利用电流行波实现高压输电线路单端故障测距的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压输电线路故障点的准确定位是提高电网安全经济运行的主要措施,准确的故障定位可以减轻巡线负担,加快线路恢复供电,减小因停电而造成的经济损失,具有巨大的社会和经济效益。
    单端行波故障测距方法的优点是其可靠性和精度在理论上不受线路类型、故障电阻及两侧系统的影响,但单端行波故障测距方法存在反射波的识别问题,且在近区还存在无法识别反射波区域。这就是本文的研究目的和中心。
    本文在广泛阅读和深入研究小波理论的基础上,论文提出了一种基于小波分析的奇异性理论对通过小波多尺度变换的高压输电线路故障电流暂态行波信号进行白噪声滤除的实用方法。其根本出发点是通过对信号奇异点与白噪声在小波多尺度变换下的不同特性的分析,得出简明的判据和算法,其优点是:在改善信噪比的同时,又提高了对突变信息的分辨率,以此达到对故障信号进行预处理的目的。
    论文深入地分析了高压线路故障暂态电流行波的波折、反射过程以及折、反射系数的特点,提出了新的单端行波故障测距方法,它不仅能够有效地识别出测距所用的反射波,而且几乎不受线路结构、长短、故障接地电阻、故障类型、系统阻抗的影响,在近区仍可以准确地进行测距;同时模拟阻波器的特征,设计了低通数字滤波器,对通过了低通数字滤波器的暂态故障电流行波再次进行小波分析,并利用本文提出的单端行波故障测距方法进行故障定位,结论是所提出的测距方法在实际应用中仍是有效的。再者对线路刚充电的暂态过程形成的暂态波进行小波分析,利用奇异性检测理论及本文提出的测距方法的核心思想,得出线路的准确长度。
The accurate fault location of the fault position of high voltage transmission line is principal measure for improving safety and economic performance of the power restoration of line , cut down economic loss due to the failure ,which has great social and economic interests.
    The merits of single terminal fault location are its reliability and its accuracy isn't affected by the type of line, fault resistance and two sides systems theoretically but this method has problems such as the identification of reflection wave and the unidentifiable area of reflection nearby which are research purpose and core of this paper.
    On the basis of extensive reading and research of theory of the wavelet, it is presented a practical method based on odd theory of wavelet analysis to remove the white noises from transient fault current traveling waves of high voltage transmission line via multi-size analysis of wavelet. The basic start point is by analyzing the difference characteristics of signal's odd point and white noise under multi-size change of wavelet to gain simple criterion and arithmetic .The advantage is of improving the signal-noise rate, on the same time increasing the resolution of transient signal arrive at the aim of pre-processing of the fault classification and recognition.
    By analyzing the refraction、reflection process of fault transient current traveling wave of high voltage and characteristics of refraction 、reflection coefficient systematically, a new fault location method of single ended traveling wave is presented. It can not only identify the reflection wave for fault location efficiently, but also not be affected by the structure and length of line. Fault earthed resistance 、fault type 、system impedance and can locate fault in adjacent areas accurately. The low-pass digital filter is designed by simulating the feature of . The traveling wave of transient fault current of low-pass digital filter is analyzed again and the fault is located by the single ended traveling wave fault location method is valid in practice. It is also wavelet transformation that transient wave formed in the charged process of line, the accurate length of line can be got by using singularities and idea of fault location presented in the paper.
引文
[1] 金玉生, 杨敏中等. 高压架空输电线路的故障测距方法. 电网技术. 2000, Vol.24, No.4: 27-33.
    [2] Lee H, and Mousa A M. GPS Traveling Wave Fault Locator Systems: Investigation into the Anomalous Measurements Related to lightning Strikes[J]. IEEE Trans on Power Delivery,1996, Vol.11, No.3:1214-1223.
    [3] S.Mallat. A Theory for Multi-resolution Signal Decomposition: the Wavelet Re-presentation, IEEE Trans.on IT, 1992, Vol.38:pp674-693.
    [4] 董新洲 ,贺家李. 小波变换在行波故障检测中的应用. 继电器. 1998, Vol.26, No.5:1-4.
    [5] 葛耀中. 新型继电保护与故障测距原理与技术[M]. 西安, 西安交通大学出版社, 1996.
    [6] 束洪春. 基于分布参数线路模型的架空电力线路故障测距方法研究[D]. 哈尔滨, 哈尔滨工业大学,1997.
    [7] Lawrence D J, Cabeza L Z, Hochberg L T. Development of an advanced transmission line fault location system part I: algorithm development and simulation [J].IEEE Transactions on Power Delivery. 1992,Vol.7, No.4:1971-1978.
    [8] Christopoulos C, and Thomas D W P, Wright A. Signal processing and discriminating techniques incorporation in a protective scheme based on traveling waves[J].IEE Proc,1989,136-Pt.C(5): pp279-288.
    [9] 贾俊国, 范云鹏等. 利用电流行波的输电线路故障测距技术及应用. 电网技术.1998, Vol.22, No.8:3-66.
    [10] Christos Christopolous, and MSc,Dphil. Scheme based on traveling-Waves for the protection of major transmission lines IEE Proc.1988,135-Pt.C(1):pp63-69.
    [11] 周玉江, 黄焕琨. 探测故障距离的新方法[J]. 电力系统自动化. 1988, Vol.12, No.5:34-39.
    [12] 胡帆, 刘沛等. 高压输电线路故障测距算法仿真研究[J]. 中国电机工程学报. 1995,Vol.15 No.1:67-72 .
    [13] Agrasar M, and Uriondo F, and Hernandez J R,et al. A useful methodology for analyzing distance relays performance during simple and inter-circuit faults in multi-circuit lines[J].IEEE Trans on Power Delivery, 1997, Vol.12, No.4:1465-1471.
    [14] 索南加乐, 葛耀中等. 同杆双回线路故障距离的一种计算方法[J]. 中国电机工程学报. 1991, Vol.11, No.6:1-9.
    [15] 陈腊声, 孙淑信. 探测平行双回线路故障距离的一种计算方法[J].电力系统自动化. 1990,
    
    Vol. 14, No.1:26-38.
    [16] 徐启峰, 魏孝铭. 高压输电线故障测距的负距问题及修正方法[J].中国电机工程学报.1989, Vol.9, No.3:41-50.
    [17] 张哲, 陈德树. 高压输电线路故障测距中的伪根问题及其改进方法. 中国电机工程学报. 1992. Vol.12, No.6:11-17.
    [18] J.P.Bickford, and M.Sc,ph.D. Application of traveling-wave methods to the calculation of transient-fault currents and voltages in power system networks. IEE.Proc. vol.127, Pt.C(2): pp153-168.
    [19] J.R.Bickford, and M.Sc.,and ph.D.,C.Eng. Developments in the calculation of waveforms and frequency spectra for transient fault currents and voltage. IEE.Proc.vol.127,Pt.C(2):pp145-152.
    [20] 束洪春, 高峰等. 利用单端工频量的高压输电线路故障测距实用方法研究. 电工技术学报. 1998, Vol.13, No.5:9-15.
    [21] 王绪昭,Gale P E. 利用微机故障录波数据进行准确的高阻接地故障定位.继电器.1989. No.3:5-10.
    [22] Urasawa K, and Kanemaru K, and Toyaota S,et al. A new fault location system for power transmission lines using composite fiber-optic overhead ground wire (OPGW). IEEE Trans on Power Delivery. 1989, Vol.4, No.4:2005-2011.
    [23] 沈学斌. 500KV线路故障的暂态过程对保护的影响及其对策. 继电器. 1998, Vol.4:43-46.
    [24] 董新洲, 葛耀中. 一种使用双端电气量的高压输电线路测距算法. 电力系统自动化. 1997, Vol.19, No.8:47-53.
    [25] 董新洲, 葛耀中. 新型输电线路故障测距装置的研制. 电网技术. 1998, Vol.22, No.1:17-21.
    [26] Cook V. Fundamental aspects of fault location algorithms used in distance protection.IEE Proc.1986. Vol.133, No.6:359-368.
    [27] Masayuki A, and Nobuo O,Tokuo B,et al. Development of a new fault location system for multi-terminal signal transmission lines. IEEE Trans on Power Delivery. 1995, Vol.10, No.1: 159-168.
    [28] Girgis A, and Hart D G, and Peterson W L. A new fault location technique for two-and three-terminal lines. IEEE Trans on Power Delivery. 1992, Vol.7, No.1:98-107.
    [29] Novosel D, and Hart D G, and Udren E, et al. Unsynchronized two-terminal fault location estimation. IEEE Trans on Power Delivery. 1996, Vol.11, No.1:130-138.
    [30] 束洪春, 司大军等. 长输电线路电弧故障定位方法研究. 电力系统自动化. 2000, Vol.24, No.21: 27-39.
    [31] 陈祥训. Bd小波的滤波参数与小波变换快速算法. 电网技术. 1999, Vol.23, No.8:44-47.
    [32] 苏进喜, 解子风等.基于GPS的新型输电线路故障定位装置的研制. 电网技术.1998, Vol.23,
    
    No.6: 20-27.
    [33] C.Christopoulous, and D.W.P.Thomas and Prof.A.Wright. Signal processing and discriminating techniques incorporated in a protective scheme based on traveling waves. IEE.Proc. vol.136, Pt. C (5):pp79-88.
    [34] Prof.A.T.Johns and P.Agrawal. New approach to power line protection based on the detection of fault induced high frequency signals.IEE.Proc.vol.137, Pt.C(4):pp307~314.
    [35] Q.Zhang, and Y.Zhang, and W.Song . Transmission line fault location for phase-to-earth fault using one-terminal data,IEE.Proc-Gener.Transm.Distrib. Vol.146,No.2:121-124.
    [36] 陈平, 徐丙垠等. 一种利用暂态电流行波的输电线路故障测距方法. 电力系统自动化. 1999, Vol.23, No.14: 29-32.
    [37] 董新洲, 葛耀中等. 输电线路行波保护的现状与展望. 电力系统自动化. 2000, vol.24, No:10, 56-61.
    [38] 邓军波, 施围. 输电线路接地故障行波测距新方法. 继电器. 2000, Vol.28, No.8: 16-18.
    [39] 杨福生. 小波变换的工程分析与应用. 北京, 科学出版社, 1999.
    [40] 崔锦泰. 小波分析导论. 西安, 西安交通大学出版社,1997.
    [41] 楼顺天, 李博菡. 基于MATLAB的系统分析与设计—信号处理. 西安, 西安电子科技大学出版社, 2000.
    [42] 胡昌华. 基于MATLAB的系统分析与设计—小波分析. 西安, 西安电子科技大学出版社, 2000.
    [43] 董绍平, 陈世耕. 数字信号处理基础. 哈尔滨, 哈尔滨工业大学, 1996.
    [44] 刘万顺. 电力系统故障分析. 北京, 中国电力出版社, 1998.
    [45] 高电压技术. 重庆, 重庆大学出版社.
    [46] 贺家李. 电力系统继电保护原理. 水利电力出版社, 1985.
    [47] 董新洲, 葛耀中等. 输电线路行波保护的现状与展望. 电力系统自动化.Vol:24, No. 10:
    56 -61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700