03万公里,而已建高速公路中,90%以上为半刚性基层沥青路面,这类路面结构优势明显,承载力高、水稳性和耐久性好,但是半刚性基层开裂普遍,易使路面出现反射裂缝,进而引发路面结构性破坏是这类路面的致命缺点。纵观我国近20年来沥青路面结构设计及使用状况,设计控制指标与路面破坏形式不一致、路面结构单一状况严重影响了沥青路面的使用寿命。鉴于此,本研究引入了耐久性沥青路面设计理念,以寿命周期内总费用最经济为原则,力求整个路面结构在设计使用年限内,不发生结构性破坏,仅需定期的功能性养护。在此基础上,最终提出适合我国气候、交通、材料、经济等状况的耐久性沥青路面设计指标及结构设计方法,以提高我国沥青路面的设计使用品质。
     本文首先针对沥青路面结构性破坏类型,分析了国内外高等级沥青路面基层的使用状况,系统研究了耐久性沥青路面常用基层的适应性,重点对复合式基层的适应性进行了深入分析,认为复合基层可有效改善半刚性基层的开裂和反射裂缝,相比而言,更适合作为耐久性沥青路面的基层。
     建立了有限元模型,计算分析了层间结合状态对复合式基层沥青路面结构内部力学响应的影响,特别就沥青路面层间不同接触状态及路面结构参数对路面剪应力的影响规律进行了深入研究。利用“路面层间材料多功能剪切仪”,试验研究了不同温度条件下各类路面层间材料的抗剪切性能,推荐了透层、封层及粘层材料的适用类型及最佳用量。根据层间材料剪切破坏过程的损伤机理及破坏状态的变化,定义了剪切破坏的三阶段,认为整个剪切破坏过程中,材料之间的粘结力、机械咬合力及摩擦力逐步产生作用。
     研究提出了与沥青路面结构性破坏对应的复合基层耐久性沥青路面设计指标体系。认为可以拉应变控制沥青层的受力状态,以层底拉应力控制半刚性基层的受力状态,以路基顶面压应变控制路基塑性变形,建议基顶压应变的设计值为200με,以路表弯沉为设计和竣工验收指标,使设计与质量控制指标相对应。为控制面层局部损坏和层间剪切破坏,建议对沥青混合料内部最大剪应力和面层、基层间最大剪应力进行验算,特别应重点分析路表l0cm深度内结构层的剪应力,并对之进行抗剪强度验算。
     合理确定沥青混合料的疲劳极限是耐久性沥青路面设计的基础,但该值的确定目前国内外尚无统一标准。本文在分析常规应变条件下沥青混合料疲劳破坏发展的基础上,改进了ASSHOT T321中所推荐的疲劳寿命计算方法,根据混合料劲度模量的变化规律,将疲劳破坏过程分为三个阶段,以第二阶段的试验数据推算低应变条件下试件的疲劳寿命,并利用UTM疲劳试验机,通过小梁重复弯曲疲劳试验测试了不同低应变水平下沥青混合料的疲劳性能,得出了山东滨州耐久性路面ATB-25和AC-25的疲劳极限为70με-80με。在低应变状态下,沥青混合料的疲劳寿命和应变水平仍能很好地符合幂函数疲劳方程,可根据常规应变水平下的沥青混合料疲劳寿命推断出低应变状态下的疲劳寿命。
     在计算分析的基础上,提出了耐久性沥青路面的结构设计原则。根据半刚性基层的破坏模式和受力特点,将其分为上部抗裂功能层和下部抗疲劳功能层,并提出了两个层次的合理厚度。对于抗裂功能层,可选择骨架空隙结构和骨架密实结构以及减少混合料中结合料的用量,有效控制开裂的发生;对于抗疲劳功能层,可选择骨架密实结构以及采用较高的结合料用量,提高结构层的疲劳寿命。
     通过大量的理论分析及实验研究,确定了复合式基层耐久性沥青路面结构,并铺筑了试验路。通过试验路定点实测反算各结构层模量值,并进行力学反算,发现铺筑的复合式基层耐久性沥青路面应力、应变值均满足耐久性沥青路面设计要求,且较其他结构偏于安全。寿命周期费用分析结果表明,在40年~50年的设计寿命内,复合式基层耐久性路面经济效益非常可观。
By the end of 2008, China's total expressway mileage has reached 60,300 kilometers. More than 90% of these expressways were built with semi-rigid asphalt pavement structure. Such kind of pavement structure has obvious advantage in structure with high bearing capacity, better water stability and lasting quality, but its fatal drawback is that semi-rigid base is universally easy to crack and easy to make some road reflective cracking, leading to structural damage (early cracking and reflection cracks caused by temperature and drying shrinkage of semi-rigid base material are apt to lead to cracks up through all the structure). Through reviewing nearly 20 years of asphalt pavement structural design and its application in our country, it can be seen that the inconsistent control index of design with the road damages and the single pattern of pavement structure have seriously affected road performance and life expectancy. In view of this, following the principle of the most economical life-cycle cost, the design concept of durable asphalt pavement is introduced in this paper in order that no structural damages occur in the entire design life or just a regular fuctional maintenance are needed. On this basis, control index and structural design methods of durable asphalt pavement suitable for China's climate, transportation, materials, economy and other conditions are proposed to improve the quality of design and service of our asphalt pavements.
     In this paper, regarding asphalt pavement structural damage, application of high-grade asphalt pavement at home and abroad was analyzed and adaptability of durable asphalt pavement especially with composite base was systematically studies. So it is considered that composite base can effectively prevent semi-rigid base from cracking and reflection cracks. Comparatively speaking, it is more suitable to be used as the base of durable asphalt pavement.
     A finite element model was set up and impact of the interlayer bonding state on the internal mechanical response of asphalt pavement with composite base was analyzed. Particularly different contact states between layers and impact of pavement structure index on shear stress were deeply investigated. With "multifunction shear apparatus for pavement interlayer materials", shear resistence of different types of pavement layer materials under different temperature conditions was tested and analyzed and suitable materials and optimum dosage for prime layer, sealing layer and adhesive layer were recommended. According to the damage mechanism and its changing pattern in the shear failure process of interlayer material, shear failure was defined into three stages and it is believed that adhesive force between materials, machinery bite force and friction gradually act in the whole process(of shear failure).
     In the research, a road design index system of durable asphalt pavement with composite base corresponding to asphalt pavement structural damage has been proposed. The tension strain is taken (as the design index) to control the strained condition of the asphalt layer while the tension stress in the bottom layer (as the design index) to control the strained condition of semi-rigid base and the compressive strain on the top of the subgrade is to control the subgrade plastic deformation and the design value of compressive strain on the top of the subgrade is recommended as 200με. The road deflection is to be taken as the index (target) of design and completion in order to make the design corresponding to the quality control. It is recommended that maximum shear stress in the asphalt mixture and between surface layer and base layer should be recomputed in order to control local damage in the surface layer and shear damage between layers, especially analysis should be focused on the shear stress of the structure layer in 10cm depth and its shear strength should be checked.
     It is the base for the design of durable asphalt pavement to determine a reasonable fatigue limit of the asphalt mixture, but there is no uniform standard for the determination of the value either at home or abroad. Based on the analysis of fatigue damage of asphalt mixture under normal strain condition, computing methods for fatigue limit recommended by ASSHOT T321 was modified. According to the variation trend of mixture stiffness modulus, the fatigue failure process is divided into three stages. Test data of the second stage are proposed to be used to calculate the fatigue life of the specimen under low strain condition. Trabecular repeated bending fatigue tests were conducted with UTM fatigue testing machine to test fatigue performance of asphalt mixture at different strain conditions and ascertain that fatigue limit of durable pavement ATM-25 and AC-25 is 70μεto 80μεin Bin Zhou, Shandong province. The fatigue tests also show that the fatigue life and strain level of asphalt mixture can still keep consistent well with power function fatigue equation even under low strain condition. So, the fatigue life of asphalt mixture under low strain condition can be inferred by its fatigue life under normal strain condition.
     Based on computation and analysis, structural design principles for durable asphalt pavement were proposed here. According to the destruction model and load-bearing characteristics of semi-rigid base, it is divided into upper anti-cracking function layer and lower anti-fatigue function layer with reasonable thicknesses for both layers. For anti-cracking function layer, it is recommended to choose skeleton void structure and skeleton dense structure as well as to reduce the amount of binder in the mixture to effectively control the occurrence of cracking. For anti-fatigue function layer, skeleton dense structure and higher amount of binder are to be selected to improve the fatigue life of structure layer.
     Through enormous amount of theoretical analysis and experimental studies, structure of durable asphalt pavement with composite base was confirmed and a trial road section was built. By in-situ tests on the trial road section, modulus values of all structure layers were inverted and the pavement structrue was calculated. It was found that stress and strain values of the durable asphalt pavement with composite base can meet the design requirements and it is safer than other structures. As analysis of life-cycle cost show, in 40 to 50 years of design period, great economic benifit of durable asphalt pavement with composite base can be expected.
引文
[1]ASPHALT PAVEMENT ALLIANCE (APA), PERPETUAL PAVEMENTS—A Synthesis,2002;
    [2]ASPHALT PAVEMENT ALLIANCE (APA), Pertual Bituminous Pavement, Transportation Research Circular Number 503,2001;
    [3]王书延.混合式基层沥青路面材料与力学性能研究[D].重庆:重庆交通大学,2008
    [4]郝东强.沥青路面半刚性基层结构研究[D].武汉:武汉理工大学,2004
    [5]钟梦武,吴善周,谢立新等.高速公路倒装结构沥青面层厚度研究[J].公路工程,2007,32(4):24-26
    [6]Carpenter S.H.K. Ghuzlan,and S.Shen, Fatigue Endurance Limit for Highway and Airport Pavements,Transportation Research Record Journal of the transportation Research Board,No.1832,TRB,National Reasearch Council, Washington,D.C.,2003;
    [7]Nishizawa. T., S. Shimeno, and M. Sekiguchi. Fatigue Analysis of Asphalt Pavements with Thick Asphalt Mixture Layer, Proceedings,7th International Conference on Asphalt Pavements, University of Washington, Seattle:1997
    [8]JIM ST. MARTIN. JOHN T. HARVEY. FENELLA LONG. Long-Life Rehabilitation Design and Construction 1-710 Freeway, Long Beach, California. Perpetual Bituminous Pavements
    [9]沈金安.国外沥青路面设计方法汇总[M],北京:人民交通出版社,2004
    [10]NUNN MICHAEL,FERNE B W. Design and Assessment of Long-Life Flexible Pavements. Perpetual Bituminous Pavements, Washington, DC:2001:ISSN 0097-8515
    [11]沈金安.高速公路沥青路面早期损坏分析及防治对策[M],北京:人民交通出版社,2004
    [12]J.Harvey, Carl Monismith, M.Bejarano, B.W.Tsai, V.Kannekanti, Long-Life AC pavement:A Discussion of Desigin and Construction Criteria based on California Experience, International Conference on Design and Construction of long Lasting Asphalt Pavements, Alabama,2004
    [13]Monismith, C.L. (1992) Analytically Based Asphalt Pavement Design and Rehabilitation:Theory to Practice,1962-1992,1992 TRB Distinguished Lecture, Transportation Research Record 1354, Transportation Research Board, Washington, DC,1992.
    [14]Lecsh,D.and M.E. Nunn.Deterioration Mechanisms in Flexible Pavements,. Proceedings,2nd European Conference on the Durability and Performance of Bituminous Materials, University of Leeds, Leeds, UK. 1997。
    [15]Illinois Department of Transportation (IDOT) 1982:Subgrade Stability Manual, Policy MAT-10, Springfield。
    [16]JIM ST. MARTIN. JOHN T. HARVEY. FENELLA LONG. Long-Life Rehabilitation Design and Construction 1-710 Freeway, Long Beach, California. Perpetual Bituminous Pavements, Washington, DC:2001:ISSN 0097-8515。
    [17]Heavy Duty Pavements:The Argument for Asphalt.EAPA Statement on European Standard. EAPA 2000;
    [18]孙立军.沥青路面结构行为理论[M],北京:人民交通出版社,2005。
    [19]沙庆林.长寿命沥青路面[PPT],海南,2007。
    [20]陈小庭,孙立军,李峰.长寿命沥青混凝土路面结构特点与设计研究[J].公路,2005.
    [21]武建民,戴经梁.从西三试验路看我国长寿命半刚性基层沥青混凝土路面[J],公路,25-29
    [22]李峰,张宏超,孙立军.长寿命沥青路面结构力学相应的三维有限元分析[J],上海公路,2004年第2期.
    [23]袁谱,王端宜.长寿命沥青路面结构参数变化的三维有限元分析[J],华东交通科技,2006.2.
    [24]国莉,苑红凯.半刚性基层沥青路面与长寿命沥青路面比较分析[J],交通标准化,2005.10.
    [25]陈泽松李海华.广梧高速公路试验路段的路面结构组合设计[J],公路2005.8第8期
    [26]Brown, S.F., P.S. Pell, and A.F. Stock. "The Application of Simplified, Fundamental Design Procedures for Flexible Pavements," Proceedings, Fourth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, August 1977, Vol.1.
    [27]Brown, J.F., J.M. Bunton, and P.S. Pell. "The Development and Implementation of Analytical Pavement Design for British Conditions," Proceedings, Fifth International Conference on the Structural Design of Asphalt Pavements, University of Michigan and Delft University of Technology, August 1982.
    [28]Austroads, Pavement Design—A Guide to the Structural Design of Road Pavements, Sydney, Australia,1992, Interim Version of Revised Overlay Design Procedures, Austroads Pavement Research Groups, August 1994。
    [29]Prandi, E. "The LaCroix LCPC Deflectograph," Proceedings, Second International Conference on the Structural Design of Asphalt Pavements, University of Michigan,1967.
    [30]California Department of Transportation, Test to Determine Overlay and Maintenance Requirements by Pavement Deflection Measurements, Caltrans Test Method No.356, January 1979.
    [31]National Institute for Transport and Road Research, Pretorica, South Africa.
    [32]Irwin, L.H. MODCOMPI User's Guide, Cornell University,1981.
    [33]Hall, J.W. Jr. Nondestructive Evaluation Procedure for Military Airfields, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MI, July 1978.
    [34]Bush, A.J. "Non-Destructive Testing for Light Aircraft Pavements, Development of the Non-Destructive Evaluation Methodology," Report No. FAA-RD-80-9-11, U.S. Army Waterways Experiment Station, Vicksburg, MI, November 1980.
    [35]孟书涛.沥青路面合理结构的分析[D],南京:东南大学2005
    [36]王林.山东省高速公路沥青路面改革与发展研究(讲座PPT).2006.11.
    [37]赵晓晴.高速公路长寿命路面典型结构研究[D].西安:长安大学,2005
    [38]沙庆林.西安试验路之8年使用经验[J].公路交通科技,1998,15(1):1-9
    [39]西安公路研究所。陕西省高等级公路半刚性基层沥青路面长期使用性能研究[R],2001.
    [40]沙庆林.高速公路沥青路面早期破坏现象及预防[M],北京:人民交通出版社,2001
    [41]Nijboer, L.W. Dynamic Investigations of Road Constructions, London:Shell Oil Company,1955.
    [42]Department of Main Roads, New South Wales, and Country Roads Board, Victoria, Australia。
    [43]Dormon K R. The extension to p ract ice of a fundamental p rocedure fo r the design of flexible pavements. Proceedings, Internat ional Conference on the St ructural Design of A sphalt Pavements. Ann Arbor,1962.
    [44]中华人民共和国交通部,公路沥青路面设计规范(JTG D50-2006),北京:人民交通出版社
    [45]Rob Harrison, Steve Waalkes, And William James Wilde. A Life Cycle Cost Analysis of Rigid Pavements Project 0-1739 summary report,1999.
    [46]马庆雷.基于刚性基层的耐久性沥青路面结构研究[D].西安:长安大学,2006.
    [47]K. W. Kim,Evaluation of Effectiveness of Reinforcing Inter-layer against Reflection Cracking,Vol.2, pp 1099-1124,2002
    [48]沙庆林.高速公路半刚性基层沥青路面[M].北京:人民交通出版社,2001
    [49]沙爱民.半刚性路面材料结构性能[M].北京:人民交通出版社1998
    [50]李炜光.沥青路面半刚性基层抗裂技术研究[D].西安:长安大学,2002
    [51]陈冬燕.半刚性基层抗裂性能研究[D].西安:长安大学,2005
    [52]蒋亮、赵文强.永久性路面与半刚性基层沥青路面的适用性研究[J]. 交通标准化,2007,165(5).76-80
    [53]周洪.高等级公路半刚性基层性能深入研究[D],南京:东南大学,2006
    [54]Monsmith, C.L., L. Popescu, and J.T. Harvey. "Performance-Based Pay Factors for Asphalt-Concrete Construction:Comparison with Currently Used Experience-Based Approach." Journal, Assocation of Asphalt Paving Technologists, Vol.73,2004.
    [55]江苏高速公路建设指挥部,交通部公路科学研究院,东南大学.长久性路面的研究[R],2005.12.
    [56]中华人民共和国行业标准.城市道路设计规范[S],北京:人民交通出版社.1990
    [57]谢水友,郑传超.《水平荷载对路面结构的影响》[J].长安大学学报.2004.
    [58]邓学钧黄晓明.路面设计原理与方法[M],北京:人民交通出版社2001
    [59]郑传超,王秉纲.道路结构力学计算[M],北京:人民交通出版社
    [60]Strategic Highway Research Program:Layer Moduli Backcalculation Procedure Software Selection, Strategic Highway Research Program, July 1991.
    [61]]John R. Tabb. Chairman, William G. Agnew, E. Dean Carlson, etc. SHRP's Layer Moduli Backcalculation Procedure (SHRP-P-338-655), Strategic Highway Research Program,1993.
    [62]Anderson, Precision of shear test used for evaluating asphalt mixtures,2003 annual meeting of TRB
    [63]中华人民共和国交通部.公路工程沥青与沥青混合料试验规程(JTJ 052-2000)[S],北京:人民交通出版社,2000
    [64]中华人民共和国交通部.公路沥青路面施工技术规范(JTG F40-2004)[S],北京:人民交通出版社,2004
    [65]交通部阳离子乳化沥青课题协作组.阳离子乳化沥青路面[M],北京:人民交通出版社,1997
    [66]虎增福等.乳化沥青及稀浆封层技术[M],北京:人民交通出版社,2001
    [67]中华人民共和国交通部,公路路基路面现场测试规程.JTJ 059-95[S].北京:人民交通出版社.
    [68]Carl L. Monismith. Evolution of Long-Lasting Asphalt Pavement Design Methodology:A Perspective. International Symposium on Design and Construction of Long Lasting Asphalt Pavements. Alabama, USA: Auburn University,2004
    [69]John R. Tabb. Chairman, William G. Agnew, E. Dean Carlson, etc. SHRP's Layer Moduli Backcalculation Procedure (SHRP-P-338~655), Strategic Highway Research Program,1993.
    [70]Austroads, Pavement Design—A Guide to the Structural Design of Road Pavements, Sydney, Australia,1992, Interim Version of Revised Overlay Design Procedures, Austroads Pavement Research Groups, August 1994.
    [71]徐之纶.弹性力学(上册).第三版北京:高等教育出版社,2005:
    [72]Harvey, J.T., J.A. Deacon, A.A. Tayebali, R.B.Leahy, and C.L. Monismith. "A Reliability Based Mix Design and Analysis System for Mitigating Fatigue Distress." Proceedings,8th International Conference on Asphalt Pavement, University of Washington, Seattle, August 1977,1:301-323。
    [73]S. C. S. Rao Tangella, S. Rao Tangella, J. Craus, J. A. Deacon, C. L. Monismith. SUMMARY REPORT ON FATIGUE RESPONSE OF ASPHALT MIXTURES (SHRP-A-312). Strategic Highway Research Program Project A-003-A.1990:
    [74]张新占.材料力学[M],西安:西北工业大学出版社,2001
    [75]沈金安.沥青及沥青混合料路用性能[M],北京:人民交通出版社,2001[在四章P75出现]
    [76]张登良.沥青路面.北京:人民交通出版社,1998:
    [77])Shell International Petroleum Company, Ltd. (1978). Shell Pavement Design Manual,London.
    [78]姚祖康.对我国沥青路面现行设计指标的评述[J],公路.2003.2.
    [79]Peat t ie K R. A fundamental app roach to the design of flexible pavements. P roceedings, Internat ional Conference on the St ructural Design of A sphalt Pavements, A nn A rbo r,1962.
    [80]Do rmon K R. The extension to p ract ice of a fundamental p rocedure fo r the design of flexible pavements. Proceedings, Internat ional Conference on the St ructural Design of A sphalt Pavements. Ann Arbor,1962.
    [81]Special Report 18:The WASHO Road Test, Part 1:Design, Construction, and Testing Procedures,1954, and Special Report 22:The WASHO Road Test, Part 2:Test Data, Analyses, Findings,1955, Highway Research Board, National Research Council, Washington, D.C.
    [82]Hveem, F.N. "Pavement Deflections and Fatigue Failures," Bulletin 114, Highway Research Board, National Research Council, Washington, D.C.,1955, pp.43-87.
    [83]毕玉峰.沥青混合料抗剪试验方法及抗剪参数研究[D],同济大学博士学位论文,2004.
    [84]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社.1988.
    [85]张志祥,陈荣生,白琦峰.LSM沥青混合料疲劳极限的试验研究[J].公路交通科技,2006.
    [86]Di Benedetto, H., C. de La Roche, H. Baaj, H. Pronk, and R. Lundstrom. Fatigue of Bituminous Mixtures:Different Approaches and RILEM Group Contribution.6th RILEM Symposium PTEBM'03, Zurich,2003.
    [87]Carpenter S. H. K., Ghuzlan, and S. Shen. Fatigue Endurance Limit for Highway and Airport Pavements, TRB 2003. Annual Meeting CD-ROM, National Research Council, Washington, D.C.,2003.
    [88]Khalid, H., and I. Artamendi. Characterization of Fatigue Damage for Paving Asphaltic Materials. Fatigue & Fracture of Engineering Materials & Structures, Blackwell Publishing Inc., Sheffield, UK, No. 28,2005.
    [89]Perez-Jimenez, F.; Miro, R., and A. H. Martinez Analysis of The Fatigue Process in Bituminous Mises. Fatigue Critical Strain. TRB 2007 Annual Meeting CD-ROM, National Research Council, Washington, D.C.,2007
    [90]Prowell, B. D. and E. R. Brown. Methods for Determining The Endurance Limit Using Beam FatigueTests.http://www.ohio.edu/icpp/upload/Methods%20for%20Determining%20the%20Endurance%20 Limit-Brown.pdf. Accessed Jul.5,2007。
    [91]Pell, P.S. and K.E. Cooper. "The Effect of Testing and Mix Variables on the Fatigue Performance of Bituminous Materials," Proceedings of the Association of Asphalt Paving Technologists, Vol.44,1975.
    [92]Epps, J.A. Influence of Mixture variables on the Flexural fatigue and Tensile Properties of Pavement Materials, Ph.D. dissertation, University of California, Berkeley,1968。
    [93]John T. Harvey, John A. Deacon, Bor-Wen Tsai, Carl L. Monismith. FATIGUE PERFORMANCE OF ASPHALT CONCRETE MIXES AND ITS RELATIONSHIP TO ASPHALT CONCRETE PAVEMENT PERFORMANCE IN CALIFORNIA. University of California, Berkeley:CALIFORNIA DEPARTMENT OF TRANSPORTATION,1995
    [94]SHRP Designation:M-009, Determining the Fatigue Life of Compacted Bituminous Mixtures Subjected to Repeated Flexural Bending.
    [95]LUBINDA F. WALUBITA. COMPARISON OF FATIGUE ANALYSIS APPROACHES FOR PREDICTING FATIGUE LIVES OF HOT-MIX ASPHALT CONCRETE (HMAC) MIXTURES[D]. Texas,UAS. Texas A&M University,2006.
    [96]曾宇彤,陈湘华,王端宜.美国永久性路面结构[A],中外公路,2003.6
    [97]程毅.设置应力吸收层的水泥混凝土路面沥青加铺层结构研究[D].西安:长安大学,2006
    [98]杨涛.半刚性基层沥青路面反射裂缝的产生机理及其防治措施[D].武汉:武汉理工大学,2005
    [99]徐江萍.水泥粉煤灰稳定碎石基层沥青路面抗裂性能研究[D].西安:长安大学,2006
    [100]高速公路丛书编委会.高速公路路面设计与施工[M],北京:人民交通出版社,2001
    [101]SHRP-P-652. Falling Weight Deflectometer Relative Calibration Analysis.
    [102]J.M.Roesset. Dynamic Nondestructive Testing of Pavements. The University of Texas at Austin.
    [103]SHRP-P-661. Manual for FWD Testing in the Long-Term Pavement Performance Program.
    [104]Shuichi. Kameyama etc. Optimizing Sensor Locations for FWD Test by Genetic Algorithm.3rd International Conference on Road & Airfield Pavement Technology.1998
    [105]查旭东.沥青路面反算模量的温度修正[J].公路.2002 No.6
    [106]山东省交通科学研究所.FWD在高等级路面结构评价中的应用研究[R]2003.11
    [107]黄晓明、邓学均.实测弯沉盆评价路面结构强度[J].岩土工程学报.1996 V18 No.1
    [108]任瑞波.沥青路面结构计算方法与FWD应用技术的研究[D].哈尔滨建筑大学博士论文.2000
    [109]张凤程、应荣华、张起森.用FWD进行板下地基脱空状况的评定[J].公路与汽运.2002.
    [110]张洪华.应用FWD测定土基回弹模量的研究[J].中国公路学报.1994(7)
    [111]任瑞波、谭亿秋、张肖宁.FWD动荷载作用下沥青路面层状粘弹体路表弯沉的求解[J].中国公路学报.2001 V12 No.2
    [112]王旭东、郭大进.落锤式弯沉仪模量反算的可靠性研究[J].中国公路学报.1999 V12 No.3
    [113]曾凡奇、张四伟、程霞.FWD和贝克曼梁在路面检测中的相关性分析[J].公路.2001 No.9
    [114]山东省交通科学研究所.永久性路面研究报告[R].2007.
    [115]蔡成祥.公路工程经济分析[M].北京:人民交通出版社,2004年.
    [116]日比宗平主编,高克勤,李敏译.寿命周期费用评价法——方法及实例[M].北京:机械工业出版社,1984
    [117]刘黎萍,孙立军.分析期内不同照面措施组合对结构优化设计结果的影响[J].公路交通科技,2003.8
    [118]宋高嵩,李文忠,程刚.工程经济评价在路面结构选型应用中的探讨[J].森林工程,2004.3
    [119]中华人民共和国交通部.公路工程预算定额(交工发(1992)65号)[S].北京:人民交通出版社,1992
    [120]钟志明,姜林,何静.几种面层用沥青混合料的技术经济分析[J].公路交通技术,2005.8
    [121]冯建农.路面建设的经济分析[J].科技情报开发与经济,2004,9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700