萝卜遗传连锁图谱构建与主要品质性状QTLs分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萝卜(Raphanus sativus L)是起源于我国的一种重要蔬菜作物,种质资源十分丰富。随着人们生活水平提高,品质性状成为当前育种工作的重点领域。构建分子标记遗传图谱是进行重要园艺性状定位研究的基础。进行萝卜主要品质性状遗传作图,能够解析品质性状遗传基础,有利于分子标记辅助选择,加快高品质品种的培育进程。但目前国内外萝卜图谱的研究较少,有关萝卜主要品质性状的QTLs分析还未见报道。本研究利用分子标记构建了萝卜遗传连锁图谱,并进行主要品质性状的QTLs分析。研究结果将为解析萝卜主要品质性状的遗传基础研究,促进品质育种工作提供理论基础。
     本研究以综合品质性状较高的自交系Nau-XWH (R.sativus L.)和综合品质性状较低的自交系NAU-LHZ (R.sativus L. var raphanistroid)为材料,配制169个单株组成的F2群体,利用RAPD和SRAP分子标记构建萝卜遗传连锁图谱。共得到139个在亲本间存在差异,并能稳定遗传的分子标记用于连锁分析,得到一张包含80个标记、11个连锁群的遗传连锁图谱框架,包括30个RAPD标记和50个SRAP标记,图谱覆盖基因组总长度为739.5cM,标记间的平均图距为9.2cM。用于连锁分析的139个标记中还有59个标记保持独立而未能连锁,占总标记数量的42.4%。由于RAPD标记在染色体上的随机分布,以及染色体不同区段交换值异质性的存在,使得连锁群上产生了多个较大的间隙和小片段连锁群的出现。
     利用构建的萝卜遗传连锁图谱,采用WinQTLCart V2.5软件,分别对萝卜粗纤维含量、干物质含量、硝酸盐含量、可溶性总糖含量、蛋白质含量和Vc含量性状进行QTLs定位分析。共检测到7个与萝卜粗纤维含量对应的QTLs位点,分别位于LG1, LG3, LG5和LG7连锁群上,总共可解释10%的表型变异;检测到一个与干物质含量有关的QTLs位点,位于LG6连锁群上,可解释5.3%的表型变异;检测到7个与萝卜硝酸盐含量相对应的QTLs位点均位于LG1连锁群上,总共可解释21.8%的表型变异;共检测到2个与可溶性总糖含量相关的QTLs位点,且均位于LG1上,总共可解释12.5%的表型变异;共检测到11个与蛋白质含量对应的QTLs位点,分别位于LG1, LG3, LG5, LG6和LG7连锁群上,总共可解释89.9%的表型变异;在此遗传连锁图谱中没有检测到与Vc含量性状相关的QTLs位点。
Radish(Raphanus sativus L.) is an important vegetable originated from China and has abundant germplasm.Quality traits are the important fields of breeding programs as the improvement of living standard. Construction of the molecular linkage map is the base for location of significant horticulture character. Mapping of radish main quality traits could elucidate the genetic base of quality traits and promote marker-assisted selection and breeding programs of high-quality. The study on genetic linkage map of radish was poor. QTLs (Quantitative Trait Loci) analysis of main quality traits in radish has not been reported. In this study, a genetic linkage map of radish was constructed with molecular markers and processed QTLs analysis of main quality traits in radish. The result could provide theoretical basis for parsed the genetic base of quality traits and promote breeding programs of high-quality.
     In this study, a genetic linkage map of radish was constructed with F2 population consisting of 169 individuals from a cross of inbred line NAU-XWH (R. sativus L.) (High nutrient quality)×inbred line NAU-LHZ (R.sativus L. var raphanistroid) (low nutritient quality) based on random amplified polymorphic DNA (RAPD) and Sequence related amplified polymorphism (SRAP) markers. A total of 139 marker loci which were assayed in the population,and the map consisted of 11 linkage groups which included 80 loci (30 RAPD and 50 SRAP),and spanned 739.5 cM of the Radish genome with an average distance of 9.2 cM between two markers.Fifty-nine markers were still unlinked, accounting for 42.4% of total markers. There were several big gaps and some little linkage groups in the map due to that RAPD markers are random distributed on the chromosome and the cross-over value between different sections of chromosome are heterogenous.
     Based on the genetic linkage map and WinQTLCart V2.5, the QTLs location analysis of crude fiber content, dry matter content, nitrate content, total soluble sugar content, protein content and Vc content traits of radish was generated. Seven putative QTLs for crude fiber content were detected and located on LG01, LG03, LG05 and LG07,respectively, which explained 10% of the total phenotypic variance; One putative QTLs for dry matter content trait were detected and located on LG06, which explained 5.3% of the total phenotypic variance; seven putative QTLs for nitrate content were detected and located on LG01,which explained 21.8% of the total phenotypic variance; two putative QTLs for total soluble sugar content were detected and located on LG01, which explained 12.5% of the total phenotypic variance; eleven putative QTLs for protein content were detected and located on LG01, LG03, LG05, LG6 and LG07,respectively, which explained 89.9% of the total phenotypic variance; none putative QTLs for Vc content were detected in this genetic linkage map.
引文
曹水良,胡开林,王得元.RAPD标记构建辣椒分子连锁图谱研究初报.广东农业科学,2005,2:35-37
    陈洪高,吴江生,刘克德等.萝卜芥蓝异源四倍体与埃塞俄比亚芥属间杂交.中国油料作物学报,2006,28(4):381-387
    陈书霞,王晓武,方智远等.RAPD标记构建芥蓝×甘蓝分子标记连锁图.园艺学报,2002,29(3):229-232
    丁云花,Budahn Holger, Peterka Herbert.萝卜D染色体在7号连锁群的定位研究.农业生物技术科学,2006,22(5):68-71
    丁云花.油菜异附加系中萝卜染色体分子标记及定位研究.中国农业科学院硕士学位论文.北京,2005
    方宣均,吴为人,唐纪良编著.作物DNA标记辅助育种,北京:科学出版社,2001.2
    高用明,朱军.植物QTL定位方法研究进展.遗传,2000,22(3):175-179
    葛风伟.黄瓜分析连锁图谱的构建.新疆农业大学硕十学位论文.乌鲁木齐,2004
    郭得平,卢钢.利用AFLP分子标记构建杂种葱的遗传图谱.中国农业科学,2004.37(4):584-587
    国广泰史,钱前,左腾宏之.水稻纹枯病抗性QTL分析.遗传学报,2002(1):50-55
    何小红,徐辰武.数量性状基因作图精度的主要影响因子.全国动植物数量遗传与育种学术研讨会文集,中国遗传学会、扬州大学编,2000,75-78
    胡学军,邹国林.甘蓝分子连锁图的构建与品质性状的QTL定位.武汉植物研究,2004,22(6):482-485
    金梦阳,刘列钊,付福友等.甘蓝型油菜SRAP、SSR、FLP、和TRAP标记遗传图谱构建.分子植物育种,2005,4(4):520-526
    李渊.甘蓝型油菜遗传连锁图谱的构建及种皮颜色QTL初步定位.华中农业大学硕士学位论文.武汉,2007
    李媛媛,沈金雄,王同华等.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱.中国农业科学,2007,40(6):1118-1126
    林忠旭,张献龙,聂以春等.棉花SRAP遗传连锁图构建.科学通报,2003,48:2063-2067
    刘春林,官春云,李栒.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报,2002,27(10):918-924
    刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的运用.湖北农业科学,1998,1:33-35
    柳李旺,龚义勤,黄浩.新型分子标记——SRAP与TRAP及其应用.遗传,2004,26(5):777-781
    卢钢.白菜分子遗传图谱构建及其重要农艺性状的基因定位研究.浙江大学博士学位论文.杭州,2001
    陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004,31(11):1309-1315
    路昭亮.不同基因型萝卜主要营养品质性状的遗传分析.南京农业大学硕士学位论文.南京,2008
    罗林广,王新望,罗绍春.分子标记及其在作物遗传育种中的应用.江西农业学报. 1997,9(1):45-54
    潘俊松,王刚,李效尊.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.白然科学进展,2005,15:167-172
    任玉,王得元,张银东.相关序列扩增多态性(SRAP)一种新的分子标记术.中国农学通报,2004,20(6):13-22
    宋贤勇,柳李旺,龚义勤,王明霞,赵丽萍,黄丹琼.萝卜基因组DNA RAPD与ISSR-PCR反应体系优化.种子,2007,26(2):1-5
    汪斌,兰涛,吴为人等.水稻叶绿素含量的QTL定位.遗传学报,2003,30(12):1127-1132
    汪隆植,何启伟.中国萝卜.北京:科学技术文献出版社,2005.5
    王付华.水稻RIL群体SSR标记遗传图谱构建和耐冷相关性状QTL的定位.南京农业大学博士学位论文.南京,2006
    王建设,姚建春,刘玲等.利用中国香瓜与哈密瓜的F2群体构建SRAP连锁遗传图谱.园艺学报,2007,34(1):135-140
    王林生,宋忠利,李毓珍等.植物数量性状的QTL定位分析.安徽农业科学.2006,34(18):4527-4529
    王明霞.萝卜及其近缘属亲缘关系分析和萝卜遗传图谱的构建.南京农业大学硕士学位论文.南京,2007
    王强.花生的SRAP分子遗传连锁图谱构建.华中农业大学硕士学位论文.武汉,2006
    王晓武,方智远,孙培田.一个与甘蓝显性雄性不育基因连锁RAPD标记.园艺学报,1998,25(2):197-198
    王晓武,娄平,何杭军等.利用芥蓝×青花菜DH群体构建AFLP连锁图谱.园艺学报,2005,32(1):30-34
    王孝宣.增强番茄果实颜色基因的精细定位及相关基因的差异表达.中国农业科学院博士学位论文.北京,2004.6
    卫宪云.小麦的遗传作图和衰老相关生理性状的QTL分析.山东农业大学硕士学位论文.泰安,2006
    吴为人,李维明.基于性状标记回归的QTL区间测验方法.全国动植物数量遗传与育种学术研讨会文集.中国遗传学会、扬州大学编,2000,13-18
    肖炳光,徐照丽.利用DH群体构建烤烟分子标记遗传连锁图.中国烟草学报,2006,12(4)
    徐云碧,朱立煌.分子数量遗传学.中国农业出版社,北京,1994
    杨俊品,玉米分子遗传图谱构建及数量性状基因定位.四川农业大学博士学位论文.雅安,2001
    尤春源.棉花海陆杂交F2群体连锁图谱构建及纤维品质与产量性状QTL定位.新疆农业大学硕士学位论文.鸟鲁木齐,2007
    于拴仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析.中国农业科学,2003,36(2):190-195
    曾国平,曹寿椿.不结球白菜主要品质性状遗传效应分析.园艺学报.1997,24(1):43-47
    张德水,陈受宜.DNA分子标记、基因作图及其在植物遗传育种上的应用.生物技术通报,1998,(5):15-22
    张立阳,张凤兰,王美等.大白菜永久高密度分子遗传图谱的构建.园艺学报,2005,32(2):249-255
    张鲁刚,王鸣,陈杭等.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42(5):485-489
    张庆广.应用SRAP和ISSR分子标记构建红麻的遗传连锁图谱.福建农林大学硕士学位论文.福建,2007
    赵丽萍.萝卜抽薹性遗传分析与春萝卜种质标记鉴定.南京农业大学硕十学位论文,南京,2007
    赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30(2):225-230
    周元昌,陈启峰,吴为人等.作物QTL定位研究进展.福建农业大学学报.2000,29(2):138-144
    朱军.数量性状基因定位的混合线性模型分析方法.遗传,1998(增刊),20:137-138
    朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报,1999,(3):327-335
    Ajisaka H, Kuginuki Y, Hida K, et al.A linkage map of DNA markers in Brassica compestris. Breed Sci,1995,45 (Suppl):195-203
    Al-Janabi S M, Honeycutt R J, Me Clelland M, et al. A genetic linkage map of Saccharum sp ontaneum (L.)'SES208'Genetics,1993,134:1249-1260
    Amir Y, Haenni A L, You A Y. Physical and biochemical differences in the composition of the seeds of Algerian leguminous crops. Journal of Food Composition and Analysis,2007,20: 466-471
    Asins M.J.Present and fature of quantitative trait locns analysis in plant breeding.Plant Breeding, 2002,121(4):281-291
    Bett K E, Lydiate D J. Mapping and genetic characterization of loci controlling the restoration of male fertility in Ogura CMS radish. Molecular Breeding,2004,13:125-133
    Bett K E, Lydiate D J. Genetic analysis and genome mapping in Raphanus.Genome,2003, 46:423-430
    Blanco A,Pasqualone A,Troccoli A, et al. Detection of grain proteincontent QTLs across environments in tetraploid wheat.Plant Molecular Biology.2002,48:615-623
    Bohn M,M Khairallah D.QTL mapping in tropical maize:L Gemomic region affecting leaf feeding resistance to sugarcane borer and other traits.Crop Sci,1996,36(4):1352-1361
    Bonierbale M W, Plaisted R L,Tanksley S D. RFLP maps Based on a common set of clones reveal modes of chromosomal evolution potato and tomato,Genetics,1988,120:1095-1103
    Budak H, Shearman R C, Parmaksiz I, et al. Comparative analysis of seeded and vegetative biotype Buffalo grasses based on phulogenetic relationship using ISSRs, SSRs, RAPDs and SRAPs. Theor. Appl. Genet,2004b,109:280-288
    Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of Buffalo grass germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet, 2004a,108:328-334
    Burr B,Burr F A. Recombinant inbreds for molecular mapping in maize:theoretical and practceal considerations.TIG,1991,7:55-60
    Dietrich W F, Miller J C, Steen R G, et al. A comprehensive genetic map of the mouse genome. Narure,1996,380:149-152
    Edwards M.D., Helentjaris T., Wright S., et al. Molecular-marker-facilitated investigations of quantitative trait loci in maize.4.Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers, Theor. Appl. Genet,8199b,3:765-774
    Ellis T.H.N., Turner L., Hellens R.P., et al. Linkage maps in Pea, Genetics,1992,130:649-663
    Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet,2003b,107(2):271-282
    Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers. Genetic Resources and Crop Evolution,2003a,50 (3):227-238
    Fischer A., Baum N., Saedler H., et al. Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies.Nucleic Acids Research,1995,23:1901-1911
    Gardiner J M, Coe E H, Melia-Hancock S et al. Development of acore RFLP map in maize using an immortalized population.Genetics,1993,134:917-930
    Gebhardt C, Salamini. Restriction fragment length polymorphism analysis of plant genomes and its application to plant breeding. Int Rev Cytol,1992,135:201-237
    Gebhardt, C., Ritter E., Barone A., et al. RFLP maps of potato and their alignment with the homologous tomato genome, Theor Appl Genet,1991,83:49-57
    Gill K.S, E.L. Lubbers, B.S.Gill, et al. A genetic linkage map of Triricum tauschii(DD) and its relationship to the D genome of bread wheat(AABBDD),Genome,1991,34:362-374
    Hamada H, Kakunac T. Potential Z DNA forming sequences are highly dispersed in the human genome.Nature,1982,298:396-398
    Helentjaris.T, M.Sloeum, S.Wright, et al. Construction of genetic linkagemaps in maize an d tomato using restriction fragment length Polymorphisms.TheorAppl Genet,1986,72:7 61-769
    Heun M, A.E.Kennedy, J.A.Anderson, et al. Construction of restriction fragment length polymorphism map for barley(Hordeum vulgare), Genome,1991,34:437-447
    Kasha K J, Kleinhofs A, Kilian A, et al. The North American barley genome map on the cross HT and its comparision to the map on cross SM. Tsunewaki K ed. Plant Genome and Plastome: Their Structure and Evolution. Tokyo:Kodansha Publishers Ltd,1995.73-88
    Keim. P., J.M.Schupp, S.E.Travis, et al. A high-density soybean genetic map based on RFLP markers,Crop Sei,1997,37:537-543.
    Kilkowski W J, Gross G G. Color reaction of hydrolyzable tannins with Bradford reagent Coomassie brilliant blue. Phytochemistry,1999,51:363-367
    Kleinhofs A.,A.K ilian,M.A. Saghai Maroof, et al. Amolecular,isozyme and morphological map of the barley(Hordeum vulgare) genome, Theor Appl Genet,1993,86:705-712.
    Knudsen K E B. Carbohydrate and lignin contents of plant materials used in animal feeding.Animal Feed Science Technology,1997,67:319-338
    Kunert A, Naz A.A, Dedeck O, et al. AB-QTL analysis in winter wheat:I.Synthetic hexaploid wheat(T.turgidum ssp.discoccoides×T.tauschii)as a source of favorable alleles for milling and baking quality trait.Theor Appl Genet,2007,115:683-695
    Kurata N, Nagamura Y, Yamamoto K et al. A 300 kilobase interval genetic map of rice including 883 expressed sequences.Nature genetics,1994,8:365-372
    Lander E.S, Botstein D.Mapping Mendelian facters underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185-199
    Laurentin A, Edwards C A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Analytical Biochemistry,2003,315:143-145
    Li G, Quiros C F. Sequence--related amplified polymorphism (SRAP),A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461
    Lin Z X, Zhang X L, Nie Y C, et al. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulletin,2003,48:2063-2067(in Chinese)
    Lincoln S., Lander E. Systematic detection of erros in gnetic linkage date. Genomics,1992,14: 604-610
    Liu L W, Guo W Z, Zhu X F, et al. Inheritance and fine mapping of fertility-restoration for cytoplasmic male sterility in Gossypium hirsumtum L. Theor Appl Genet,2003,106(3):461-469
    Lu Zhenxiang, Sosinski. B, Reighard G L et al. Construction of a genetic linkage map and identification of AFLP markers for resistance to rot-knot nematodes in peach rootstocks. Genome,1998,42:199-207
    Lubberstedt T., A.E.Melchinger, C.C.Schon, et al. QTL mapping in testcrosses of European flint lines of maize:Comparison of different tester for forage yield traits, Crop Sci,1997, 37:921-931
    Luckenbach C., Luckenbach A. Restriction fragment length polymorphism:molecular weightanalysis and calculation with a scanner-based computer system.Electrphoresis,1994, 15:149-152
    Martin G.B.,M.W.Ganal, S.D.Tanksley. Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Mol Gen Genet,1992,223:25-32
    Mc Couch S R, et al. Molecular mapping of rice chromosomes. Theor Appt Genet, 1988,76:815-829
    Mc couch S R, Temnykh S, Lukashova A, et al. Microsatellite markers in rice:abundance, diversity, and applications. Rice Genetics IV. New Delhi(India):Science Publishers, Inc.2001(IRRISP1).117-135
    Mead, D., C. Bredenkamp, M.Kiefer, et al. RFLP mapping of chromosome 6sinh a backcross poplation,Maize Genetics Cooperation Newsletters,1990,64:109-116
    MeCouch S.R, G.Kochert, Z.H.Yu,. et al. Molecular mapping of rice Chromosomes,Theor. Appl. Genet.1988,76:148-149
    Miranda K M, Espey M G, Wink D A. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. Biology and Chemistry,2001,5:62-71
    Palmer R G, Kiang Y T. Linkage map of soybean Glycine max (L.) Merr. In:O'Brien S J ed. Genetic Maps. NY:Cold Spring Harbor Laboratory,1990,6:68-93
    Powell W,Morgante M, et al. The comparison of RFLP, RAPD AFLP and SSR (microsatellite) markers for gemplasm analysis. Mol Breed,1996,2:225-238
    Ramulu P, Rao P. Total, insoluble and soluble dietary fiber contents of Indian fruits. Journal of Food Composition and Analysis,2003,16:677-685
    Reiter R S, Williams J G K, Feldman K A et al. Global and local genome mapping Arobidopsis thaliana by using RIL and RAPD. Proc Natl Acad Sci,1992,89:1477-1481
    RodoPhe F., Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity, Genetics,1993,134:1277-1288
    Rongwei J,et al. Ribosomal DNA markers for soybean genotype identification. Theor Appt Genet, 1995,90:43-48
    Saito A, et al. Linkage map of restriction fragment polymorphism loci in riee. JPN Breed,1991,41:665-670
    Senior ML, Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer.Gemome,1993,36:884-889
    Shoemaker R C, Plozin K, LorenzenL, et al. Molecular genetic mapping of soybean.In:Verma D P, Shoemaker R C eds. Soybean:Genetics, Molecular Biology and Biotechnology. Biotechnology in Agriculture. No 14. UK:Wallingford,1995:37-56
    Shoemaker RC,Olson TC. Molecular linkage map of soybean(Glycine max L. Merr),In O Bren S J ed,Genetic Maps:Locus maps of complex genomes. Cold Spring Harbor Laboratory Press,1993,131-138
    Smith,J.S.C.,E. C. L. Chin, et al. An evaluation of the utility of SSR loci as Molecular markers in maize(Zea mays L.):comparisons with data from RFLPS and Pedigree.Theor Appl Genet, 1997,95:163-173.
    Song L, Zhang C Y, Zhu H B, et al. Hygienic evaluation of water in Zhang Jia-yan reservoir by using water quality index. Modern Preventive Medicine,2006,33:407-408
    Song W.Y, G.L.Wang, L.LChen, et al. A receptor kinase-like Protein encoded by the rice disease resistance gene, Xa21,Science,1995,1804-1806.
    Staub J E, Kuhns L J, May B. Stability of potato tuber isozymes under different storage regimers J Amer,Soc Hort Sci,1982,107:405-408
    Staub J E, Serquen F C. Genetic markers, map construction and their application in plant breeding. Hort. Science,1996,31:729-740
    Staub J E,Kuhns L J,May B. Stability of Potatot tuber isozymes under different storage regimers Amer.Soc Hort Sci,1982,107:405-408
    Sruber C.W. Biochemical and molecular markers in plant breeding. Plant Breeding.Rev.,1992, 9:37-61
    Tang M L, Wang Z L, Li Z J. Using model of factor analysis to calculate weight and to evaluate water quality. Resource survey and envieroment,2005,22:18-20
    Tanhuanuaa P K, Vikki J P, Vikki H J. A linkage map of spring tumip rape based on RFLP and RAPD markers. Agric Food Sci Finl,1996,5:209-217
    Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a new paradigm for map-based cloning in species with large genomes. Trends in Genetics,1995,11:63-68
    Tanksley S D., M.W. Ganal, J.P. Pineda, et al. High density molecular linkage maps of the tomato and potato genomes,Geneties,1992,132:1141-1160
    Tingey S V, Rafalski J A, Williams J G K, et al. Genetic analysis with RAPD markers. In: CSSA/ASHS/AGA. Proceedings of the symposium. Application of RAPD technology to plant breeding,1992.3-8
    Uphoff H, Wricke G. RAPD markers in suger beet (Beta vulgarisL.):mapping the genes for nematode resistance and hypocotyls color. Plant Breeding,1992,109:168-171
    Vann L S. A rapid micro method for determination of ascorbic acid in urine by ferric reduction. Clinical Chemistry,1965,11:979-985
    Vos P,R, Hogers et al. AFLP:A new technique for DNA fingerprinting. Nucl Acids Res.,1995,23(21):4407-4414
    Walker. Nitrates, nitrites and N-nitroso compounds:a review of the occurrence in food and diet and the toxicological implications. Food additives and contaminants,1990,7:717-768
    Yang GP, et al.Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice..MGG,1994,245:187-194
    Yu S.B., J.X.Li, C.G.Xu, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci,1997,94:9226-9231
    Zhu L H, et al. Construction of a molecular map of rice and gene mapping using a doublehaploid opulation of across between indica and japonica. varieties. Rice Genetics. Nesletter,1993,10:132-135
    Zudong Sun, Zining Wang, Jinxing Tu, et al. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet,2007,114:1305-1317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700