萝卜肉质根根重性状遗传标记分析与膨胀素基因家族的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萝卜(Raphanus sativus L.)是起源于我国的一种重要世界性蔬菜,栽培面积较大,以膨大的肉质根为主要食用部位。本文利用植物数量性状主基因+多基因混合遗传模型多世代联合分析法,探讨了萝卜肉质根根重的遗传规律;采用基因型代表群分析法(GRA)对肉质根根重性状进行RAPD标记分析;同时克隆了膨胀素基因家族,并初步研究其在萝卜不同发育时期中的表达特征。
     以肉质根大小差异显著的萝卜高代自交系Nau-WH05、Nau-XWFDH05、Nau-LH05和Nau-LH06配制杂交组合,利用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,探讨萝卜肉质根根重的遗传规律。结果表明:组合Nau-WH05×Nau-LH05根重遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型;组合Nau-XWFDH05×Nau-LH06符合一对加性-显性主基因+加性-显性上位性多基因遗传模型。表明萝卜肉质根根重是由主基因和多基因控制的数量性状。
     以高代自交系NC、CDG、BYC、CB和WH、LHZ及其F1、F2群体为材料,采用基因型代表群分析法(GRA)对萝卜肉质根根重性状进行RAPD标记分析,在近缘野生种LHZ中扩增出一条特异条带NAURP7941200。WH×LHZ的F2群体分析表明,该标记可能与肉质根根重性状相关。
     利用简并引物扩增和电子克隆的方法,从萝卜高根冠比自交系NAU-LVYH06中获得了2个膨胀素基因片段和13个膨胀素基因。其中仅2个属于β-亚族,其余属于α-亚族。在所获得的膨胀素基因DNA序列中,均存在内含子,但内含子的数目和长度存在差异;内含子插入模式分析结果表明:7个α-亚族的膨胀素均含两个内含子,插入位置相同,为C和E插入位点;2个β-亚族均含有三个内含子,插入位置相同,为C、E和F位点。共检测到三个内含子插入位点(C、E和F),未检测到插入位点A、B和D。内含子C和E为所有基因共有,长度差异较大(79bp-604bp)。内含子F为两个p-亚族所具有,长度变化较小(243bp-316bp)。推导氨基酸序列均存在信号肽,等电点和分子量差别较小。
Radish(Raphanus sativus L.) is a world vegetable, originated from China. It has been widely cultivated and plays a very important role in vegetable production in our country. The method of major gene plus poly genes mixed inheritance model was used to analyze the genetics of tap root weight. RAPD markers were scanned based on the strategy of Genoty-pic Representation Analysis (GRA). We also cloned the expansin gene family and analyzed their expression profiles and putative functions in different development stages.
     Genetic analysis was conducted on tap root weight with multiple generations. P1, P2, F1 and F2 were derived from across between big tap root type Nau-WH05, Nau-XWFDH05 and small tap root type Nau-LH05, Nau-LH06, using the method of major gene plus polygenes mixed inheritance model inquantitative traits of plants. It could be concluded that the optimum model of tap root weight were two additive-dominance-epistatic major gene plus adding-dominance-epistatic polygenes in cross Nau-WH05×Nau-LH05 and one adding-dominance major gene plus adding-dominance-epistatic polygenes in cross Nau-XWFDH05×Nau-LHZ06. The tap root weight was quantitative trait and controlled by major gene(s) plus polygenes in radish.
     With NC、CDG、BYC、CB and WH、LHZ、F1、F2 population as materials, The trait of tap root weight was researched using GRA strategy and RAPD technology. A RAPD marker NAURP7941200 was screened. Based on ananysis of the F2 population derived from WH×LHZ, the maker may linked with tap root weight.
     Two expansin gene fragments and thirteen expansin genes were obtained by degenerate primers PCR and insilico clonnig. two wereβ-expansin and the others wereα-expansin. The intorns were existed in nine expansin gene genome sequences, but the numbers and length were different. In this study, three intorns, C, E and F, could be observed. It was shown that position C and E (79bp-604bp) are present in both a andβ-expansin genes. Positions F (243bp-316bp) were only present inβ-expansin, suggesting that they might occurringβ-expansin shortly afterα/βsubgroup split. All the deduced amino acids contained a single peptide, PI and MW were approximately.
引文
Brummell D A, Harpster M H, Civello P M, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening[J]. Plant Cell,1999(a),11: 2203-2216
    Brummell D A, Harpster M H, Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit[J]. Plant Mol. Biol.,1999(b),39:161-169
    Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Mol.Biol.,2001,47:311-340
    Caderas D, Muster M, Vogler H, et al. Limited correlations between expansin gene expression and elongation growth rate[J]. Plant Physiol,2000,123:1399-1413
    Chen F, Bradford K J. Expression of an expansin is associated with endosperm weakening during tomato seed germination[J]. Plant Physiol,2000,124(3):1265-1274.
    Chen F, Dahal P, Bradford K J. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiol,2001,127:928-936
    Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana[J]. PNAS,2000,97(17):9783-9788
    Cho H T, Cosgrove D J. Regulation of Root Hair Initiation and Expansin Gene[J]. The Plant Cell,2002, 14:3237-3253
    Cho H T, Kende H. Expression of expansin gene is correlated with growth in deepwater rice[J]. Plant Cell,1997,9:1661-1671
    Choi D, Lee Y, Cho H T, et al. Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. Plant Cell,2003,15(6):1386-1398
    Civello P M, Powell A L T, Sabebat A, et al. An expansin gene expressed in ripening strawberry fruit [J]. Plant Physiology,1999,121(4):1273-1279
    Cosgrove D J. How do Plant cell wall extend?[J]. Plant Physiol,1993,102:1-6
    Cosgorve, D J. Cell wall loosening by expansins[J]. Plant physiol,1998,118:333-339
    Cosgrove D J. Enzymes and other agents that enhance cell wall extensibility[J]. Annu. Rev. Plant Physiol. Plant Mol Biol,1999,50:391-417
    Cosgrove D J. New gene and new biological roles for expansin[J]. Curropin. Plant biology,2000(b),3(1): 73-78
    Cosgrove D J, Bedinger P, Durachko DM. Group-Ⅰ allergens of grass pollen as cell wall-loosening agents [J]. PNAS,1997,94(12):6559-6564
    Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature,2000(a),407(6802):321-326
    Din N, Forsythe I J, Burtnick L D, et al. The cellulose-binding domain of endoglucanase A (CenA) from Cellulomonas fimi:evidence for the involvement of tryptophan residues in binding[J]. Mol Microbiol. 1994,11(4):747-55
    Choi D, Lee Y. Regulation of Expansin Gene Expression Affects Growth and Development in Trans-genic Rice Plants[J]. The Plant Cell,2003,15:1386-1398
    Fleming A J, McQueen-Mason S, Mandel T. Induction of leaf primordial by the cell wall protein expansin[J]. Science,1997,276:1415-1418
    Gookin T E, Hunter D A, Reid M S. Temporal analysis of alpha and beta-expansin expression during floral opening and senescence[J]. Plant Seienee,2003,164:769-781
    Gray-Mitsumune M, Blomquist K, McQueen-Mason S J, et al. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen[J]. Plant Biote-chnol J,2008,6(1):62-72
    Harrison E P, McQueen-Mason S J, Manning K. Expression of six expansin genes in relation to exten-sion activity in developing strawberry fruit[J]. Exp. Bot.,2001,52:1437-1446
    Hayama H, Shimada T, Haji T, et al. Molecular cloning of a ripening related expansin cDNA in peach: evidence for no relationship between accumulation and change in fruit firmness during storage[J]. Plant Physiol.,2000,157:567-573
    Hayama H, Shimada T, Ito A. Changes in the levels of mRNAs for putative cell wall related genes during peach fruit development[J]. Scientia Horti culturae,2001,91:239-250
    Hedge D M. The effect of soil perature, yield and water use water potential, method of irrigation and N on plant water relation, canopy tem of radish[J]. Hort. Sci.,1987,62(4):507-515
    Hegde D M. Effect of soil water potential, methods of irrigation and N on yield, N uptake and water use of radish[J]. Indian J. of Agronomy,1987,32(1):24-29
    Henrissat B. Teeri T T. Warren R A. A scheme for designating enzymes that hydrolyse the polysacchari-des in the cell walls of plants[J]. FEBS Lett.1998,27,425(2):352-354
    Hiwasa K, Rose J K, Nakano R, et al. Differential expression of seven α-expansin genes during growth and ripening of pear fruit[J]. Physiol Plant Arum,2003,117(4):564-572
    Hutchison K W, Singer P B, Mchnis S, et al. Expansins are conserved in conifers and expression in hypocotyls in response to exogenous auxin [J]. Plant Physiol,1999,120:827-831
    Huang J, Takano T, Akita S. Expression of a-expansin genes in young seeding of rice (Oryza sativa L) [J]. Planta,2000,211:467-473
    Im K H, Cosgrove D J, Jones A M. Subcellular localization of expansin mRNA in xylem cells[J]. Plant Physiol,2000,123(2):463-470
    Jones L, McQueen-Mason S. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum[J]. FEBS,2004,559:61-65
    Kano Y. Effect of time of high and low temperature treatment on the growth of Japanese radish and on the occurrence of hollow root[J]. J. Japan. Soc. Hort. Sci.,1989,57(4):626-632
    Kano Y. Roles of temperature in the occurrence of hollow root in Japanese radish CV[J]. Gensuke, J. Japan. Soc. Hort. Sci.,1987,56(3):321-327
    Keller E, Cosgrove D J. Expansins in growing tomato leaves[J]. Plant J,1995,8(6):795-802
    Kim J H, Cho H T, Kende H. α-expansins in the semiaquatic ferns Marsilea quadritolia and Regnelli-dium diphyllum:evolutionary aspects and physiological role in rachis elongation[J]. Planta,2000,212: 85-92
    Kwasniewski M, Szarejko I. Molecular cloning and characterization of β-expansin gene related to root hair formation in barley[J]. Plant Physiol,2006,141:1149-1158
    Lee D K, Ahn J H, Song S K, et al. Expression of an expansin gene is correlated with root elongation in soybean[J]. Plant Physiol,2003,131:985-997
    Lee Y, Choi D, Kende H. Expansins:ever-expanding numbers and functions[J]. Curr Opin Plant Biol. 2001 (a),4:527-532
    Lee Y, Kende H. Expressing of β-expansins is correlated with internodal elongation in deepwater Rice [J]. Plant Physiology,2001,127:645-654
    Li L C, Cosgrove D J. Grass groups Pollen all ergens (β-expansins) lack Proteinase activity and do not cause wall loosening via Proteolysis[J]. Eur J Biochem,2001,268:4217-4226
    Li L C, Patricia A, Bedinger Carolvolk A., et al. Purification and characterization of four (3-expansins (Zea m1 isoforms) from maize pollen[J]. Plant Physiology,2003,132:2073-2085
    Li Y, Darley C P, Ongaro V, et al. Plant expansins are a complex multigene family with an ancient evolutionary origin[J]. Plant Physiology,2002,128:854-864
    Li Y, Jones L, McQueen-Mason S J. Expansins and cell growth[J]. Curr Opin Plant Biol.2003,6(6): 603-610
    Li Z C, Durachko D M, Cosgrove D J. An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls[J]. Planta,1993,191: 349-356
    Link B M, Cosgrove D J. Acid-growth response and α-expansins in suspension cultures of bright Yellow Tobacco[J]. Plant Physiology,1998,118:907-916
    Mahbir S. Response of growth regulator and their methods of application on yield of radish[J]. CAB HcA 1990,60(11):1020
    McQueen-Mason S J, Cosgrove, D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proc Natl Acad Sci USA,1994,91:6574-6578
    McQueen-Mason, S J, Cosgrove, D J. Expansin mode of action on cell walls analysis of wall hydrolysis, stress relaxation, and binding[J]. Plant physiol,1995,107(1):87-100
    McQueen-Mason S J, Durachko D M, Cosgrove D J. Two endogenous proteins that induce cell expansin in plant[J]. Plant Cell,1992,4:1425-1433
    Pien S, Wyrzykowska J, McQueen-Mason S J, et al. Local expression of expansin induces the entire process of leaf development and modifies leaf shape[J]. Proc Nat Acad Sci USA,2001,98(20): 11812-11817
    Pandita M L, Sidhu A S, Hooda R S. Effect of Cytozyme on growth and yield of radish[J]. A note. Haryana J. Hort. Sci.1981 (10):207-208
    Pezzotti M, Feron R, Mariani C. Pollination modulates expression of the PPAL gene, a pistil-specific beta-expansin[J]. Plant Mol Biol,2002,49(2):187-197
    Reidy B, McQueen-Mason S J, Nosberger J, et al. Differential expression of alpha-and beta-expansin genes in the elongating leaf of Festuca pratensis[J]. Plant Mol Biol,2001,46(4):491-504
    Rochange S F, Wenzel C L, McQueen-Mason S J. Impaired growth in transgenic plants over-expressing an expansin isoform[J]. Plant Mol Biol.2001,46(5):581-589
    Rose J K, Cosgrove D J, Albersheim P, et al. Detection of expansin proteins and activity during tomato ontogeny[J]. Plant Physiology,2000,123:1583-1592
    Rose J K, Bennett A B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening[J]. Trends Plant Sci.1999,4(5):176-183
    Rose J K, Lee K C, Bennett H H. Expression of a divergent expansin gene is fruit-specific and ripening-regulated[J]. Proc.Natl.Acad.Sci.U.S.A,1997,94 (11):5955-5960
    Shcherban T Y, Shi J, Durachko D M. Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants[J]. Proc Natl Acad Sci USA,1995,92(20):9245-9249
    Shimizu Y, Aotsuka S, Hasegaw O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells[J]. Plant and cell physiol.1997,38(3):375-378
    Thompson J A, Weston G D, Thomas T H, The effect of plant age at the time of treatment on the response of radish to daminozide[J]. Scientia Hort,1984,22(1/2):33-37
    Umesh C, Gupta, Cutcliffe J A. Boron nutrition of carrots and table beets growth in a boron deficient soil [J]. Commutation in Soil Sci. and Plant Analysis,1985,16(5):509-516
    Whitney S E, Gidley M J, McQueen-Mason S J. Probing expansin action using cellulose/hemicellulose composites[J]. Plant J,2000,22:327-334
    Wieczorek K, Golecki B. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana[J]. Plant Plant J,2006,48(1):98-112
    Wu Y J, Cosgrove D J. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins[J]. Journal of Experimental Botany,2000,51:1543-1553
    Wu Y J, Robert B M, Cosgorve D J. Analysis and expression of the a-expansin and (3-expansin gene families in maize[J]. Plant physiol,2001,126:222-232
    Wu Y J, Sharp R E, Durachko D M, et al. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins[J]. Plant Physiology,1996,111:765-772
    Vriezen W H, De G B, Mariani C, et al. Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in flooding-intolerant R. acetosa[J]. Planta,2000,210:956-963
    Yang L, Zheng B, Mao C, et al. Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit[J]. Mol Gen Genomics,2004,272:433-442
    Yoo S D, Gao Z F, Wayne L, et al. Expression of several expansins is coordinately regulated with that of other cell wall softening enzymes and associated with pectin related changes in the cell wall during ripening of cherry (Prunuscerasus) fruit[J]. Hortscience (abstract),2001,36:602
    傅丰庆.黄瓜果实发育调控的分子机理研究[D].杭州:浙江大学博士论文,2008
    高强.小麦胚芽鞘膨胀素的性质与功能分析[D].泰安:山东农业大学硕士论文,2007
    高英.扩张蛋白与旱稻抗旱性关系的研究[D].北京:中国农业大学硕士论文,2003
    何晓薇.水稻根毛发育相关基因OsEXP17的克隆和功能研究[D].杭州:浙江大学博士论文,2008
    姜立杰.芜菁直根膨大性状的AFLP分析[D].杭州:浙江大学硕士论文,2001
    李宏.拟南芥扩张蛋白AtEXPAl基因的表达特性及其启动子顺式作用元件的初步分析[D].北京:中国农业大学硕士论文,2004
    李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系[J].植物生理学通讯,1996,32:321-327
    李鸿渐,张谷雄,汪隆植.萝卜杂种一代若千性状的遗传动态初步研究[J].中国疏菜,1983(3):15-17
    林展.小麦膨胀素基因的分离、克隆与功能鉴定[D].北京:中国农业大学博士论文,2005
    陆旺金.香蕉果实expansin cDNA克隆及序列分析[J].华南农业大学学报(自然科学版),2003,24(3):40-42
    陆旺金,蒋跃明.荔枝果实两个膨大素基因的克隆与序列分析[J].中国农业科学,2003,36(12):1525-1529
    卢钢,庄晓英,叶纨芝.萝卜肉质根膨大过程库活性与蛋白质变化研究[J].浙江大学学报(农业与生命科学版),2004,30(1):39-43
    牛艳梅,沈文涛,卢雅薇,等.番木瓜果实膨胀素丛因部分序列的克隆及分析[J].热带作物学报,2007,28(4):47-50
    全慧清.霍乱毒素B亚基和小麦小孢子特异表达expansin基因的表达研究[D].杭州:浙江大学硕士论文,2005
    谭亮萍,寿森炎.萝卜肉质根形成与膨大的生理研究[J].北方园艺,2006(1):17-19
    汪开冶.奇妙的植物细胞壁扩展素[J].植物杂志,2001,(1):38-39
    金慧清,陈英豪,金勇丰.Expansin(细胞壁松弛蛋白)的发展[J].生命科学,2006,18(2):168-174
    王文龙,陈苏,朱果利,等.植物细胞壁伸展测定仪在蚕豆扩张蛋白特性研究中的应用[J].植物学通报,2004,21(3):312-318
    王文雅,朱本忠,罗云波,等.番茄果实软化过程中钙处理对多聚半乳糖醉酸酶、脂氧合酶、伸展蛋白的影响[J].河北农业大学学报,2005,28(1):12-15
    邢士超.小麦细胞壁蛋白Expansin基因的分离及其功能分析[D].泰安:山东农业大学硕士论文,2006杨绍兰,陈妙金,张波,等.乙酰水杨酸调控猕猴桃果实后熟软化进程中的Ad-EXP1基因表达[J].果树学报,2007,24(6):778-782
    张振贤,梁书华.根菜类蔬菜肉质根形成生理研究进展[J].山东农业大学学报,1994,25(2):249-254
    Kane Y. Roles of temperature in the occurence of hollow root in japanese radish CV. Gensuke.J Japan[J]. Soc Hort Sci,1987,56(3):321-327
    Mahbir S. Response of growth regulator and their methods of application on yield of radish[J]. CAB HcA 1990,60(11):1020
    Hedge D M. The effect of soil perature, yield and water use water potential, method of irrigation and N on plant water relation, canopy tem of radish[J]. Hort. Sci.,1987,62(4):507-515
    Hegde D M. Effect of soil water potential, methods of irrigation and N on yield, N uptake and water use of radish[J], Indian J. of Agronomy,1987,32(1):24-29
    Pandita M L, Sidhu A S, and Hooda R S. Effect of cytozyme on growth and yield of radish[J], a note. Haryana J. Hort. Sci.1981 (10):207-208
    Thompson J A, Weston G D, Thomas T H, The effect of plant age at the time of treatment on the response of radish to daminozide[J]. Scientia Hort,1984,22(1/2):33-37
    Usuda H, Demura T, Shimogawara K, et al. Development of Sink Capacity of the "Storage Root" in a Radish Cultivar with a low Ratio of "Storage Root" to Shoot[J]. Plant and Cell Physiology,1999 (a), 40(4):369-377
    Usuda H, Rouhier H, Demura T, et al. Development of Sink Capacity of the "Storage Root" in a Radish Cultivar with a High Ratio of "Storage Root" to Shoot[J]. Plant and Cell Physiology,1999 (b),40(12): 1210-1218
    Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits[J]. Genetical Research,2003,81 (2):157-163
    盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003
    何启伟主编.十字花科蔬菜优势育种[M].北京:农业出版社,1993
    李鸿渐,张谷雄,汪隆植.萝卜杂种一代若干性状的遗传动态初步研究[J].中国疏菜,1983(3):15-17
    路昭亮,柳李旺,龚义勤,等.萝卜干物重和可溶性总糖含量的遗传分析[J].南京农业大学学报,2009(出版中)
    罗庆云,於丙军,刘友良,等.栽培大豆耐盐性的主基因+多基因混合遗传分析[J].大豆科学,2004,23(4):239-244
    汪隆植,何启伟.中国萝卜[M].北京:科学技术文献出版社,2005
    章元明,盖钧镒,王永军.利用P1、P2和DH或RIL群体联合分离分析的拓展[J].遗传,2001,23(5):467-470
    章元明,盖钧镒.利用DH或RIL群体检测体系并估计其遗传效应[J].遗传学报,2000,27(7):634-640
    章元明,盖钧镒,张孟臣.利用P1F1P2和F2或F2:3世代联合的数量性状分离分析[J].西南农业大学学报,2002,22(1):6-9
    张振贤,梁书华.根菜类蔬菜肉质根形成生理研究进展[J].山东农业大学学报,1994,25(2):249-254
    苏小俊,徐海,袁希汉,等.普通丝瓜始雌花节位遗传分析.西北植物学报[J],2007,27(7):1468-1472
    王庆钰,朱立宏,盖钧镒,等.水稻广亲和性遗传的主丛因+多丛因混合模型分析[J].遗传,2004,26(6):898-902
    侯北伟,窦秉德,章元明,等.小麦雌性育性的主丛因+多基因混合遗传分析[J].遗传,2006,28(12):1567-1572
    Hedge D M. The effect of soil perature, yield and water use water potential, method of irrigation and nitrogen on plant water relation, canopy tem of radish[J]. Hort. Sci.,1987,62(4):507-515
    Hegde D M. Effect of soil water potential, methods of irrigation and N on yield, N uptake and water use of radish[J]. Indian J. of Agronomy,1987,32(1):24-29
    Kane Y. Roles of temperature in the occurence of hollow root in Japanese radish CV[J]. Gensuke, J. Japan. Soc,1987,56(3):321-327
    Liu G, Liu L, Wang Y, et al. Seed genetic purity testing of F1 hybrid cabbage with molecular marker analysis[J]. Seed Science and Technology,2007,35:477-486.
    Liu L. Genotypic Representation Analysis (GRA):A new strategy for identifying molecular markers tightly linked to a target gene[J]. Journal of Genetics and Molecular Biology,2004,15(4):205-209
    Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility-restoration for cytoplasmic male sterility in Gossypiuuz hirsutum L[J]. Theor Appl Genel,2003,106(3):461-469
    Mahbir S. et al. Response of growth regulator and their methods of application on yield of radish[J]. CAB HcA,1990,60(11):1020
    Pandita M L, Sidhu A S, and Hooda R S. Effect of Cytozyme on growth and yield of radish[J], a note. Haryana J. Hort. Sci.1981 (10):207-208
    Thompson J A, Weston G D, Thomas T H. The effect of plant age at the time of treatment on the response of radish to daminozide[J]. Scientia Hort.1984,22(1/2):33-37
    Wang W, Jing Z, et al. Study on the Carbohydrate and Isozyme Changes during Fresh Tap Root Formation and Thickening in Radish(Raphanus sativus L)[J].27th International Horticultural Congress (IHC 2006), Seoul, Korea,2006
    姜立杰.芜菁植根膨大性状的AFLP分析[D].杭州:浙江大学硕士论文,2001
    李鸿渐,张谷雄,汪隆植.萝卜杂种一代若千性状的遗传动态初步研究[J].中国疏菜,1983(3):15-17
    何启伟主编.十字花科蔬菜优势育种[M].北京:农业出版社,1993,170-183
    张振贤,梁书华.根菜类蔬菜肉质根形成生理研究进展[J].山东农业大学学报,1994,25(2):249-254
    卢钢、庄晓英.萝卜肉质根膨大过程库活性与蛋白质变化研究[J].浙江大学学报(农业与生命科学版)2004,30(1):39-43
    Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis [J]. The Plant Cell,2002,14(12):3237-3253
    Cosgrove D J, Bedinger P, Durachko D M. Group Ⅰ allergens of grass pollen as cell wall Loosening agents[J]. PNAS USA,1997,94(12):6559-6564
    Cosgorve, D J. Cell wall loosening by expansins[J]. Plant physiol,1998,118:333-339
    Choi D, Lee Y, Cho H T, et al. Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. The Plant Cell,2003,15:1386-1398
    Fleming A J, McQueen-Mason S J, Mandel T, et al. Induction of leaf primordia by the cell wall protein expansin[J]. Science,1997,276(5317):1415-1418
    Fleming, A J, Caderas D, Wehrli, E, et al. Analysis of expansin induced morphogenesis on the apical meristem of tomato[J]. Planta,1999,208:166-174
    Liu G, Liu L, Wang Y, et al. Seed genetic purity testing of F1 hybrid cabbage with molecular marker analysis[J]. Seed Science and Technology,2007,35:477-486.
    Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L[J]. Theor Appl Genet,2003,106:461-469
    Lee D K, Ahn J H, Song S K, et al. Expression of an expansin gene is correlated with root elongation in soybean[J]. Plant Physiol,2003,131:985-997
    Link B M, Cosgorve D J. Acid-growth response and a-expansin in suspension cultures of bright yellow 2 tobacco[J]. Plant physiol,1998,118:907-916
    McQueen-Mason S J, Cosgrove D J, Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proc Natl Acad Sci USA,1994,91(14):6574-6578
    Pezzotti M, Feron R, Mariani C. Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin[J]. Plant Mol Biol,2002,49(2):187-197
    Rose J K, Lee H H. Bennett A B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated[J]. Proc Natl Acad Sci USA,1997,94(11):5955-5960
    Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells[J]. Plant and Cell Physiology,1997,38(3):375-378
    Usuda H, Demura T, Shimogawara K, et al. Development of sink capacity of the "storage root" in radish variety with a high ratio of "storage root" to shoot[J]. Plant Cell Physiology,1999,40(4):369-377
    Wieczorek K, Golecki B, Gerdes L, et al. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana[J]. The Plant Journal,2006,48(1):98-112.
    Wu Y, Thorne E T, Sharp R E, et al. Modification of expansin transcript levels in the maize primary root at low water potentials[J]. Plant Physiol,2001,126(4):1471-1479
    王玮,龚义勤,柳李旺等.萝卜肉质根膨大过程中糖含量及蔗糖代谢相关酶活性分析[J].园艺学报,2007,34(5):1313-1316
    张振贤,梁书华.根菜类蔬菜肉质根形成生理研究进展[J].山东农业大学学报,1994,25(2):249-254
    Chen G P, Hackett R, WalkerD, et al. Identification of a specific isoform of tomato lipoxygenase (Tom loxC) involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology,2004,136: 2641-2651
    GriffithsA, Barry C, Alpuche S, et al. Ethylene and developmental signals regulate exp ression of lipoxy-genase genes during tomato fruit ripening[J]. Journal of Experimental Botany,1999,50:793-798.
    Lee Y, Kende H. Expression of a-expansin and expansin-Like genes in deepwater rice[J]. Plant Physiology,2002,130:1396-1405
    Li Y, Darley C P, Ongaro V, et al. Plant expansins are a complex multigene family with an ancient evolutionary origin[J]. Plant Physiology,2002,128:854-864
    Wu Y J, Thome E T, Sharp R E, et al. Modification of expansin transcript levels in the maize primary root at low water potentials[J]. Plant Physiology,2001,126:1471-1479
    Yokoyama R, Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell wall enzymes allowed us to predict cisregulatory regions involved in cell wall construction in specific organs of Arabidopsis[J]. Plant and Cell Physiology,2001,42:1025-1033
    Zhang B, Chen K S, Bowen J, et al. Differential expression within the LOX gene family in ripening kiwi fruit[J]. Journal of Experimental Botany,2006,57:3825-3836.
    梁锦锋,于红卫,叶国平.植物新基因克隆策略和技术进展[J].安徽农业科学,2007,35(23):7112-7114
    王冬冬,朱延明,李勇,等.电子克隆技术及其在植物基因工程中的应用[J].东北农业大学学报,2006,37(3):403-408
    刘媛,蔡嘉斌,蒋国松,等.丛于EST的新基因克隆策略[J].遗传,2008,30(3):257-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700