基于强度与刚度衰变的沥青混合料非线性疲劳损伤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面是我国目前主要采用的路面结构类型,沥青混合料作为沥青路面的主要建筑材料,其疲劳性能直接影响路面的使用性能和使用寿命。同时,沥青混合料作为一种粘弹性材料,沥青混合料的力学性能与荷载作用时间、试验温度等有关。论文依托国家自然科学基金重点项目“沥青路面结构设计的若干基础理论问题研究”,针对沥青混合料的材料特点,通过直接拉伸疲劳试验和不同疲劳次数后的剩余强度试验,揭示其刚度和强度衰变规律,开展基于刚度和强度衰变的沥青混合料非线性疲劳损伤研究,对于改进和完善现行沥青路面结构设计具有重要理论意义和实用价值。
     通过速度特性试验发现加载速率对沥青混合料强度影响显著,强度随加载速率增大而呈幂函数趋势增长;在5种应力水平下进行了直接拉伸疲劳试验,引入动载强度和真实应力比的概念,建立了基于真实应力比的疲劳方程,该方程既可以体现重复加载的疲劳破坏,又可以涵盖一次加载的强度破坏;应用真实应力比疲劳方程,提出了一种沥青面层抗拉强度结构系数计算新方法。
     通过分析不同应力水平下直接拉伸疲劳的动模量衰变规律,建立了动模量幂函数衰变模型,动模量衰变具有确定的非线性特性,应力水平越大动模量随寿命比衰变的越快;提出了能考虑临界损伤度的疲劳损伤修正模型,构建了基于刚度衰变的非线性疲劳损伤演化方程;通过两级荷载下的疲劳试验,验证了沥青混合料疲劳损伤累积的非线性,绘制了两级荷载加载路径图,直观而合理的解释了其试验结果。
     通过不同疲劳次数后疲劳剩余强度试验,建立了剩余强度幂函数退化模型,揭示了不同应力水平下剩余强度的衰变规律;构建了与应力水平相关的基于剩余强度的沥青混合料疲劳损伤演化方程。通过对强度和刚度定义的损伤变量的比较,揭示了基于强度和刚度衰变定义损伤变量内在联系,选用组织敏感量剩余强度比组织不敏感量刚度作为疲劳损伤评价参数更具有优越性。结合剩余强度和刚度定义损伤变量时的优点,统一了基于剩余强度和刚度的损伤变量定义方法,提出了剩余强度和刚度关联的损伤变量计算修正公式。
     应用沥青混合料的非线性疲劳损伤演化方程,建立了一种能考虑损伤程度或加载历史影响的轴载换算新方法,改进了传统的轴载换算方法,给出了不同轴载修正系数B随年限变化的诺模图,算例分析表明传统轴载换算方法低估了累积轴载作用次数。
     研究成果对于推进沥青路面轴载换算方法的发展,完善沥青路面设计方法,提高沥青路面耐久性和设计水平有重要意义。
The asphalt pavement is the main type of pavement structure. Asphalt mixture ofasphalt pavement construction materials, the fatigue performance directly affects theperformance and service life of the pavement. Meanwhile, the asphalt mixture as aviscoelastic material, the mechanical properties of the asphalt mixture related withloading and test temperature. This paper relies on the National Natural ScienceFoundation Key Project of“Investigation into Fundamental Issues in AsphaltPavement Structural Design". For the material characteristics of the asphalt mixture,direct tensile fatigue and the different remaining number of fatigue strength test arecarried out. The aim of this study is to understand the process of asphalt mixture infatigue damage of production, evolution and accumulation under repeated loading,and reveal the decay law of stiffness and strength of asphalt mixture in fatiguedamage. Nonlinearity fatigue damage properties of asphalt mixture based on the decayof the dynamic modulus and residual strength are investigated. Results to improve andrefine the existing asphalt pavement structural design has important theoreticalsignificance and practical value.
     Firstly, direct tensile strength test is carried out at different loading speed. Thetest results show that the effect of loading speed on strength of asphalt mixture issignificant, and their relationship curve can be fitted by power function. Direct tensilefatigue tests are carried out at five kinds of stress level. The fatigue equation based onreal stress ratio is established by the concept of dynamic load strength and real stressratio. This fatigue equation can not only reflect the fatigue damage under repeatedloading, but also cover the strength failure under one loading. A new calculationmethod of tensile strength structure coefficient is put forward by fatigue equationbased on real stress ratio.
     Secondly, the deformation and the decay law of modulus of the direct tensilefatigue are analyzed in different stress levels. A power-law decay of dynamic modulusmodel is built. The dynamic modulus decay law with nonlinear characteristics isdetermined. The dynamic modulus with the life of the faster decay, and the decayparameter m with the stress level increase by the greater the stress level. Correctionmodel to consider the critical value of fatigue damage is put porward. The nonlinearfatigue damage evolution equation based on the decay law of stiffness is established. The fatigue test is carried out under two-stage stress levels. The law of nonlinearfatigue damage cumulative of asphalt mixture is verified. And the test results areexplained intuitively and reasonably using two-stage loading route figure.
     Thirdly, the residual strength test of asphalt mixture is carried out in differentstress levels. Degradation of residual strength of the power function model isestablished. The decay law of the residual strength under different stress levels isrevealed. The nonlinear fatigue damage evolution equation based on the residualstrength degradation is established. Under the conditions of same material and liferatio, the damage based on residual strength is greater than the damage based onstiffness. Strength is better than stiffness as fatigue damage variable. Combined withthe advantages of the residual strength and stiffness of damage variable, a definitionof damage variable based on residual strength and stiffness is unified. A powerfunction by the damage variable Dsand Dfbased on the residual strength and stiffnessis built.
     Finally, based on the nonlinear fatigue damage properties of asphalt mixtures, anew asphalt pavement axle load conversion method is established with consideringthe degree of damage or loading history impact. The nomogram of axle loadcorrection factor B changes with the years is given. Through examples the impact ofthe traffic on the road is underestimated by the current axle load conversion method.
     Research results have important meaning for promoting the development of axleload conversion method, further perfecting the asphalt pavement design methods andimproving the durability and service level of asphalt pavement.
引文
[1]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006,197-235
    [2]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2002
    [3]沥青路面疲劳损伤特性及抗疲劳破坏的措施与方法研究鉴定文件[R].长沙交通学院,2002,11-159
    [4]公路沥青路面设计规范(JTJ014-97) [S].北京:人民交通出版社,1997,5-20
    [5]公路沥青路面设计规范(JTG D50-2006) [S].北京:人民交通出版社,2006,26-80
    [6]徐灏.疲劳强度[M].北京:高等教育出版社,1988,90-162
    [7]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997,1-126
    [8]Mar′a Castro a, Sa′nchez JA. Estimation of asphalt concrete fatigue curves–Adamage theory approach[J]. Construction and Building Materials, 2007, 1(1):1-7
    [9]Abo-Qudais S, Shatnawi I. Prediction of bituminous mixture fatigue life based onaccumulated strain[J]. Construction and Building Materials, 2007, 21:1370~1376
    [10]Carpenter S. H., M. Jansen. Fatigue Behavior Under New Aircraft LoadingConditions[J]. Proceedings of Aircraft Pavement Technology in the Midst ofChange, 1997.4(2): 259-271.
    [11]Ghuzlan K., Carpenter S.H. An Energy-Derived/Damage-Based Failure Criteriafor Fatigue Testing[J]. Transportation Research Record (TRR), 2000. No. 1723,131-141
    [12]Carpenter S. H., Khalid A. Ghuzlan, Shihui Shen. A Fatigue Endurance Limit forHighway and Airport Pavement[J]. Journal of Transportation Research Record(TRR), 2003.No. 1832, 131-138
    [13]Shen S., Carpenter, S. H. Application of Dissipated Energy Concept in FatigueEndurance Limit Testing[J]. Journal of Transportation Research Record:Transportation Research Board, 2005. No. 1929,.165-173
    [14]Shen S., Airey G. D., S.H.Carpenter, et al. A Dissipated Energy Approach toFatigue Evaluation[J]. International Journal of Road Materials and PavementDesign, 2006. 7(1):38-51
    [15]Amit Bhasin; Veronica T. F. Castelo Branco; Eyad Masad; and Dallas N. Little.Quantitative Comparison of Energy Methods to Characterize Fatigue in AsphaltMaterials[J]. Journal of Materials in Civil Engineering, ASCE, FEBRUARY 2009
    [16]Jo Daniel ,Y Richard Kim. Simplified Fatigue Modeling of Asphalt ConcreteUsing Viscoelasticity and Continuum Damage Mechanics[J]. Presented atFatigue Damage Prediction Symposium Laramie, Wyoming July 18-21, 2001
    [17]Lytton RL, Chen CW, Little DN. Microdamage Healing In Asphalt And AsphaltConcrete.VolumeⅣ: A Viscoelastic Continuum Damage Fatigue Model ofAsphalt Concrete With Microdamage Healing[J], 2001: 178
    [18]Scarpas A; AI-Khoury. R; van Gurp, et al. Finte Element Simulation of DamageDevelopment In Asphalt Concrete Pavements[J]. 1997: 673-692
    [19]Kim YR. Fatigue Performance Evaluation Of Westrack Ans Arizona Sps-9Mixtures Using Viscoelastic Continuum Damage Pproach[J],North CarolinaState University,Department of Civil Engineering,. Mann Hall,Box7908,Raleigh NC27695-7908(performing organization),1998
    [20]Jaeseung Kim, Ph.D.; and Randy C. West, Ph.D., P.E. Application of theViscoelastic Continuum Damage Model to the Indirect Tension Test at a SingleTemperature[J]. Journal of Engineering Mechanics ASCE, 2010
    [21]Didier Bodin, Gilles Pijaudier-Cabot, Chantal de La Roche, etc. A ContinuumDamage Approach of Asphalt Concrete Fatigue Tests[J]. ASCE, 2002
    [22]Zhi Suo, Wing Gun Wong. Analysis of fatigue crack growth behavior in asphaltconcrete material in wearing course[J].Construction and Building Materials,2009 23: 462-468
    [23]H. Di Benedetto, C.de La Roche, H. Baaj, etc. Fatigue of bituminous mixture[J].Journal of Materials and Structures, 2004, 37:202-216
    [24]Di Benedetto, H. and de la Roche, C., State of the art on stiffness modulus andfatigue of bituminous mixtures in Bituminous Binders and Mixtures: State of theArt and Interlaboratory Tests on Mechanical Behavior and Mix Design[J]. E&FNSpon, Ed. L. Francken, 1998, 137-180
    [25]Bodin, D., Modle endommagement cyclique : Application a fatigue des enrob6sbitumineux[D], PhD thesis, EC Nantes, 2002.
    [26]Pronk, A.C., Partial healing model - Curve fitting[R], Report WDWW-2000-047,DWW, Delft, The Netherlands, 2000.
    [27]Lundstr6m, R. and Isacsson, U., Asphalt fatigue modeling using viscoelasticcontinuum damage theory[J], Accepted for publication in International Journal ofRoad Materials and Pavement Design, 2003
    [28]Robert Lundstrom1; HervéDi Benedetto2; and Ulf Isacsson3. Influence ofAsphalt Mixture Stiffness on Fatigue Failure[J]. JOURNAL OF MATERIALS INCIVIL ENGINEERING ASCE / NOVEMBER/DECEMBER, 2004
    [29]郑健龙. Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):32-42
    [30]郑健龙,吕松涛.沥青混合料非线性疲劳损伤模型[J].中国公路学报2009,22(5):21-29
    [31]唐雪松,蒋持平,郑健龙.沥青混合料疲劳过程的损伤力学分析[J].应用力学学报,2000,17(4):92-99
    [32]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D]. [中南大学博士学位论文].长沙:中南大学,2003
    [33]吕松涛.老化沥青混合料粘弹性疲劳损伤特性研究[D]. [长沙理工大学博士学位论文].长沙:长沙理工大学,2008
    [34]杨毅.不同加载频率下沥青混合料疲劳损伤特性研究[D]. [长沙理工大学硕士学位论文].长沙:长沙理工大学,2009
    [35]黄卫,邓学钧.沥青混合料疲劳响应新模型研究[J].中国公路学报,1995,8(1):56-62
    [36]孙志林.基于损伤力学沥青路面疲劳损伤研究[D]. [东南大学博士学位论文].南京:东南大学,2008,9
    [37]吴旷怀,张肖宁.沥青混合料疲劳损伤非线性演化统一模型试验研究[J].公路,2007,(5):125-130
    [38]严恒,朱洪洲,唐伯明,高爽. AC-13沥青混合料疲劳能耗模型分析[J].重庆大学学报(自然科学版),2010,29(4):559-563
    [39]沙爱民,贾侃,陆剑卿,胡力群.半刚性基层材料动态模量的衰变规律[J].中国公路学报,2009,22(3):1-6
    [40]武建民.半刚性基层沥青路面使用性能衰变规律研究[D]. [长安大学博士学位论文].西安:长安大学,2005
    [41]刘业敏,韩森,徐鸥明,高世君.疲劳试验中沥青混合料的弯拉劲度模量[J].广西大学学报(自然科学版),2010,35(1):127-131
    [42]肖建清,丁德馨,骆行文,等.再生混凝土疲劳损伤演化的定量描述[J].中南大学学报(自然科学版),2011,42(1):170-177.
    [43]GUAN Hongxing, ZHENG Jianlong, TIAN Xiaoge. Comparing of FatigueDamage Defining Ways of Asphalt Mixtures[J]. ICTE 2009, p2749-2755.
    [44]沈金安.国外沥青路面设计方法汇总[M].北京:人民交通出版社,2004
    [45]交通部公路科学研究所.重载沥青路面设计规范研究报告[R],2003.
    [46]长安大学.重载交通沥青路面设计研究[R],2005
    [47]姚祖康等.超限车辆对路面损坏的影响分析[J].中国公路学会2000年学术交流论文集,217-221
    [48]黄文元.沥青路面超重车轴载换算初步研究[J].公路交通科技,2000,17(1):5-9.
    [49]李海军,黄晓明.重载条件下沥青路面按弯沉等效的轴载换算[J].公路交通科技,2004,21(7):5-8
    [50]王冀蓉.重载道路长寿命沥青路面设计轴载分析[D].[湖南大学硕士论文].长沙:湖南大学,2007
    [51]彭波,姜爱锋.半刚性基层沥青混凝土路面的轴载换算关系探讨[J].华东公路,2001,2(6):50-53
    [52]陈忠达.沥青路面交通参数的研究[D].[长安大学博士论文].西安:长安大学,2006
    [53]黄卫,刘振清,钱振东,程刚.基于疲劳等效的钢桥面铺装体系轴载换算方法[J].交通运输工程学报,2005,5(01),14-18
    [54]颜利,周晓青,李宇峙,邵腊庚.基于直道足尺车辙试验的沥青路面重载轴载换算方法研究[J].公路交通科技,2006,23(3):35-39
    [55]邱欣,张敏江,何桂平等.应用线弹性疲劳损伤理论的沥青路面轴载换算[J].公路交通科技,2005,22(6):6-9
    [56]朱洪洲.柔性基层沥青路面疲劳性能及设计方法研究[D].[东南大学博士论文].南京:东南大学,2005
    [57]元松.基于应力强度因子的面层反射裂缝轴载换算方法研究[J].公路交通科技,2010,4(9):89-95
    [58]关宏信,张起森,徐暘,肖鑫.沥青路面轴载抗滑等效换算方法[J].公路交通科技,2010,5(9):37-42
    [59]王辉,武和平.沥青路面按弯沉等效轴载换算的研究[J].中国公路学报,2003,16(1):19-21
    [60]孙志林,黄晓明.基于路基顶面压应变的沥青路面轴载换算方法[J].公路交通科技,2007,24(7):28-30
    [61]公路沥青路面施工技术规范(JTG F40-2004) [S].北京:人民交通出版社,2004,3-10
    [62]公路工程沥青及沥青混合料试验规程(JTJ 052-2000) [S].北京:人民交通出版社,2000,150-170
    [63]赵永利,孙伟.混凝土材料疲劳损伤方程的建立[J].重庆交通学院学报,1999,18(1):17-22
    [64]张婧娜,谭忆秋,张肖宁.应用能量原理预测沥青混合料的疲劳破坏[J].中国公路学报,1998,11(4):11-17
    [65]范天佑.断裂理论基础[M].北京:科学出版社,2002
    [66]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997
    [67]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995
    [68]Birgisson, Bjorn, Roque.et al. Evaluation of the gradation effect on the dynamicmodulu[J]. Transportation Research Board, 2005(1):193-199.
    [69]Lee.Kwan-Ho, Kim.Hyun-O, Jang.Min-Seok. Predictive Equation of DynamicModulus for Hot Mix Asphalt with Granite Aggregates[J].大韩土木学会论文集.2006
    [70]Dongre R, Myers L, D Angelo J, Paugh C,Gudimettla J. Field Evaluation ofWitczak and Hirsch Models for Predicting Dynamic Modulus of Hot- MixAsphalt[J]. AAPT, 2005
    [71]Kim.J, Sholar.G and Kim.S. Determination of accurate creep compliance andrelaxation modulus at a single temperature for viscoelastic solids[J]. Journal ofMaterials in Civil Engineering, ASCE, 2008, 20(2), 147-156
    [72]Amit Bhasin, Veronica T. F. Castelo Branco, Eyad Masad, and Dallas N. Little.Quantitative Comparison of Energy Methods to Characterize Fatigue in AsphaltMaterials[J]. ASCE, 2009, 117(6), 1024-1035
    [73]Samer Hassan Dessouky. Multiscale approach for modeling hot mixasphalt[D].Ph.D thesis, Texas A&M University, 2005
    [74]B.Shane Underwood, Y.Richard Kim and Murthy Guddati. Characterization andPerformance Prediction of ALF Mixtures Using a Viscoelastoplastic ContinuumDamage Mode[J]. Journal of the Association of Asphalt Paving Technologists,2006, 2(75), 525-581
    [75]Lubinda F. Walubita, Amy Epps Martin, Charles J. Glover, Sung H. Jung,Gregory S. Cleveland, Robert L. Lytton, and Eun Sug Park.Application of theCalibrated Mechanistic Approach with Surface Energy (CMSE) Measurementsfor Fatigue Characterization of Asphalt Mixtures[J]. Journal of the Association ofAsphalt Paving Technologists, 2006(75), 412-442.
    [76]Tan Yiqiu, Shan Liyan, Fang Jun, Zhang Xingyou. Anti-cracking mechanism ofdiatomite asphalt and diatomite asphalt mixture at low temperature[J]. Journal ofSoutheast University(English Edition), 2009, 125(1), 74-78
    [77]Yu Dongpo, Wang Lujun. Discussions on asphalt pavement cracking at lowtemperature[J]. Technology of Highway and Transport, 2004
    [78]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001
    [79]孟宪宏,宋玉普.混凝土抗拉疲劳剩余强度损伤模型[J].大连理工大学学报,2007,47(4):563-566
    [80]孟宪宏.混凝土疲劳剩余强度试验及理论研究[D]. [大连理工大学博士学位论文].大连:大连理工大学,2006
    [81]虞将苗.沥青混合料疲劳性能研究[D]. [华南理工大学博士学位论文].广州:华南理工大学,2006
    [82]苏志霄.基于剩余强度退化规律的疲劳损伤非线性演化模型[J].机械强度,2000,22(3):238-240
    [83]Broutman L J, Sahu S. A new theory to predict cumulative fatigue damage infibre-glass re inforced plastics[J]. In: Composite Materials: Testing andDesign(2nd Conference). ASTM STP497, 1972. 170-188
    [84]Charewicz A, M .Daniel I M. Damage mechanisms and accumulation ingraphite/epoxy laminates[J]. In: Composite Materials: Fatigue and Fracture (H.T·Hahn Ed.), ASTM STP 907, 1986. 274 297
    [85]顾怡.复合材料拉伸剩余强度及其分布[J].南京航空航天大学学报,1999,31(2):164-173
    [86]谢里阳,于凡.疲劳损伤临界值分析[J].应用力学学报,1994,11(3):57-64
    [87]王冰,贾文征,范承恩.疲劳破坏的过程及提高疲劳强度的方法[J].国外金属热处理,2003,24(4):23-26
    [88]许金泉.材料强度学[M].上海:上海交通大学出版社,2009
    [89]Pell P S. Fatigue characteristics of bitumen and bituminous mixes[J].Proceedings, International Conference on the Structural Design of AsphaltPavements. University of Michigan, 1962.
    [90]姚祖康.对我国沥青路面现行设计指标的评述[J].公路,2003,(2):44-49
    [91]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2007
    [92]聂雷震.预测沥青混合料疲劳寿命的耗散能方法[J].科技慵报开发与经济,2006,16(12):158-160
    [93]邓学钧.路基路面工程(第二版)[M].北京:人民交通出版社,2000
    [94]朱照宏,许志鸿.柔性路面设计理论与方法[M].上海:同济大学出版社,1987
    [95]林绣贤.高等级沥青路面的轴载换算公式[J].华东公路,1993,84(5):34-42.
    [96]黄文元,王旭东,孙立军.公路超载特征及重载沥青路面交通量参数[J].公路,2003,5:56-60.
    [97]Sadd, M.H., Dai, Q.L., Parameswaran, V. and Shukla, A. MicrostructuralSimulation of Asphalt Materials: Modeling and Experimental Studies, Journal ofMaterials in Civil Engineering, American Society of Civil Engineers (ASCE),2004, 16(2):140-146.
    [98]Roque R, Zhang Z, Sankar B. Determination of crack growth rate parameters ofasphalt mixtures using the Superpave IDT[J]. Assoc Asphalt Paving Technology1999, 68(3):404-433.
    [99]李立寒,王太鑫,袁坤.泡沫沥青稳定碎石混合料强度特征的试验研究[J].建筑材料学报,2009,12(5):549-554.
    [100]孟岩,梅迎军,李志勇等.纤维沥青混合料试验性能研究[J].重庆交通大学学报,2007,26(6):110-116.
    [101]王海龙,李庆斌.不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J].工程力学,2007,24(2):105-110.
    [102]马怀发,陈厚群,黎保棍.应变率效应对混凝土动弯拉强度的影响[J].水利学报,2005,15(1):69-76.
    [103]Cadoni E, Labibes K, Albertini C. Strain-rate effect on the tensile behavior ofconcrete at different relative humidity levels [J]. Materials and Structures, 2001,34(5):21-26.
    [104]Zheng Dan, Li Qingbin. An explanation for rate effect of concrete strength basedon fracture toughness including free water viscosity [J]. Engineering FractureMechanics, 2004, 71(2):2319-2327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700