可燃性多孔介质热量迁移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含内热源可燃多孔介质普遍存在于我们的日常生活中,研究这类多孔介质内部的温度分布,找出其自燃规律,防止其储存和运输过程中自燃现象的发生,将其安全性定量化具有重要的现实意义。本文从热自燃理论出发,以煤粉、弹药为研究对象,对可燃多孔介质内部的热传导过程进行了全面系统的分析;数值模拟了这类典型介质内部的温度分布及影响因素,并实验验证了数值模拟所采用的模型的正确性。
     由于微观结构的复杂性,目前对具有化学反应的可燃多孔介质内微观热量传递过程的研究仅局限于定性的分析。本文首先介绍了热自燃理论以及化学反应过程的动力学规律,分析了活化能、指前因子、反应热等化学动力学参数对温升的影响。
     多孔介质的自燃着火现象可简化为一含内热源项的非稳态传热过程,本文在一定的简化条件下获得了内热源恒定时一维直角坐标、一维柱坐标、一维球坐标模型的解析解。由于解析解包含无穷级数,不能清晰的表达出温度变化趋势,又采用近似拟合法求得一维平板形煤粉堆积床内部的温度随时间和空间的分布曲线。
     实际情况下内热源项均随温度发生变化,本文建立了以煤粉为研究对象的可变内热源一维直角坐标下的传热模型,获得了其内部的温度变化趋势。计算结果表明,内热源强度随温度变化时温度上升速率逐步加快,煤粉处于危险情况。计算了球形煤堆在夏季高温和冬季低温两种不同环境温度下内部温升情况。
     模拟了二维柱坐标下弹药填充床内部的温度分布,分析了内热源项的变化规律,求解了环境温度对弹药内部温度变化的影响。比较了有限长和无限长圆柱形填充床内部温度分布,结果表明无限长圆柱内部最高温度上升速率比有限长圆柱温升快,按照无限长圆柱计算将是最坏的散热情况,这样的计算结果将具有更好的安全保证。弹药的型号不同,其化学动力学参数就不相同,内部的温升过程就不相同。活化能反映化学反应对所需要的能量输入大小,活化能越低反应越容易发生。指前因子大代表分子碰撞的几率大,温度上升就快。一般来讲,最危险的放热反应系统是具有低活化能且反应热很大的系统。计算表明,单基弹药内部最高温度比双基内部最高温度上升的快。讨论了对流换热系数、堆积尺寸、孔隙率等对弹药内部最高温度的影响。得出对流换热系数越小,堆积床外径越大、堆积越紧密,弹药内部最高温度上升的越快,越容易发生自燃着火。
     实际弹药温升非常缓慢,在全尺寸上进行自燃过程的实验研究需要较长的时间,而且实验条件难以控制。在本项研究中,采用一小尺寸实验药粉填充床来代替实际弹药。实验采用恒壁温条件,测量结果表明壁面温度越高,弹药达到自燃的时间越短;实验测出的弹药内部最高温度变化趋势与同一壁面温度下数值模拟结果基本一致。
     本文的研究结果,对建立符合实际存贮情况的可燃多孔介质传热模型具有很好的参考价值!
This dissertation deals with the spontaneous combustion and ignition behavior of porous media stack. Combustible porous media with inner heat source is ubiquitous in our daily life. Research on such porous media's inner temperature distribution, finding out the spontaneous combustion disciplinarian, avoiding self-ignite during the deposit and transportation and supervising the media's security have very important meanings. This article bases on heat self-ignite theory, using coal and ammunition as investigate objects, systemically analyzed the heat exchange process in the combustible porous media. And it numerically simulates such representative media's inner temperature distribution and the influence factors. Using experiment's results validate the model's validity used in the simulation at the end of this paper.
    Because of the microstructure's complexity, the research on microcosmic transfer process with chemistry reaction in combustible porous media just limited in qualitative analysis at present. This paper introduces heat self-ignite theory and dynamics disciplinarian of chemistry reaction process at first, analyzes the influence of chemistry dynamics parameter (such as activation energy and frequency gene and reaction heat, etc) to temperature ascend.
    The self-ignite phenomenon of porous media can be predigested into an unsteady heat transfer process with inner heat source. In this paper, we obtained the theory results under Cartesian coordinate, pole coordinate and sphere coordinate with invariable inner heat source. However, the accuracy results always contain infinite series and they can't express the temperature trend clearly.
    In practice the inner heat source changes along with the temperature. In this paper using coal parameter to establish Cartesian coordinate heat transfer model with changeable inner heat source and acquired inner temperature change direction. The simulation results show that when inner heat source changing with temperature, the inner heat ascend velocity increases gradually and coal is in danger circumstance. Spherical coal stack's inner temperature distribution in high temperature circumstance (like summer) and in low temperature circumstance (like winter) are simulated in this paper.
    Then, ammunition stack's temperature distribution under two dimensional poles coordinate is simulated, inner heat source's change is analyzed, and environment temperature's influence is calculated in the paper, compared finite and infinite long columelliform stack's inner temperature distribution. The result shows that the highest temperature ascendance in infinite long column quicker than that in finite column. So using infinite long column to calculate is the worst emanate heat circumstance. Such results have the best safety guarantee. Different ammunition type have different chemistry dynamics parameters, and the temperature ascend process in ammunition is different. Activation energy reflects the needed input energy in chemistry reaction. The lower the activation energy is, the easier the chemistry to react. The bigger the frequency factor is, the bigger the collide odds between molecule is. Then the temperature will goes up quickly. Generally speaking, the most dangerous exothermic reaction system is such that has low activation energy and high frequency factor.
    Convection heat exchange coefficient, stack size and porosity's influence to the highest temperature in porous media are also discussed in this paper. The results show that the smaller the convection heat exchange coefficient, the bigger the stack size and the smaller the porosity is, the quicker the temperature ascends in porous media and the easier to combust.
    In real ammunition temperature ascend is very slow. So spontaneous combustion experiment study with full size will take very long time, and the experimental condition is hard to control. In this paper using a small size experiment drug stack to instead of real ammunition experimented under constant wall temperature. The measure results show that the higher the wall temperature is, the shorter the ignite time. The experimental measure results about the highest temperature change in ammunition almost consistent with numerical simulation results under the same condition.
引文
1.A E Scheidegger,多孔介质渗流物理[M],石油工业出版社,1982;
    2. B B Mandelbrot, The Fractal Geometry of Nature[M], San Francisco, 1983;
    3.K法尔科内,分形几何-数学基础及其应用[M],曾文曲等译,1991,东北大学出版社;
    4.杜建华,王补宣.内热源多孔介质中的受迫对流换热[J].工程热物理学报,1999,20(1):69-73;
    5.张国强,金志明.多孔介质内自然对流传热传质研究[J].南京理工大学学报,1998,22(2):169-172;
    6.胡学功.有矩形脉冲内热源的平板中非傅立叶导热研究[J].强激光与粒子束,2002,14(2):218-222;
    7.黄晓齐,非均匀内热源导热微分方程中的热流分流和叠加[J],贵州工学院学报,1996,25(2):62-66;
    8. Schmal D A model for the spontaneous heating of stored coal. PhD thesis, University of Delft, Delft, 1987;
    9. F.Akgun, R.H.Essenhigh. Self-ignition characteristics of coal stockpiles: theoretical prediction from a two-dimensional unsteady-state model. Fuel, 2001: 409-415;
    10.卢山,孙培雷,煤堆自燃的理论与计算,工业锅炉,2004,4:26-30;
    11.文虎,徐精彩,李莉等,煤自燃的热量积聚过程及影响因素分析,煤炭学报,2003,28(4)_370-374;
    12.文虎,徐精彩.煤自燃过程的动态数学模型及数值分析[J],北京科技大学学报,2003,25(5):387-390;
    13.郭兴明,徐精彩,惠世恩,煤自燃过程中极限参数的研究,西安交通大学学报,2001,35(7):682-686;
    14.董希琳,田丽,湿煤堆自热过程的非稳态数学模拟,中国安全科学学报,1999:7-10;
    15.何启林,王德明,煤水分含量对煤吸氧量与放热量影响的测定,中国矿业大学学报,2005,34(3):358-362;
    16.秦波涛,王德明,李增华等,以活化能的观点研究煤炭自燃机理,中国安全科学学报,2005,15(1):11-14;
    17. V GOLDSHTE1N, A ZINOVIEV. THERMAL EXPLOSION IN MULTIPLE PHASE MEDIA. Nonlinear Analysis, Theory, Methods and Applications.1997, Vol.30(8):4771-4780;
    18.姜培学,江劲勇,陈明华等.发射药热自燃的数值模拟研究,清华大学学报(自然科学版)1998,7,78-81;
    19.姜培学,任泽霈,江劲勇等.环境因素对发射药升温速率及安全性的影响分析,火炸药学报,1998,4,24-28;
    20.刘礼斌,陈名华,柳维旗等.温度对发射药安全和能量影响的数值计算,弹道学报,2004,16(2).19-22;
    21.陈明华,江劲勇,路桂娥等.单基发射药的热自燃数值模拟与其剩余能量的变化研究,军械工程学院学报,2000,12(1):33-36;
    22.姜培学,任泽霈,江劲勇等.箱装发射药堆的温度变化规律及其安全性分析,清华大学学报(自然科学版),2001,41:131-135;
    23.陈明华,江劲勇,路桂娥等.湿度对发射药热自燃的影响,火炸药学报,2000,3:45-47;
    24.路桂娥,江劲勇,陈明华等,发射药的热自燃实验研究,火炸药学报,2000,3.48-49
    25. J H Van't Hoff, Etudes de Dynamique Chimique, Amsterdam,p121, 1884;
    26. N N Semenov, Phys. (48), p571, 1928;
    27. P H Tomas, Trans. Faraday Soc(54), p60, 1958;
    28.朱自强,化学通报(11),p690,1964;
    29.冯长根.热爆炸理论[M].北京:科学出版社,1988.23-11;
    30.FA威廉斯(美),燃烧理论(第二版),科学出版社,1990;
    31.丁红玉.抑制煤堆自燃的新方法的理论与实验研究,东南大学硕士学位论文,2004;
    32.文虎,许满贵等.煤自燃的热量积聚过程及影响因素分析.辽宁工程技术大学学报.2003,22(2),1-4;
    33.杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社,1998;
    34. Campo A. Rapid determination of spatio-temporal temperatures and heat transfer in simple bodies cooled by convection: usage of calculators in lieu of Heisler-Grober charts. Int Comm Heat Mass Transfer, 1997,24(4):553~564;
    35.林瑞泰,多孔介质传热传质引论[M],科学出版社,1995;
    36.梁森森,施明恒,郝英立.含内热源可燃性多孔介质中的传热研究[J].能源研究与利用,2005(1):30-32;
    37. P NITHIARASU. Natural convective heat transfer in a fluid saturated variable porosity medium[J]. Heat Mass Transfer, 1997, Vol.40, No. 16,3955-3967;
    38. D ANGIRASA and G.RPETERSON. Natural convection heat transfer from an isothermal vertical surface to a fluid saturated thermally stratified porous medium[J]. Heat Mass Transfer, 1997, Vol.40, No.18, 4329-4335;
    39. K A Yih. Uniform transpiration effect on combined heat and mass transfer by natural convection over a cone in saturated porous media: uniform wall temperature/concentration or heat/mass flux[J]. Heat Mass Transfer, 1999, Vol.27, No.42,3533-3537;
    40. M Zaki. Natural convection mass transfer behaviors of vertical and horizontal cylinders embedded in an inert fixed bed of Raschig rings[J]. Chemical Engineering and Processing, 2003, NO.42: 977-984;
    41. Y Azoumah, N.M azet, P.Neveu. Constructal network for heat and mass transfer in a solid-gas reactive porous medium[J]. Heat Mass Transfer, 2004, Vol.47: 2961-2970;
    42. Rong He. Effects of particle sizes on transport phenomena in single char combustion[J]. Heat Mass Transfer, 2003, Vol.46: 3619-3627;
    43. Adrian Bejan. Designed porous media: maximal heat transfer density at decreasing length scales[J]. Heat Mass Transfer, 2004, Vol.47: 3073-3083;
    44. M Kohout. Effective thermal conductivity of wet particle assemblies[J]. Heat Mass Transfer, 2004, Vol.39: 5565-5574;
    45. Bryan R Becker. Modeling transport processes in heat and mass releasing porous media[J]. Heat Mass Transfer, 1997, Vol.24, No.3: 439-448;
    46.施明恒.多孔介质传热传质研究的进展与展望[J].中国科学基金,1994(1):29-32;
    47.王补宣.多孔介质中的对流传热传质[J].西安交通大学学报,1994,28(5):51-58;
    48.陈宝明.多孔介质中水平温度梯度和浓度梯度导致的自热对流传热传质[J].山东建筑工程学院学报,1998,13(1):25-28;
    49.姜培学.空气在多孔介质中对流换热的数值模拟[J].工程热物理学报,2001,22(5):609-611;
    50.张靖周,李立国,孙仁洽.水平空腔多孔介质自热对流各向异性和非达西效应研究[J].工程热物理学报,1996,17(1):86-90;
    51.张志军,程惠尔,汤宇浩等.小颗粒堆积多孔体传热特性实验研究[J].水动力学研究与进展,2002,17(4):454-459;
    52.潘宏亮.多孔介质有效导热系数的计算方法[J].航空计算技术,2000,30(3):12-14;
    53. V GOLDSHTE1N, A ZINOVIEV. THERMAL EXPLOSION IN MULTIPLE PHASE MEDIA[J]. Nonlinear Analysis, Theory, Methods and Applications, 1997Vol.30, No.8: 4771-4780;
    54. Saad A.El-Sayed. Thermal explosion of dispersed media: critical conditions for discrete particles in an inert or a reactive matrix[J]. Process Ind. 1996, Vol.9, No.6: 383-392;
    55.索永录,张新才.煤自燃过程数值模拟的边界条件处理[J].西安矿业学院学报,1995(15):298-302;
    56.田水承,李新东,徐精彩.煤自燃环境及其影响因素[J].JOURNAL OF XI'AN MINING INSTITUTE,1994(2):107-112;
    57.文虎,徐精彩.煤自燃氧化放热效应的影响因素分析[J].煤炭转化,2001,24(4):59-63;
    58.何启林,王德明.综放面采空区遗煤自燃发火过程动态数值模拟[J].中国矿业大学学报,2004,33(1):11-14;
    59.陈振乾,施明恒.顶部放热的矩形空间多孔介质中自然对流[J].东南大学学报,1997(27):133-137;
    60.施明恒,虞维平,王补宣.多孔介质传热传质研究的现状和展望[J].东南大学学报,1994(24):1-7;
    61.纪平均.局部加热竖直套管内多孔介质中的自然对流[J].四川大学学报(工科科学版),2003,35(6):45-48;
    62.雷树业,王利群,贾兰庆等.颗粒床孔隙率与渗透率的关系[J].清华大学学报(自然科学版),1998(5):20-28;
    63.陈振乾,施明恒,虞维平等.竖直圆柱空间多孔介质中非牛顿流体自然对流[J].东南大学学报,1995,25(2):61-66;
    64.杨荣贵,雷树业,杜建华.突发高温下多孔介质的热质迁移模拟[J].清华大学学报(自然科学版),1999,39(6):78-82;
    65. B Biswal, C Manwart, R Hilfer. Three-dimensional local porosity analysis of porous media[J]. Physical A, 1998(255):221-241;
    66.埃克特ERG,得雷克RM.传热与传质分析[M].北京:科学出版社,1983.127-198.
    67.陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.78-103.
    68.王补宣,工程传热传质学[M],科学出版社,1998;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700