基于结构—土相互作用的高填方锚索桩板墙设计理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚索桩板墙是一种新型支挡结构,主要由桩、锚索和挡土板构成。与悬臂式桩板墙相比,桩的受力状态得到改善,应用高度明显提高,具有显著的技术经济优势,已经在公路、铁路及水利建设项目中得到了较广泛的应用。但是目前对该结构的研究远落后于工程应用,锚索桩板墙应用不当造成破坏的现象时有发生。在此背景下,本文结合现场试验对高填方锚索桩板墙结构进行了系统的研究,深入分析了该结构的工作机理及受力特性,构建了结构-土的相互作用力学模型并提出了更加合理、完善的设计计算方法。本文取得的研究成果对该类结构的进一步发展和推广应用有重要的理论和工程实际意义。
     本文首先对锚索桩板墙结构进行了简要的分析,阐述了锚索桩板墙的各组成部分的工作特点。通过分析发现锚索桩板墙结构的最终的内力及变形与施工过程有着密切的关系,不同的工况将导致不同的结构的内力及变形。基于结构-土的相互作用分析,建立了各施工工况的锚索桩板墙的力学计算模型并提出了新的锚索桩板墙的计算方法——“增量法”,该方法可计算各工况的结构反应。
     分析了两个不同地层条件下的锚索桩板墙现场试验结果,研究了结构受力性状随施工过程的变化规律。着重分析了两个试验工点的结构内力和变形随着填土过程和锚索张拉施工的变化规律,总结了锚索、桩和填土之间的相互作用关系。锚索张拉工况的现场试验结果与弹性地基梁计算结果吻合较好,验证了在锚索张拉时桩土系统符合竖向弹性地基梁模型的特性。将两个现场试验的结果对比,总结了不同的地层条件下结构的不同反应特性。
     论文采用ABAQUS有限元软件建立了二维计算模型并对锚索桩板墙试验工点的的施工过程进行了模拟分析,研究了不同施工阶段锚索桩板墙结构和填土的应力状态的变化及变形规律。模拟结果表明:在锚索张拉后,改变了填土的应力状态,限制了填土内塑性区的持续发展;锚索张拉锁定后的填土塑性区以新的填土面开始发展。
     论文根据现场试验及数值分析成果,提出了土压力在各工况的分布模式并给出了完整的增量法计算过程。采用增量法对试验工点进行了反算,反算结果与试验结果吻合较好,证明了本文提出方法的合理性。关于锚索拉力设计值的确定,建议根据不同地层条件以静止土压力的(0.4~0.7)倍取值。
     最后,根据不同地层的锚索桩板墙的受力特性,提出了不同地层条件下的高填方锚索桩板墙“桩-土刚度匹配”的设计原则,即当地层刚度较小和较大时分别采用“强锚弱桩”和“强桩弱锚”的桩锚搭配关系。总结归纳了锚索桩板墙的设计流程及步骤。列举了某高速公路的高填方路基锚索桩板墙应用实例的以供参考,同时对某个锚索桩板墙的破坏原因进行分析,总结了经验及设计注意事项。
Anchored soldier pile and lagging wall consisting of pile, ground anchor and concrete lagging is a new type of retaining wall to retaining high fill embankment. Compared to cantilever soldier pile and lagging wall, load bearing of pile is greatly improved and the wall became higher than other type wall for the usage of anchor. With significant technical and economic advantages, this structure has been widely used in freeway, rail way construction and water conservancy project. But the theoretical research of the structure is far behind of its engineering application, Anchored soldier pile and lagging wall damage occurs at times for improper application. On this background,a systematic study of the structure was made in this paper . The working mechanism and the mechanical properties of this structure were studied. Then the mechanical model was erected based on structure-soil interaction and a more rational, suitable calculation method was proposed. The achievements of the study on the structure have significant theoretical and practical value for further application of the wall in the future.
     First of all, through briefly analysis of the structure, the working characteristics of the each component of the structure was discussed. It was recognized that the final inner force and displacement was influenced by the process of the construction, namely the different case conditions would result in different inner force and displacement. Based on the soil-structure interaction, the mechanical calculation model of different construction stage was established which can calculate the change of structural reaction. The new Calculation method named "incremental method" was proposed.
     The results of two filed test with different geologic conditions were analyzed and the characters of the structure reaction during the construction process was studied. Consequently, the change law of the pile inner force, displacement and anchor force was emphatically analyzed. The results of field tests also demonstrated that final inner force and deformation of piles was closely related with construction processes. It was confirmed that the pile-soil system was in good accordance with beam on vertical elastic Foundation model characteristics by the conformance between datum from test and results from calculation of model of the beam on elastic Foundation when anchor stressing. Results of the two field test demonstrated that the structure under different geologic conditions have different behavior.
     The 2D analysis of one of field tests work was conducted by ABAQUS FEM software and its construction processes was simulated to study the reactions of the structure and backfill. The simulation results showed that the stress state of backfill was changed and its sustainable development of the plastic zone of the backfill was constrained once the anchor was locked-off. The development of new plastic zone of subsequent filling would start at the locked-off plane.
     On the basis of the field test and numerical analysis conclusions,the distribution of the earth pressure in each stage was put forward and the complete calculation process of the incremental method was given. Then one of field test wall was calculated by the incremental method and the good agreement between the tests results and calculation result proved the correctness of the incremental method proposed in this paper. For the value of the anchor force, it was suggested that the total pull force can be determined by (0.4~0.7) E0 according to different strata conditions. E0 stands for the general rest earth pressure.
     Finally, according to mechanical characteristics of different strata conditions, the basic design principles of the wall were presented, called "pile-soil stiffness matching" design method. When the stiffness of the strata where the pile was embedded is weak, the weak stiffness of the pile and more anchors should be taken. Otherwise, the strong pile should be designed. Furthermore the design process and steps of anchored soldier pile and lagging wall was summarized and an application of the wall for high fill embankment in some freeway was introduced for future reference as well as a damaged anchored soldier pile was analyzed. Lessons and the points for attention to be drawn for the future design.
引文
[1]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社, 2004: 170.
    [2]李海光等.新型支挡结构设计与工程实例[M].北京:人民交通出版社, 2004: 336-340.
    [3] Office G C. Guide to Retaining Wall Design (2nd Edition)[M]. Hong Kong: Civil Engineering Department, 1993: 101.
    [4] TB1005-2006,铁路路基支挡结构设计规范[S].北京:中国铁道出版社, 2006.
    [5]罗维宏,杨顺臻,王兴国.预应力锚索桩板墙的实际应用[J].云南交通科技. 2003(04).
    [6]卢昌松.路肩式预应力锚索桩板墙数值模拟分析[J].路基工程. 2009(03): 110-112.
    [7]李罗年.预应力锚拉式桩板墙的施工技术[J].铁道建筑技术. 1999(05).
    [8]和昆.元磨高速公路锚索桩板墙的破坏原因及加固[J].路基工程. 2009(04): 214-216.
    [9]吴宗俭.衡重式挡土墙[J].土木工程学报. 1960(02).
    [10]龙国英.旧横石整板式锚杆挡墙的试验介绍[J].铁道工程学报. 1990(03).
    [11]成昆铁路技术总结委员会.成昆铁路[M].北京:人民铁道出版社, 1998: 358.
    [12] Shailendra N. Endley W A D D. Performance of an Anchored Sheet-Pile Wall[C]. Denver, Colorado,U.S.A: the Geo-Institute of the American Society of Civil Engineers, 2000.
    [13] Xanthakos P P. Ground anchors and anchored structures[M]. New York: 1991: 686.
    [14] Dan Thome T R J W.‘O’Street Anchored Precast Lagging and Soldier Pile Retaining Wall[C]. Dayton, Ohio: 2001.
    [15] Terzaghi K. Record earth pressure testing mechine[J]. Engrg News Record. 1932, vol.109((sept.29)): 365-369.
    [16] Terzaghi K. "Large retaining-wall tests;Ⅰ-Pressure of saturated sand,"[J]. Engineering News Record. 1934, vol.112(february.1): 136-140.
    [17] Darwin G H. On the horizontal thrust of a mass of sand[C]. 1883.
    [18] Whiffin A C. The pressures generated in soil by compaction equipment[J]. In Proceedings of Symposium on Dynamic Testing of Soils. American Society for Testing and Materials, Special Technical Publication.No.156. 1953: 186-210.
    [19] Rowe P W. A stress-strain theory for cohesionless soil with applications to earth pressures at rest and moving walls[J]. Géotechnique. 1954, 4: 70-88.
    [20] Darevskii V. Practical method for determining earth pressure on retaining walls considering their deformations and displacements[J]. Power Technology and Engineering (formerly Hydrotechnical Construction). 1978, 12(10): 1021-1028.
    [21] Forssblad L. Investigations of Soil Compaction by Vibration, ACTA Polytechnica Scandinavia, Civil Eng. and Building construction Series No. 34, Ci 34, UDC 624.138.22, Royal Swedish Acad. Of Eng. Sciences, stockholm. [J]. 1965.
    [22] Davies J D, Stephens G L. Pressure of granular materials tests on model container[J]. Journal of concrete and construction engineering. 1966.
    [23] Terzaghi K, Peck R B. Soil mechanics in engineering practice [by] Karl Terzaghi [and] Ralph B.Peck.[M]. 2d ed. ed. New York: 1967: 729.
    [24] D'Appolonia D, D'Appolonia E. Determination of the maximum density of cohesionless soils [Z]. Haifa: 1967226-231.
    [25] Broms B B, I. I. Erath pressure against the abutment of a rigid frame bridge[J]. Geotechnique. 1971, 21(l): 15-28.
    [26] Youd T L. Compaction of sands by repeated shear straining[J]. Journal of soil mechanics and Foundation division Am,Soc. Civ. Engrs 98, SM7. 1972.
    [27] Casagrande L. Continents of conventional design of retaining struetures[J]. Soil Mechanics and Foundations Division, ASCE. 1973, Vo1.99, No.SM2: 181-198.
    [28] Jones C J F. Field measurements of earth pressure against motorway retaining walls and bridge abutments[Z]. Londo: 1973.
    [29] Aggour M S, Brown C B. The prediction of earth pressure on retaining walls due to compaction[J]. Géotechnique. 1974, 24(4): 489-502.
    [30] Matsuo M K S A. Experimenusstudy on earth pressure of retaining wall by field tests[J]. Soils and Foundation. 1976, 18(3): 27-41.
    [31] Fukuoka M, Akatsu T, Datagiri S, et al. Earth pressure measurements on retaining walls[C]. tokyo: 1977.
    [32] Carder D R, Pocock R G, Murray R T. Experimental retaining wall facility-lateral stress measurements with sand backfill[J]. Transportation and Road Research Laboratory Report 766, Crowthorne, Berkshire. 1977.
    [33] Ingold T S. The effects of compaction on retaining walls [J]. Geotechnique. 1979, 29(3): 265-283.
    [34]克列因ΓK,陈万佳译.散粒体结构力学[M].北京:人民交通出版社,1983.
    [35] Sherif, M. A., Fang, Y. S., and Sherif, R. I. . Ka and Ko behind rotating and nonyielding walls[J]. Geotech. Engrg. 1984.
    [36] Duncan, J. M., and Seed, R. B. . Compaction-induced earth pressures under Ko-conditions[J]. Geotech. Engrg. 1986, 112(1): 1-22.
    [37] Peck, R. B., and Mesri, G. Discussion of 'Compaction-induced earth pressure under Ko-condition[J]. Geotech. Engrg. 1987, 113(11): 1406-1408.
    [38] Duncan J M W G. "Estimation earth pressures due to compaction."[J]. Geotech. Engrg. 1991, 117(12): 1833-1847.
    [39] BSI.BS 8002:1994 ,Code of Practice for Earth Retaining Structures [S].
    [40] Tsang-Jiang C Y F M. Earth Pressure due to Vibratory Compaction[J]. J. Geotech. and Geoenvir. Engrg. , 134(4): 437-444.
    [41] Budin A Y A D. Quays Handbook[M]. Moscow (in Russian): 1979.
    [42] Spilker, A. Mitteilung uber die messung der kraft in einer baugrubenaussteifung[M]. Die Bautechnik, Vo1.15, No.l, 1937, pp.16~18 and No.12, pp150-151..
    [43] Klenner, C.. Versucheüber die Verteilung des Erddruckesüber die W?nde ausgesteifter Baugruben[M]. Die Bautechnik 19 (1941), No. 29, p. 316.
    [44] Terzaghi, K. and Peck, R. B. Soil Mechanics in engineering practice. 2.ed[M]. New York,Wiley. 1967. p729.
    [45] Peck, R. B. Deep excavations and tunneling in soft ground. [C]. International Conference on Soil Mechanics and Foundation Engineering, 7. Mexco. State-of-the-art volume, 1969, pp. 225-290.
    [46] Macnab, Alan. Earth Retention Systems Handbook[M]. New York: McGraw-Hill, 2002.
    [47] Rowe, P.W. Anchored sheet-pile walls[C]. Institution of Civil Engineers, London. Proceedings. Vol.1, 1952. pp. 27-70.
    [48] Rowe, P. W. .A Civil Engineers, theoretical and experimental analysis of sheet-pile walls[C]. Institution of Irondon. Proceedings. Vo1.4, 1955. pp. 32-69.
    [49] Rowe, P.W. Sheet-pile walls encastre at the anchorage[C]. Institution of Civil Engineers, London. Proceedings. Vol.4, 1955. pp. 70-87..
    [50] Rowe, P. W. Sheet-pile walls at failure[C]. Institution of Civil Engineers, London. Proceedings. Vol.5, 1956. pp. 276-315.
    [51]刘晓立,严驰,吕宝拄,陈宝珠.柔性挡墙在砂性填土中的土压力试验研究[J].岩土工程学报,Vol.21,No.4, 1999, pp.505~508.
    [52]张金民,曾进群.桩锚挡墙支护体系挡板土压力的试验研究[J].地下空间. 2002, 22(01): 55-60.
    [53]窦斌,梅利芳,范瑛等.高填方路堤互锚式薄壁挡土墙土压力试验研究[J].地质科技情报. 2003, 22(3): 109-112.
    [54]何昌荣,陈群,富海鹰.两种支挡结构的实测和计算土压力[J].岩土工程学报. 2000(01).
    [55]甘建国,李志勇,邓宗伟.预应力锚索桩板墙受力现场测试与计算研究[J].公路工程. 2007, 32(5): 105-109.
    [56]蒋楚生等.广大铁路高路堤锚索桩板墙科研试验工程研究报告[R].成都:铁道部第二勘测设计院, 1997.
    [57]铁道部第二勘测设计院.复杂地质艰险山区修建大能力南昆铁路干线成套技术[M].成都:电子科技大学出版社, 2000.
    [58]富海鹰,何昌荣.新型预应力锚拉式桩板墙的原型观测分析[J].岩土工程学报. 2005, 27(09).
    [59] Steel U S. Steel Sheet Piling Design Manual[M]. 1984.
    [60] Tsinker G P. Anchored Sheet-Pile Bulkheads: Design Practice[J]. Journal of Geotechnical Engineering. 1983, Vol. 109(No. 8): 1021-1038.
    [61] Roger L. Brockenbrough E K J B. Highway engineering handbook :building and rehabilitating the infrastructure[M]. New York: McGraw-Hill, 2003.
    [62] JTJ 292-98,板桩码头设计与施工规范[S].北京:人民交通出版社, 2001.
    [63] Don C. Warrington P E V I. Anchored Sheet Pile Wall Analysis Using Fixed End Method Without Estimation of Point of Contraflexure.
    [64] Clayton C R I, Milititsky J. Earth pressure and earth-retaining structures[M]. london: Surrey University Press, 1986: 179-211.
    [65]陈万佳.港口水工建筑物.第一版[M].北京:人民交通出版社, 1995: 139-174.
    [66] Engineers D O T A. DESIGN OF SHEET PILE WALLS[M]. Washington, DC: 1994.
    [67]杨光华.深基坑支护结构的实用计算方法及其应用[M].北京:地质出版社, 2004.
    [68] Headquarters, U.S. Army Corps of Engineers. User’s guide: Computer program for Winklersoil-structure interaction analysis of sheet-pile walls (CWALSSI)[M]. Washington DC: Engineer Manual 1110-2-2504, 1994.
    [69]陈新.多点锚拉桩板墙的变形约束计算法[J].四川大学学报(工程科学版). 1997(05).
    [70]何昌荣,李彤.南昆线锚拉式桩板墙的弹性约束地基系数法[J].路基工程. 2002(06).
    [71]何昌荣,李彤,富海鹰.新型预应力锚拉式桩板墙的弹性约束地基系数法[J].岩石力学与工程学报. 2003, 22(07): 1196-1202.
    [72]富海鹰,何昌荣,陈群.预应力锚拉式桩板墙的二维有限元计算[J].西南交通大学学报. 2003(04).
    [73]何昌荣,李彤,陈群等.新型预应力锚拉式桩板墙的三维有限元计算分析[J].岩石力学与工程学报. 2003.
    [74]程良奎.岩土锚固的现状与发展[J].土木工程学报. 2001(03).
    [75]张乐文,李术才.岩土锚固的现状与发展[J].岩石力学与工程学报. 2003.
    [76]张金民,曾进群.桩锚挡墙支护体系挡板土压力的试验研究[J].地下空间. 2002(01).
    [77]魏业清,张林洪.考虑土拱效应的桩板墙挡板设计[J].科学技术与工程. 2008(21).
    [78]秦立科,王晓谋,李云璋.基于水平土拱效应的桩间挡土板土压力计算研究[J].工程地质学报. 2009(02).
    [79]闫莫明,徐祯祥,苏自约.岩土锚固技术的新进展[M].北京:人民交通出版社, 2000.
    [80]刘金砺编著.桩基础设计与计算[M].北京:中国建筑工业出版社, : 305.
    [81] Reese L C. Analysis of Laterally Loaded Piles in Weak Rock[J]. Journal of Geotechnical and Geoenvironmental Engineering. 1997, 123(11): 1010-1017.
    [82] Raes P E. Theory of Lateral Bearing Capacity of Piles[C]. 1936.
    [83] Broms B B. Lateral Resistance of Piles in Cohesive Soils,Proc,J.Soil Mechnics and Foundation Engng Div.v ASCE,1964,90(2):27~63[M].
    [84] Broms B B. Lateral Resistance of Piles in Cohesionless Soils,Proc,J.Soil Mechnics and Foundation Engng Div.ASCE,1964,90(3):123~156[M].
    [85] Broms B B. Design of Laterally Loaded Piles[C]. Proc, J.Soil Mechnics and Foundation ASCE,1965,91(3):79~99.
    [86]物部长穗.土木耐震学(改订版).理工图书[M]. 1952.
    [87]日本港湾协会.港湾构造物设计基准[M]. 1971: 2-5.
    [88] Chang,Y.L. Discussion on Lateral Pile Loading Tests by Feagin[M]. Trans,ASCE,1937,272~278.
    [89]赵明华主编.土力学与基础工程[M].长沙:湖南科学技术出版社, 1996: 297.
    [90]久保浩一.杭の横抵抗の新しじ计算法.港湾计算研究报告[R]. 1964.2(3).
    [91]横山幸满[日].桩结构物的计算方法和计算实例,唐业清,吴庆荪译[M].北京:中国铁道出版社, 1984: 337.
    [92]吴恒立编.计算推力桩的综合刚度原理和双参数法[M].北京:人民交通出版社, 2000: 188.
    [93]铁道部第一勘测设计院.铁路工程设计技术手册,路基[M].北京:中国铁道出版社, 1991: 519.
    [94] Gunaratne, Manjriker. The foundation engineering handbook[M]. Boca Raton, FL : CRC/Taylor & Francis, 2006: 608.
    [95] McClelland B,Focht J A. Soil Modulus for Laterally Loaded Piles[M]. Transactions, ASCE, 1956, 182(4): 1~22.
    [96]叶万灵,时蓓玲.桩的水平承载力实用非线性计算方法——NL法[J].岩土力学. 2000(02).
    [97]杨克己.实用桩基工程[M].北京:人民交通出版社, 2004: 261.
    [98]王恭先等.滑坡学与滑坡防治技术[M].北京:中国铁道出版社, 2004.
    [99]王成,邓安福.水平荷载桩桩土共同作用全过程分析[J].岩土工程学报. 2001(04).
    [100] JTJ250-98,港口工程桩基规范[S].北京:人民交通出版社, 2001.
    [101]钱家欢,殷宗泽主编.土工数值分析[M].北京:中国铁道出版社, 1991: 302.
    [102] Muir Wood D. Geotechnical modelling[M]. London : Spon Press, 2004: 488.
    [103]李中国.预应力锚索框架在路堑边坡病害防治中的应用研究[D].铁道部科学研究院;, 2005.
    [104]中国铁道科学研究院.高等级公路建设边坡病害防治技术研究[R]. 2004.
    [105]焦志斌,刘永绣.地下连续墙测试中弯矩的计算方法探讨[J].岩土工程学报. 2006, 28(z1): 1485-1488.
    [106]李中国.预应力锚索框架在路堑边坡病害防治中的应用研究[D].铁道部科学研究院;, 2005.
    [107]殷世华.岩土工程安全监测手册[M].北京:中国水利水电出版社, 2008: 946.
    [108] Hannon J B, Jackura K A. MEASUREMENT OF EARTH PRESSURE[J]. Transportation Research Record. 1985(1004): 6-13.
    [109]阮波,冷伍明,李亮.土压力非线性分布的研究[J].长沙铁道学院学报. 2001(04).
    [110]姚代禄.挡土墙土压力非线性分布的研究[J].重庆交通学院学报. 1984(03).
    [111]刘金龙,陈陆望,栾茂田.挡土墙土压力非线性分布的计算方法研究[J].重庆建筑大学学报. 2008(04).
    [112]著傅永华.有限元分析基础[M].武汉:武汉大学出版社, 2003: 197.
    [113]龚晓南主编.土工计算机分析[M].北京:中国建筑工业出版社, 2000.
    [114] H.D. Hibbitt, B.I. Karlsson, E.P. Sorensen, ABAQUS User Manual, Version 6.8[M]. USA, 2008.
    [115]王金昌,陈页开编著. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社, 2006: 318.
    [116]陈希哲编著.土力学地基基础[M].北京:清华大学出版社, 1998.
    [117] JGJ94-2008,建筑桩基技术规范[S].北京:中国建筑工业出版社, 2008.
    [118] TB10002.5-2005,铁路桥涵地基和基础设计规范[S].北京:中国铁道出版社, 2005.
    [119] JTG D30-2004,公路路基设计规范[S].北京:人民交通出版社: 2004.
    [120]秦立科,王晓谋,李云璋.基于水平土拱效应的桩间挡土板土压力计算研究[J].工程地质学报. 2009(02).
    [121]叶晓明.柱板结构挡土墙板上的土压力计算方法[J].地下空间. 1999(02).
    [122]叶晓明,陈剑锋,张志虎.柱板结构挡土板压力与跨度分析[J].重庆建筑大学学报. 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700