长寿命沥青路面设计指标与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国已建成的高速公路中,大部分采用了半刚性基层沥青路面结构;然而,许多高速公路建成通车不久,路面就发生严重的破坏,和设计年限相差甚远。针对这种情况,本文就我国高速公路沥青路面的发展特点,结合国际道路工程界的最新研究热点,对长寿命沥青路面设计控制指标、容许标准和结构设计方法展开了研究。主要研究内容及结论如下:
     第一章首先阐述了长寿命沥青路面研究背景和立项意义,通过对国内外沥青路面设计指标和设计方法发展情况以及长寿命沥青路面研究进展的分析,指出了进行长寿命沥青路面研究的意义和首要问题,由此确定了本文后续章节的主要研究内容。
     第二章对长寿命沥青路面的结构进行了分析。通过对国外长寿命沥青路面的设计思想分析,定义了我国的长寿命沥青路面;提出我国现阶段可以采用半刚性底基层沥青路面或者粒料底基层沥青路面来实现长寿命沥青路面:采用层状弹性体系理论,结合正交设计和极差分析方法,分析了不同结构层参数对路面响应的敏感性;结果表明,沥青层厚度对沥青层底拉应变、路基顶面压应变影响最大,因此,建议长寿命沥青路面的沥青层厚度应大于24cm。
     结构分析表明,高模量联结层不仅有利于抵抗车辙,还有利于减小沥青层底拉应变以及减薄沥青层厚度;结合路面各结构层功能以及受力特点,提出了长寿命沥青路面各结构层材料的设计指导原则和要求,并推荐了我国长寿命沥青路面典型结构设计图。
     第三章进行了长寿命沥青路面结构性永久变形预测研究。提出按结构类型控制长寿命沥青路面结构性永久变形,半刚性底基层类需要控制沥青基层和级配碎石层的永久变形,粒料底基层类则不仅需要控制沥青基层和级配碎石层的永久变形,还应包含路基的永久变形。通过对AASHTO模型修正和数值模拟,分别建立了沥青基层、级配碎石层、粒料层及路基永久变形预测模型;提出了长寿命沥青路面结构性永久变形预测方法和步骤。
     第四章对沥青混合料疲劳极限特性展开了研究。提出了疲劳极限试验方法,用以确定小梁疲劳寿命;建立了沥青混合料劲度、耗散能和累积耗散能与荷载作用次数关系,对沥青混合料的疲劳过程进行分析。
     分别采用AASHTO T321和简化耗散能比分析了不同类型沥青混合料的疲劳极限,结果都表明,沥青混合料确实存在疲劳耐久极限:在其他条件一致的情况下,采用普通沥青的混合料,不论是采用最佳沥青含量,还是采用富沥青含量(最佳+0.5%),它们的耐久疲劳极限似乎没有明显差别,大约在100με左右;而采用改性沥青的混合料,其耐久疲劳极限明显高于采用普通沥青的混合料,大约为100με~200με。
     同时,还进行了低应变-高应变交替疲劳试验,研究了超载对沥青混合料疲劳极限的影响。结果表明,在路面结构分析和设计中,如果考虑了一定的超载因素,那么即便路面实际使用过程中,偶尔会出现超过疲劳极限的情况,也不会对路面造成严重损害。
     第五章对长寿命沥青路面结构设计方法进行了研究。首先探讨了长寿命沥青路面的结构设计目的和原则,提出长寿命沥青路面结构设计必须能够适应未来重载交通的要求;分析了现行沥青路面设计规范采用的弯沉指标,指出弯沉指标虽然具有测量方便、易于掌握的特点,但不能正确评估路面性能;所以,弯沉指标不适合作为长寿命沥青路面的设计指标,但是可以作为施工控制指标;通过大量结构组合分析,采用数理统计手段,建立了各结构层顶面弯沉的计算简式。
     提出以沥青层底拉应变、路基顶面压应变和结构永久变形作为长寿命沥青路面设计指标,同时建议对普通AC25沥青混合料,可分别采用100με(最佳沥青含量)和110με(最佳沥青含量+0.5%);对AC25 SBS改性沥青混合料,可采用145με;路基顶面容许压应变标准为1701με;结构性永久变形根据底基层类型分别采用不同值,对半刚性底基层建议控制值为12mm,而对粒料底基层建议不超过20mm;最后,给出了长寿命沥青路面的设计步骤和计算实例。
     第六章介绍了长寿命沥青路面实践的情况。在室内研究和理论分析的基础上,确定了4种不同的试验路方案。结合工程情况以及长寿命沥青路面的设计要求,对试验路各层材料进行了选择和设计;结合试验路铺筑,对长寿命沥青路面各层材料质量控制要点进行了分析,同时,还对试验路回弹模量和沙基顶面压应力进行了测试分析;最后,对长寿命沥青路面各试验段及正常路段的路面部分造价进行了测算分析,证明长寿命沥青路面具有较低的全寿命周期成本。
The semi-rigid base course asphalt pavement structure has been mostly adopted in China. But the damages of asphalt pavement in expressway are serious and shorter than design period. In view of this condition, we can use long-life asphalt pavement to solve this problem. On the basis of study on the design index, allowable standard and structure-design method, the paper hopes to constitute the design method system for long-life asphalt pavement in China. The main contents and conclusions of study are as follows:
     The first chapter discusses the background and signification of the long-life asphalt pavement. Through reviewing the development of the design index and design method for asphalt pavement and the study of long-life asphalt pavement at home and abroad, it concludes that the study on the long-life asphalt pavement is meaningful and important. Finally, the contents of study in the following chapter are determined.
     The second chapter researches on the structure of the long-life asphalt pavement. Through studying on foreign design ideas of long-life asphalt pavement, the long-life asphalt pavement for our country is defined. The semi-rigid sub-base asphalt pavement and granular sub-base asphalt pavement are suitable for long-life asphalt pavement. Based on the layer elastic theory, orthogonal design and range analysis, the sensitivity of the different layer parameters to pavement response are analyzed. The results indicate that the thickness of the asphalt layer has much influence on the tensile strain at the bottom of the asphalt layer and the compression strain at the surface of the sub grade. So 24 cm is suggested as the minimum thickness for the long-life asphalt pavement.
     Structural analysis indicates that the high modulus binder layer is not only attributed for rutting resistance, but also helpful for decreasing the tensile strain at the bottom of the asphalt layer and the thickness of the asphalt layer. According to the function and the mechanical character, the design principle and the requirement of the material for different layers of the long-life asphalt pavement are ascertained. And the representative structural design plan is recommended.
     Due to the significance of permanent deformation for long-life asphalt pavement, the third chapter studies on it. The permanent deformation of the long-life asphalt pavement should be controlled according to the type of the structure. For the semi-rigid sub-base asphalt pavement the permanent deformation of the asphalt base and the grading macadam course should be restricted; and not only the asphalt base and the grading macadam layer, but also the sub-grade should be controlled for granular sub-base asphalt pavement. Based on modifying to AASHTO model and numerical simulation, the permanent deformation forecasting models for the asphalt base, grading macadam layer, the granular layer and the sub-grade are constituted. The method and process of forecasting permanent deformation are put forward.
     The forth chapter studies the character of the fatigue limit of different asphalt mixtures. On the basis of testing on the compacted hot-mix asphalt subjected to repeated flexural bending, the relationship between the flexural stiffness, the dissipation energy, the accumulative dissipation energy and the number of repetition are established.
     According to AASHTO T321 and the simplified dissipation energy ratio, the fatigue behaviors of the different asphalt mixture are analyzed. The results indicate that fatigue limit exists in the asphalt mixture. Given the same test condition and only changing the binder content, fatigue limits for the mixtures with basic asphalt are more or less the same. The limits value is about 100μεfor the optimum asphalt content and rich asphalt content (optimum+0.5%). But the value is clearly higher, and about 100με-200μεfor the mixture with modified asphalt.
     At the same time, the influence of overloading to fatigue limit is studied through the low strain and high strain alternate fatigue test. The outcomes make clear that limited overloading should not destroy the fatigue limit characteristic, if certain over loading are considered during the structural analysis and design period.
     The fifth chapter introduced the method for structural design of the long-life asphalt pavement. At first the aim and principle for structural design is discussed. It concluded that the structural design should meet the requirement of the heavy traffic in the future. Based on the analysis of the deflection in current asphalt pavement design criterion, it concludes that this index can not evaluate pavement performance correctly even though it is convenience to measure and easy to master. So it is not suitable for the design index of long-life asphalt pavement, but can be used for construction control. On the basis of analysis of many structure combinations, a simple equation of deflection at the surface of different layers is created by mathematical statistics.
     It concludes that the design indexes for long-life asphalt pavement should include the tensile strain at the bottom of the asphalt layer, the compression strain at the surface of the sub grade and the permanent deformation of structure. It is suggested that tensile strain limit can use 100μεand 110μεfor optimum asphalt content and rich asphalt content (optimum asphalt content+0.5%) of the AC25 mixture with basic asphalt respectively, but 145μεfor modified asphalt. The compression strain criterion at the surface of the sub grade is 170μεPermanent deformation of structure is 12mm and 20mm for the semi-rigid sub base asphalt pavement and the granular sub base asphalt pavement respectively. At last, the design process and calculation example for the long-life asphalt pavement are given.
     Finally, the test road of long-life asphalt pavement is introduced in the sixth chapter. Based on laboratory study and theoretical analysis, four different structures are chosen. The materials for different layers are analyzed and determined in response to the project and the design requirement of long-life asphalt pavement. And the main points of quality control of materials are also discussed. The modulus of resilience and compressive stress at the surface of the sand base course are also tested. Through analyzing the difference of cost between test road and normal road, it concludes that the life cycle cost of the long-life asphalt pavement is lower.
引文
[1]John A. D. Angelo, John Bukowski, Thomas Harman and Byron Lord. The Federal Highway Administration's Long-Life Pavement Technology Program[C]. International Symposium on Design and Construction of Long Lasting Asphalt Pavements, 2004(7):103
    [2]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001
    [3]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社,1988
    [4]黄卫,钱振东.高等级沥青路面设计理论与方法[M].北京:科学出版社,2001
    [5]张起森,韩春华.美国沥青路面设计方法的发展[J].中外公路2002 Vo1.22 No.5
    [6]姚祖康.对国外沥青路面设计指标的评述(连载一)[J].公路,2003,(3)
    [7]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004:195
    [8]中华人民共和国行业标准.公路柔性路面设计规范(JTJ014-86)[S].北京:人民交通出版社,1986
    [9]中华人民共和国行业标准.公路沥青路面设计规范(JTJ 014—97)[S].北京:人民交通出版社,1997
    [10]中华人民共和国行业标准.公路沥青路面设计规范(JTGD50-2006)[S].北京:人民交通出版社,2006
    [11]Michael Nunn. Long-Life Flexible Pavements[C].8th International Conference on Asphalt Pavements. Seattle, Washinton,1997
    [12]M. E. Nunn, A. Brown, D. Weston, J. C. Nicholls. Design of Long-Life Flexible Pavements for Heavy Traffic[R]. Transport Research Laboratory Report 250, UK,1997
    [13]J. Huddelston, M. Buncher and D. Newcomb. Perpetual Pavements[A]. Asphalt Pavement Alliance,2000
    [14]Davide E. Newcomb, Mark Buncher and Ira J. Huddleston. Concept of Perpetual Pavements. Perpetual Bituminous Pavements[Z].Transportation Research Circular Number503,2001
    [15]Harold L. and Von Quintus. Hot-Mix Asphalt Layer Thichness Design for Longer-Life Bituminous Pavements.Perpetual Bituminous Pavements[Z]. Transportation Research Circular Number503,2001
    [16]Jim St. Martin and John T. Harvey etc.Long — Life Rehabilitation Design and Construction I — 710 Freeway,long Beach,California.Perpetual Bituminous Pavements[Z]. Transportation Research Circular Number503,2001
    [17]Leslie Ann Myers and Reynaldo Roque.Evaluation of Top-Down Cracking in Thick Asphalt Pavements and the Implications for Pavement Design. Perpetual Bituminous Pavements[Z]. Transportation Research Circular Number503,2001
    [18]Joe P. Mahoney. Study of Long-Lasting Pavements in Washington State.Perpetual Bituminous Pavements[Z]. Transportation Research Circular Number503,2001
    [19]Geoffrey Rowe, Robert Sauber, Frank Fee and Nassef Soliman.Development of Long-Life Overlays for Existing Pavement Infrastructure Projects with Surface Cracking in New Jersey.Perpetual Bituminous Pavements[Z]. Transportation Research Circular Number503,2001
    [20]Eric Harm.Illinois Extended-Life Hot-Mix Asphalt Pavements.Perpetual Bituminous Pavements[A]. Transportation Research Circular Number503,2001
    [21]Asphalt Pavement Alliance(APA).Perpetual Pavements:A Synthesis[Z].NO. APA 101.2002
    [22]D.Merill.Guidance on the Development, Assessment and Maintenance of Long-Life Flexible Pavements[R]. Transport Research Laboratory Report 639, UK,2005
    [23]Heemun Park, Jewon Kim, Yeonbok Kim and Hyunjong Lee.Determination of the Layer Thickness for Long-Life Asphalt Pavements[C].Proceedings of the Eastern Asia Society for Transportation Studies.2005
    [24]B. W. FERNE.The European Approach to Long Lasting Asphalt Pavements-A State-of-the-Art Review[C]. International Symposium on Design and Construction of Long Lasting Asphalt Pavements,2004,7
    [25]Hans Jorgen Ertman Larsen and Mikael Thau. Making Best Use of Long Life Pavements in Europe[C]. International Symposium on Design and Construction of Long Lasting Asphalt Pavements,2004,7
    [26]David H. Timm, David E. Newcomb. A Practical Guide to Low-volume Road Perpetual Pavement Design[C]. International Conference on Perpetual Pavement Ohio Research Institute for Transportation and the Environment. Columbus, Ohio:2006,9
    [27]Becca Lane, A.W. Brown, and Susan Tighe. Perpetual Pavements:The Ontario Experiment[C]. Ohio Research Institute for Transportation and the Environment. Columbus, Ohio:2006,9
    [28]Todd V. Scholz, Jim Huddleston, and Elizabeth A. Hunt, etc. Instrumentation and Analysis of a Perpetual Pavement on an Interstate Freeway in Oregon[C]. Ohio Research Institute for Transportation and the Environment. Columbus, Ohio:2006,9
    [29]Y. Richard Kim, Shane Underwood. Sungho Mun, and Murthy N. Perpetual Pavement Evaluation Using the Viscoelastic Continuum Damage Finite Element Program[C]. Ohio Research Institute for Transportation and the Environment. Columbus, Ohio: 2006,9
    [30]Brian D. Prowell, and E. Ray Brown. Methods for Determining the Endurance Limit Using Beam Fatigue Tests[C]. Ohio Research Institute for Transportation and the Environment. Columbus, Ohio:2006,9
    [31]Kent O. Lande, Hector Alberto Garcia Lopez, and Eric Cook. Application of Perpetual Asphalt Pavement Principles For The Design and Construction of the Kandahar to Herat Highway in Afghanistan[R]. Ohio Research Institute for Transportation and the Environment. Columbus, Ohio:2006,9
    [32]李峰.长寿命沥青路面设计中的结构组合分析[D].同济大学硕士学位论文,2005
    [33]Asphalt Pavement Alliance. Perpetual Pavements:A Synthesis[OL]. Lanham, MD. http://www.asphaltalliance.com. Accessed 7 August 2002.
    [34]沈金安,李福晋,陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004:287
    [35]徐芝纶.弹性力学[M](第三版上册).北京:高等教育出版社.1990,5
    [36]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004:293
    [37]刘文卿.实验设计[M].清华大学出版社,2005,2
    [38]孙红燕.长寿命沥青路面结构计算及分析[D].长安大学硕士学位论文,2007,6
    [39]Shell International Petroleum Co. Ltd. Shell Pavement Design Manual:Asphalt Pavements and Overlays for Road Trafic[Z]. Londo,1978.
    [40]Monismith, C. L., Ogawa, N., and Freeme C. R.. Permanent Deformation Characteristics of Subgrade Soils due to Repeated Loading[J]. TRR 537, Washington D.C.,1975, TRB,1-17.
    [41](美)黄仰贤著.余定选,齐诚译.路面分析与设计[M].北京:人民交通出版社.1994:14-19
    [42]张登良.沥青路面[M].北京:人民交通出版社,1997
    [43]May R M, et al. Comparison of superpave with conventional pavement design [C]. Proceeding 8th international conference on asphalt pavements. Seattle, Washington,1997
    [44]Zhong Wu. Finite element simulation of rutting on superpave pavementsfD]. Kansas State University,2001.
    [45]Mohamed Mousad Basyouny. Calibration and validation of asphalt concrete pavements distress models for 2002 Design Guide[D]. A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy. Arizona State University,2004
    [46]Theyse, HE. Mechanistic-empirical modeling of the permanent deformation of unbound pavement layer[C].Proceedings of 8th InternationalConference on Asphalt Pavement,VoL2 Seattle,1997:1579-1594.
    [47]姚祖康.对国外沥青路面设计指标的评述(续)[J].公路,2003,(4)
    [48]Zhang Wei, Robin A. Macdonald. Models for Determining Permanent Strains in the Subgrade and the the Pavement functional Condition[R]. Danish Road Institute Report 115,2002,18
    [49]Desai C S, etc. Constitutive laws for engineering media [M]. Prentice Hall Inc, Englewood, NewJersey,1982.
    [50]Krikner D J. Numerical simulation of permanent deformation in flexible pavement system subjected moving loads [J]. Proceedings of engineering mechanics,ASCE,New York,NY,1996.
    [51]林绣贤.沥青面层永久变形计算中有关参数的确定方法[J].中国公路学报,1989,2(2):PP.8~18
    [52]李强,佘小红,邱延峻.沥青混凝土路面永久变形预测研究综述[J].公路,2004(5):pp.1~5
    [53]SHRP-A-404 Report.Fatigue Response of Asphalt-Aggregate Mixes[R]. Strategic Highway Research Program. National Research Council,1994
    [54]C.L. Monismith, J. A. Epps, D. A. Kasianchuk, and, D. B McLean. Asphalt Mixture Behavior in Repeated Flexure[R]. Report TE 70-5. Institute of Transportation and Traffic Engineering, University of California, Berkeley,1970.
    [55]A. A.Tayebali, J. A. Deacon, J. S. Coplantz, and C.L. Monismith. Modeling Fatigue response of Asphalt-Aggregate Mixes[J]. Journal of the Association of Asphalt Paving technologists. Vol,62, pp.385-421,1993
    [56]M. R. Thompson, and F. Hugo. Design Methods, Workshop 2[C]. Proceedings of 6th International Conference on the Structural Design of Asphalt Pavements, Vol.2, Ann Arbor, Michigan,1987.
    [57]Transportation Research Board Circular No.503:Perpetual Bituminous Pavements[A]. TRB, National Research Council, Washington D. C, January,2001
    [58]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2003.pp.458
    [59]Wohler, A. Versuche uber die Festigkeit der Eisenbahnwagenachsen[J].Journal of Engineering, Vol.4,1860. pp.160-161
    [60]S. H. Carpenter, K. Ghuzlan, and S. Shen. Fatigue Endurance Limit for Highway and Airport Pavements[J]. In Transportation Research Record:Journal of the Transportation Research Board,No.1832, TRB, National Research Council, Washington D.C.,2003, pp.131-138
    [61]中华人民共和国行业标准.《公路工程沥青与沥青混合料试验规程》(JTJ052—2000).北京:人民交通出版社,2000
    [62]叶国铮.柔性路面疲劳与优化设计[M].北京:人民交通出版社,1989
    [63]A.C. Pronk and P.C. Hopman. Energy Dissipation:The Leading Factor of Fatigue, Highway Research: Sharing the Benefits. Proceedings of the Conference, the United States Strategic Highway Research Program. London,1990, PP.255-267
    [64]A. A. Tayebali, G.M. Rowe, J. B. Sousa. Fatigue Response of Asphalt Aggregate Mixtures[J]. Journal of the Association of asphalt Paving technologists. Vol.61, pp.333-360,1992
    [65]W. Van Dijk and W. Visser. The energy Approach to Fatigue for Pavement Design[J]. Journal of the Association of Asphalt Paving technologists. Vol.46, pp 1-37,1977
    [66]P. E. Mc Carthy. Factors Affecting the Fatigue Characteristics of Bitumen Sand Mixtures[D]. Ph. D. Thesis. University of Nottingham. UK,1960
    [67]AASHTO TP8-94. Method for Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subjected to Repeatedflexural Bending[S]. AASHTO Provisional Standards. May 2002
    [68]P. C. Hopman, P. A. J. C. Kunst, and A. C. Pronk. A Renewed Interpretation Method for Fatigue Measurements. Verification of Miner's Rule[C].4th Eurobitume Symposium in Madrid. Vol.1,pp.557-561. October 1989
    [69]G. M. Rowe. Performance of Asphalt Mixtures in the Trapezoidal Fatigue Test[J]. Journal of the Association of Asphalt Paving Technologists. Vol.62, pp.344-384,1993
    [70]G. M. Rowe and M.G. Bouldin. Improved Techniqued to Evaluate the Fatigue Resistance of Asphaltic Mixtures[C]. Proceedings of 2nd Eurasphalt& Eurobitumen Congress. Barcelona, Spain,2000
    [71]K. A. Ghuzlan and S. H. Carpenter. Energy-Deriver, Damage-based Failure Criterion for Fatigue Testing[J]. Transportation Resrarch Record: Journal of the Transporation Research Board. No.1723,pp.141-149,2000
    [72]P. Bazin and J. B. Saunier. Deformability, Fatigue and Healing Properties of Asphalt Mixes[C]. Proceeding of 2th International Conference on the Structural Design of Asphalt Pavements. Ann Arbor, Michigan,1967
    [73]M. A. Miner. Cumulative Damage in Fatigue[J]. Transactions of the American Society of Mechanical Engineers. Vol.67,1945
    [74]L. M. Kachnov. Time to Rupture Process Under Creep Conditions[M]. In. Izv. Akad. Nauk, USSR, Otd. Tekh. Nauk.,pp.26-31,1958
    [75]Jean Lemaitre. A Course in Damage Mechanics[OL]. Second Edition, Springer, Germany,1996
    [76]Kim Y. Richard, Hyun-Jong Lee, and Dallas N. Little, Fatigue Characterization of Asphalt Concrete Using Viscoelasticity and Continuum Damage Theory[C]. Proceeding of Asphalt Paving Technologists, Vol.66,1997
    [77]W. Heukelom, Observations on the Rheology and Fracture of Bitumens and Asphalt Mixes[C]. Proceeding of Asphalt Paving Technologists, Vol 35,1966
    [78]Van Dijk W., H. Moreaud A. Quedeville, and P. Uge. The Fatigue of Bitumen and Bituminous Mixes[C]. Proceeding of 3th International Conference of the Structural Design of Asphalt Pavements. London,1972, pp.354-366
    [79]Pronk A. C. and Hopaman P. C. Energy Dissipation:The Leading Factor of Fatigue. Highway Research:Sharing the Benefits[C]. Proceedings of the conference for the United States Strategic Highway Research Program. London,1990, pp.255-267
    [80]G. Chomton and P. J. Valayer. Applied Rheology of Asphalt Mixes Practical Application[C]. Proceedings of the 3th International Conference on the Structural Design of Asphalt Pavements, London,1972
    [81]A. A. Tayebali, J. A. Deacon and J. S. Coplantz etc. Fatigue Response of Asphalt-Aggregate Mixes:Part 1-Test Method Selection[R]. Report SHRP-A-003A, Strategic Highway Research Program. National Research Council, Washington D. C., November 1992
    [82]王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数[M].北京:人民交通出版社,2002
    [83]孙立军.沥青路面结构行为理论[M].人民交通出版社;2005
    [84]高英,许志鸿,丰晓,李淑明.关于弯沉综合修正系数的探讨[J].公路交通科技。2003,10
    [85]M. O. Bejarano,and P. Ullidtz. Preliminary Plastic Deformation Analysis of Unbound Layers from the California Accelerated Pavement Test Program[A].Paper submitted to Accelerated Pavement Testing International Conference.2004
    [86]黄卫.沥青路面设计指标和设计方法研究[D].东南大学博士学位论文.1994.10
    [87]Marshall R. Thompson, Samuel H. Carpenter. Design Principles for Long Lasting HM A Pavements [C]. Proceeding of the 10th International Conference of ISAP for Long Lasting Pavement. Alabama.2004(6):365-377
    [88]Robert L. Peterson, Pamela Turner, Mike Anderson, and Mark Buncher. Determination of Threshold Strain Level for Fatigue Endurance Limit in Asphalt Mixtures[C]. Proceeding of the 10th International Conference of ISAP for Long Lasting Pavement. Alabama.2004(6):397
    [89]Angela L. Priest, and David H. Timm. METHODOLOGY AND CALIBRATION OF FATIGUE TRANSFER FUNCTIONS FOR MECHANISTIC-EMPIRICAL FLEXIBLE PAVEMENT DESIGN. NCAT Report 06-03.2006(9):67
    [90]交通部科学研究院重庆分院等编.柔性路面论文集[M].北京:人民交通出版社,1977
    [91]朱照宏,许志鸿.柔性路面设计理论和方法[M].上海:同济大学出版社,1987
    [92]徐鸥明,郝培文(编译).厚沥青路面Top—Down裂缝分析及对路面设计的启示[J].中外公路2006 Vol.26 No.5
    [93]徐鸥明,韩森(编译).韩国长寿命沥青路面层厚确定方法[J].中外公路2006 Vol.26No.2
    [94]汪荣鑫.数理统计[M].西安:西安交通大学出版社,2001
    [95]郭大智,冯德成.层状弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社,2001
    [96]李黎明.Ansys有限元分析实用教程[M].北京:清华大学出版社,2005
    [97]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004
    [98]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [99]叶裕明,刘春山等.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700