作物水胁迫声发射监测系统的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱历来是农业生产的主要自然灾害之一,而灌溉是人类用来避免干旱,提高作物产量的基本手段。长期以来,如何准确判断作物水分亏缺程度、掌握生长对水分亏缺反应的规律,为实时精确灌溉提供依据,一直是众多学者致力于研究的课题,人们从不同方面入手,制订了相应的灌水指标。在已建立的灌溉自动控制系统中,土壤含水量或大气相对湿度是最常见的控制农作物灌溉的指标,但对作物缺水而言,这些都是反映作物生长环境的间接指标,对反映作物的缺水比较迟钝、滞后。而在土壤—植物—大气连续体(简称SPAC)中,植物才应该是是否需要灌溉的最优指示物,因为只有它们才能把控制植物水分平衡的土壤因子和大气因子综合起来。因此,从植物本身出发,本文在国内首次采用了以植株茎部声发射信号作为农作物需水信息的新方法,运用目前在测控领域国际流行的虚拟仪器技术,建立了对作物植株茎部声发射信息进行实时、快速测量的微机检测系统,并以温室盆栽番茄为对象,研究了声发射信息同植物蒸腾以及环境因子间的关系。试验结果表明,作物在水胁迫下产生的声发射信号与蒸腾量等水分指标的一致性较好,对水分亏缺反应敏感,是一个良好的灌水指标。为此,本文在监测系统的基础上扩展了系统功能,建立了基于植物生理需水信息的温室滴灌自动控制系统,并进行了灌溉控制效果实验。同定时灌溉相比,按声发射信息控制灌溉可节水34.02%,而作物生长几乎不受影响,节水效果与经济效益显著。在河北农业大学温室实际试用结果表明,该系统工作稳定可靠、操作方便灵活、测试结果准确,适应了现代化农业科学生产和自动化管理的需要,并为开展植物生理、生态研究提供了一个良好的研究手段,具有较高的实用价值和广阔的应用前景。
To avoid drought, which is always the main natural disaster of agricultural production, and improve the yield of crops, irrigation is the basic method. For a long time, how to detect water stress levels in crops accurately and apply a real-time accurate irrigation, is a popular topic for many researchers. As a result of researches, several water indexes were brought up from different methods, such as soil moisture content and air relative humidity, which were most commonly used in the past irrigation control system. For crop water stress, however, those are all insensitive and indirect indexes that represent the environmental states of crops. In SPAC, it is the plant that should be optimum indicator for irrigation control, because the soil factor and air factor, which control the balance of water in crops, can but be integrated by plant. As result, a new method is presented by using the acoustic emission (AE) signal from stem of individual plant as its demand information. Based on virtual instruments technique, which is becoming a popular tool in measurement and automation fields international, a computer-based detecting system is developed for the fast, real-time measurement. Take tomato crops for testing example in greenhouse, the relation between AE and transpiration, environmental factors has been studied. It has shown that a good agreement between acoustic emission and transpiration, and the AE signal is a good water stress index for irrigation control. So, a real-time irrigation control system based on plant physiological water needing information was established, and the effect experiment of irrigation control was made. Compared with timing irrigation, 34.02 percent water can be saved by using acoustic emission technique for irrigation control and the growing state of tomato crops doesn't be affected. The system works safely, operates easily and measures accurately, it is suitable to the need of scientific production and auto-manage of modern agriculture. A new research method for the physiological and ecological research of plant is applied by the system as well. In a word, it has great practical value and wide future of application.
引文
[1] 王万里.植物对水分胁迫的反应[J].植物生理学通讯,1981(5):55.
    [2] P. J. Kramer.植物的水分关系[M].北京:科学出版社,1989.
    [3] 孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报,2000,16(2)
    [4] 吴景社,李英能.我国21世纪农业用水危机与节水农业[J].农业工程学报,1998,14(3)
    [5] 康绍忠,熊运章.作物缺水状况的判别方法与灌水指标的研究[J].水利学报,1991(1)
    [6] 林葵,王天池.国外电子计算机在农业中的应用概况[J].福建农业科技,1995(6):27-29.
    [7] 王忠义,陈端生,黄岚.温室植物生理指标监测及应用研究[J].农业工程学报,2000,16(2):101-104.
    [8] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994.
    [9] 康绍忠,蔡焕杰等.节水农业中作物水分管理基本理论问题的探讨[J].水利学报,1996,(5):9-17.
    [10] 陆帼一.蔬菜水分生理与灌溉指标的研究进展[J].长江蔬菜,1989,(2):1-4.
    [11] 王宏.作物水分亏缺的诊断[D].北京:中国科学院国家计划委员会地理研究所,1989.
    [12] 陈亚新.作物—水模型及其敏感指标的确认[J].灌溉排水,1995,14(4):4-6.
    [13] 陈玉民等.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水,1997,16(1):24-28.
    [14] 梁宗锁,康绍忠,高俊凤.植物对土壤干旱信号的感知、传递及其水分利用的控制[J].干旱地区农业研究,1999,17(2):72-78.
    [15] H.Murase, et al. Environmental control strategies based on plant response using intelligent machine vision technique[J]. Computer and electronics in agriculture, 1997, 18(2,3):137-148.
    [16] Alain Baille. Water status monitoring in greenhouse crops[J]. Acta Horticulturae, 1992(304):15-26.
    [17] 蔡焕杰,康绍忠.棉花冠层温度的变化规律及其用于缺水诊断研究[J].灌溉排水,1997,16(1):1-5.
    
    
    [18] 郑荣良,罗石,金树德.植物需水信息仪的研究[J].排灌机械,1997(4):47-49.
    [19] 丁筱玲,赵立新,张业民.植物茎液流速及蒸腾量动态测试仪[J].农业工程学报,2000,16(2):46-49.
    [20] J.L.Salager et al. A microcomputer-based measurement system of water stress in higher plants[J]. Computer and electronics in agriculture, 1991, 6:201-211.
    [21] 郑荣良等.植物生理需水信息的采集研究[J].农业机械学报,1996,27(4):45-48.
    [22] 张世芳,金树德,陈勇.节水灌溉玉米亏水生理电阻信息研究[J].江苏理工大学学报,1996,17(6):6-9.
    [23] 耿荣生.声发射技术发展现状[J].无损检测,1998,20(6):151-154,158.
    [24] 时书丽,赵国兴.声发射传感器技术与应用[J].仪表技术与传感器,1998(2):34-37.
    [25] 杨明鉴,孙晓利等.AE-04声发射检测系统的研制[J].无损检测,1997,19(7):191-193,200.
    [26] 袁振明.声发射技术及其应用[M].北京:机械工业出版社,1984.
    [27] 沈功田,耿荣生等.声发射信号的参数分析方法[J].无损检测,2002,24(2):72-77.
    [28] Melvin T.Tyree, Michael A.Dixon. Cavitation events in Thuja occidentails L.Plant Physiol.[J], (1983) 72:1094-1099.
    [29] Melvin T.Tyree, et al. Detection of xylem cavitation in corn under field conditions. Plant Physiol.[J], (1986) 82:597-599.
    [30] G.E.Jackson, J.Grace. Field measurements of xylem cavitation: are acoustic emissions useful?. Journal of Experimental Botany[J], 1996, 47(304):1643-1650.
    [31] G.E.Jackson, et al.. Xylem acoustic emissions and water relations of Calluna vylgaris L. at two climatological regions of Britain. Plant Ecology[J], (1999) 140:3-14.
    [32] M.T.Tyree & J.S.Sperry. Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant, Cell and Environment[J], (1989) 12:371-382.
    [33] A.Raschi, et al.. Cavitation events in solanum melongena L.measured after water stress cycles in field conditions. Acta Horticulturae[J], (1990) 278:119-124.
    [34] L.Okushima, et al.. Plant measurements by acoustic emission sensor. Acta Horticulturae[J], (1998) 421:241-248.
    
    
    [35]邝朴生,蒋文科等.精确农业基础[M].北京:中国农业大学出版社,1999.
    [36][英]J.R.埃塞林顿.环境和植物生态学[M].北京:科学出版社,1989.
    [37]熊运章,宋松柏等.计算机在农业水土工程中的应用[M].北京:清华大学出版社,1999.
    [38]白广存等.计算机在农业生物环境测控与管理中的应用[M].北京:清华大学出版社,1999.
    [39]Wim van Meurs & Cecilia Stanghellini. Use of an off-the-shelf electronic balance for monitoring crop transpiration in greenhouses. Acta Horticulturae[J], (1992) 304: 219-225.
    [40]年夫顺.国外测试技术动态分析[J].测控技术,1999,18(6):1-4.
    [41]程虎,虚拟仪器的现状和发展趋势[J].现代科学仪器,1999(4):6-9.
    [42]潘莹玉.虚拟仪器及其应用[J],电力自动化设备,1999(1):44-46.
    [43]秦树人.虚拟仪器及其最新发展[J].振动、测试与诊断,2000,20(增刊):123-129.
    [44]杨勤之,陈贤源.虚拟仪器技术在现代农业测试中的应用[J].现代化农业,1999,24(11):4-6.
    [45]张宏康,王武,虚拟仪器技术及其在农业工程中的应用[J].农机化研究,2000(2):93-96.
    [46]贾功贤,刘成康等.基于PC的虚拟仪器的发展趋势[J].电子技术应用,1999(12):4-6.
    [47]刘君华.现代检测技术与测试系统设计[M].西安:西安交通大学出版社,1999.
    [48]白广存,娄成后,王忠义.植物生理信息采集处理系统及应用[J].现代科学仪器,1995,(4):27~28.
    [49]谭维炽,叶万庚.现代测控管理系统工程[M].北京:宇航出版社,1993.
    [50]乔晓军,沈佐锐等.农业设施环境通用监控系统的设计与实现.农业工程学报,2000.16(3)
    [51]周泓,汪乐宇,陈详献.虚拟仪器系统软件结构的设计[J].计算机自动测量与控制,2000,3(1):21-24.
    [52]潘新民,王燕芳,微型计算机与传感器技术[M].北京:人民邮电出版社,1988.
    [53]周泽存,刘馨嫒.检测技术[M].北京:机械工业出版社,1993.
    [54]徐国富,刘瑞复,田大超.非电量电测工程手册[M].北京:机械工业出版社,1987.
    
    
    [55]施汉谦,宋文敏.电子秤技术[M].北京:中国计量出版社,1991.
    [56]Measurement and Automation Catalogue 2000[M]. National Instruments, 2000.
    [57]吕景瑜.微型计算机接口技术[M].北京:科学出版社,1995.
    [58]王信义,董卫平等.生产系统中的监控检测技术[M].北京:北京理工大学出版社,1998.
    [59]白广存,何希才.计算机数据采集与控制应用系统开发研究[J].农业工程学报,1995,(11)增刊:180-184.
    [60]李扬,郑莹娜,杨爱华.PC总线/虚拟仪器模入通道的抗干扰技术[J].电测与仪表,1999,36(398):42-44.
    [61]张松春,赵秀芬等编著.电子控制设备抗干扰技术及其应用[M].北京:机械工业出版社,1989.
    [62]申军.微机应用系统抗干扰方法的探讨[C].中国自动化学会第十一届青年学术年会论文集,1996,
    [63]路林吉,饶家明.虚拟仪器讲座:第四讲面向仪器与测控过程的交互式C/C++开发平台——LabWindows/CVI.电子技术[J],2000(4):48-51.
    [64]刘君华主编.虚拟仪器编程语言LabWindows/CVI教程[M].北京:电子工业出版社,2001.
    [65]张凤均等.LabWindows/CVI开发入门和进阶[M].北京:航空航天大学出版社,2001,
    [66]郑人杰,殷人昆,陶永雷.实用软件工程[M].北京:清华大学出版社,1997.
    [67]LabWindows/CVI User Manual[M]. U.S.A.: National Instruments, 2000.
    [68]Advanced Analysis Library Reference Manual[M]. U.S.A.: National Instruments, 2000.
    [69]宋海生,单根立.多端口实时串口通信实现与应用[J].微计算机信息,1999,15(4):21-22.
    [70]吴辰文,石永林.实时串行通信的设计及实现[J].计算机工程,1998,24(5):31-33.
    [71]张为,刘葵.Windows环境下Excel中的动态数据交换及其应用探讨[J].广州师院学报,1999,20(7):39-42,63.
    [72]陈佳品,冯萍,程君实.基于动态数据交换DDE技术的应用软件设计[J].微处理机,1999(4):48-50.
    [73]邹志荣,饶景萍,陈红武编著.设施园艺学[M].西安:西安地图出版社,1997.
    [74]南京农业大学.蔬菜保护地栽培(北方本)[M].北京:农业出版社,1987.
    [75]R. Testezlaf, et al.. A real-time irrigation control system for greenhouse. Applied Engineering in Agriculture[J], 1997, 13(3): 329-332.
    
    
    [76]陈三潮,潘绍财等.计算机与可编程控制器在节水灌溉中的应用[J].东北水利水电,1999(7):24-26,48.
    [77]顾世祥,李远华等.灌溉管理应用软件的研究现状与前景[J].灌溉排水,1999,18(1):61-64.
    [78]徐富安.微机节水灌溉管理系统的监测参数选择与软件编程要求[C].
    [79]曹立新.计算机技术在温室作物灌溉中的应用.计算机与农业,2001(2):13-15.
    [80]林天杰,朱恩,田仲和.滴灌技术在现代温室蔬菜栽培中的应用[J].中国农学通报,1998,14(4):25-27.
    [81]姚振宪,何松林,滴灌设备与滴灌系统规划设计[M].北京:中国农业出版社,1999.
    [82]李建明,邹志荣,付建峰.温室番茄灌溉指标的研究[J].沈阳农业大学学报,2000,13(1):110-112.
    [83]曹柱中,徐薇莉.自动控制理论与设计[M].上海:上海交通大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700