足尺路面加速加载试验系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着公路运输量的日益增长和和大吨位车辆急剧增加,尤其是高等级公路交通的渠化运行,相当数量高速公路在通车几年后就发生如车辙、龟裂、波浪、坑洞等早期破坏,在重载交通条件下甚至3-5年左右即发生严重的结构破坏,影响了路面的使用性能和寿命,又给公路建设事业造成了巨大的经济损失,为了研究路面的合理结构及破坏机理,降低施工和维护成本,优化道路性能指标,本文通过对加载车虚拟样机动力学分析与运动学分析的基础上,研究了不同加载模式下路面不平度、速度、胎压和轴载对车辆动载荷的影响,设计制造了足尺路面加速加载试验系统,利用该系统能真实模拟车辆在路面上行驶状况,并通过可控轴载的快速加载方式加速道路损坏。
     首先通过对足尺路面加速加载试验系统虚拟样机运动学和动力学分析,得出了单双轴作用下的速度、加速度、位移及力学变化。分析结果表明虚拟样机运行状态符合足尺路面加速加载试验系统运行要求,按照虚拟样机进行实体制作足尺路面加速加载试验系统,能够满足系统要求;虚拟样机在加载过程中,加载速度,加速度等参数均有波动,而且加载轮到稳定加载需要一定的过程。因此在实际加载中,要得到稳定的加载,需-定时间的延时。单轴加载时,加载过渡过程时间约为1.05s,而双轴加载过渡过程约为0.6s,为足尺路面加速加载试验系统设计提供理论基础。
     其次通过建立的足尺路面加速加载单双轴加载模型,研究了轴载、胎压、加载车运行速度和路面不平度对加载车动载荷的影响,建立了加载车动载荷与各影响因素的函数关系。在静态加载下,单轴加载和双轴加载时加载车对路面动载荷随轴载的增加而呈比例增加,而随胎压几乎不变;在动态加载模式下,单轴加载和双轴加载时加载车对路面动载荷与轴载呈指数关系,与波长呈对数关系,与胎压关系不大,与加载车运行速度近似呈指数关系;在利用足尺路面加速加载试验系统时,采用双轴加载模式的效率近似为单轴加载模式的1.5倍。
     再其次通过提出的基于接触角反推法设计了足尺路面加速加载试验系统踏面,设计的踏面形式使足尺路面加速加载试验系统在运行过程中,接触点分布均匀,磨耗小。
     然后利用双轴八轮、椭圆形曲线加直线导轨、非接触式横移等众多专利技术,自主开发设计了足尺路面加速加载试验系统。该试验系统在交通部西部交通科技等项目的支持下对山东交通学院加速加载试验中心试验路段进行了870506次单轴(轴载180KN)加载和198563次双轴(轴载360KN)加载的可靠性试验,表明该系统具有良好的可操作性、可维护性和较高的可靠性。
     最后借助足尺路面加速加载试验系统,通过铺筑具备动力响应观测条件的柔性基层足尺直道试验路,进行结构模拟实验。根据试验结果构建了路面动力响应与车速、轴载的经验关系模型,分析了单轴和双轴状态下车速、轴载、胎压等参数对路面结构动力响应的影响规律。在行车荷载作用下,沥青面层底部应变响应呈拉压应变交变状态,车轮到来和离去时,呈现压应变状态,且车轮离去时产生的压应变较车轮到来时产生的压应变明显偏小;车轮到达时,呈现拉应变状态,拉应变大于车轮到达前的压应变。在试验温度下,最大压应变、最大拉应变和应变幅值均随轴载的增加呈指数关系增大。车速显著影响沥青层层底应变响应,但对竖向压应力影响不大,仅影响应力的脉冲持续时间;随车速增加,应力脉冲时间缩短,面层底部应变响应减小;重载车辆在低速行车时对路面的破坏作用更严重,但胎压对面层底部应变和土基顶竖向压应力影响较小。
With the increasing of highway transportation volume and large tonnage vehicles, especially the high-grade highway channelization run, quite number of highway faced to the early damage of pavement structure after a few years such as rutting, cracking, wave and potholes. Even under heavy traffic conditions, serious structural damage will be occurred3-5years around, which not only affects the performance and life time of the road surface, but also causes huge economic losses. In order to study the reasonable structure and failure mechanism of the road surface, reduce construction and maintenance costs, optimize road performance, dynamics analysis and kinematics analysis for the loading vehicle virtual prototype are researched. The effects of pavement roughness, velocity, tire pressure and axle load on vehicle dynamic load are studied in different loading pattern. Finally, a full-scale pavement accelerated loading testing system is designed and developed, which can simulate the driving conditions of the vehicles on road and through controlled application of wheel loading to a layered pavement structure to accelerate road damage.
     At first according to the dynamics analysis and kinematics analysis for the loading vehicle virtual prototype, the variant curves of the velocity, acceleration, displacement and mechanical can be obtained in uniaxial loading and biaxial loading. The analysis results show that the running condition of the virtual prototype accord with operation requirement of the full-scale pavement accelerated loading testing system. The velocity and acceleration of the loading vehicle are all changed during the simulation of the virtual prototype, and what's more, a delay time is needed in order to get stable loading. In uniaxial loading pattern, the transient time is about1.05s, while in biaxial loading pattern is about0.6s, which can provide a theoretical basis for full-scale pavement accelerated loading testing system design.
     The affects of pavement roughness, velocity, tire pressure and axle load on vehicle dynamic load are researched according to the uniaxial and biaxial loading model. The function is established among the vehicle dynamic load and the affect factors. In the static loading pattern, the vehicle dynamic load increases in proportion with the axle load, but increases almost unchanged with the tire pressure. In the dynamic loading pattern, the vehicle dynamic load increases in exponential relationship with the axle load and velocity, increases in logarithmic relationship with the wavelength, but increases almost unchanged with the tire pressure. The efficiency in biaxial loading pattern is approximately1.5times of the uniaxial loading pattern when the full-scale pavement accelerated loading testing system is used.
     Unique design method for wheel-rail contact angle curve is proposed to design the loading wheel tread. The contact points are well distributed and the profile has a small abrasion during the operation of the full-scale pavement accelerated loading testing system.
     The self-development full-scale pavement accelerated loading testing system adopts lot of patent technology such as double-axis eight-wheel, ellipse curve and linear guide, non-contact traverse. The system has been run870,506times single axis (axle load180KN) load and198,563times biaxial (axle load360KN) load tests in Shandong Jiaotong University Accelerated Loading Testing Center, which shows that the system has a good operability, maintainability and higher reliability.
     Finally, through paving flexible base full-scale straight test road which embedded asphalt strain gauge at the bottom of asphalt layer, structural simulation experiment was conducted using full-scale pavement accelerated loading testing system. Based on the experiment result, the experience relationship model is constructed of the dynamic response for pavement structures with the axle load and velocity. The dynamic response rule is also analyzed in the uniaxial and biaxial pattern. As the loading vehicle running, there is not only tensile strain but also compressive strain at the bottom of the asphalt layer. The compressive strain is occurred as the loading vehicle arrival or departure, and the value of the compressive strain is bigger in arrival. As the loading vehicle passes, the tensile strain is occurred. At the test temperature, the maximum compressive strain, the maximum tensile strain and strain amplitude are all in exponential relationship with the axle load. Velocity affects the strain response at the bottom of surface layer significantly, but it has little influence on the vertical compressive stress, and affects the stress pulse duration only, and the stress pulse duration and strain response at the bottom of surface layer reduce with the increase of velocity. The destroy degree of pavement is more serious in low velocity and heavy load, but tire pressure has little influence on the strain at the bottom of surface layer and the vertical compressive stress at the top of subgrade.
引文
[1]孟书涛.沥青路面合理结构的研究[D].南京:东南大学,2004
    [2]易泽,刘涛,邬春龙,等.浅谈高速公路工程水土保持监测中测钎法应用[J].交通建设与管理,2011,9,90-91
    [3]张丽娟.基于蠕变试验的沥青混合料本构关系及车辙预估方法研究[D],广州:华南理工大学,2009
    [4]申爱琴,王娜,李明国,等.高速公路SMA混合料高温稳定性及影响因素[J],长安大学学报(自然科学版),2006,,26(1):]-7
    [5]张肖宁.沥青路面施工质量控制与保证[M],北京:人民交通出版社,2009
    [6]公路沥青路面设计规范,JTG D50-2004
    [7]腾旭秋.柔性基层沥青路面设计性能预估模型研究[D].2009,长安大学
    [8]管志光,林明星,王旭光,等.足尺路面加速加载控制系统及试验研究[J],山东大学学报(工学版),2011,41(5),121-126
    [9]管志光,庄传仪,林明星.足尺沥青混凝土路面加速加载动力响应[J],交通运输工程学报,2012,12(2),,24-31
    [10]K.G.Sharp. Full scale accelerated pavement testing:A southern hemisphere and Asian perspective. Second International Conference on Accelerated Pavement Testing.2004
    [11]S.F.Brown.Dsc,Feng,FICE.Accelerated pavement testing in highway engineering[J]. Proceedings of the Institution of Civil Engineers Transport,2004,3,173-180
    [12]Zhiguang Guan, Xuguang Wang,Jiwei Zhang.et al.Design of full-scale highway accelerated loading testing,ICEMI2009,289-291
    [13]AASHTO Guide for Design of Pavement Structures,1993
    [14]钱国平,张智蔚,陈强.基于超声波测试技术的沥青路面表面裂缝评价方法[J],中外公路,2006,26(3),79-82
    [15]Mactutis J.A.,Alavi S.H.,Ott W.C.Investigation of relationship between roughness and pavement surface distress based on WesTrack project[J], Transportation Research Record,2000,107-113
    [16]Terry M. Mitchell. Westrack full-scale test track:interim finding. Federal Highway Administration, HNR-30.1998
    [17]John B. Metcalf. Application of full-scale accelerated pavement testing, Nation Academy Press, Washington, D. C.,1996
    [18]宋文宇.路基冻土环境的数值模拟及温度控制系统的优化设计[D],黑龙江:哈尔滨工业大学,2010
    [19]孙程光,张光勇.美国NCAT环道试验的研究发现(2000年—2010年),西南公路,2012,1,71-77
    [20]Raymond Buzzi Powell. Predicting field performance on the 2000 NCAT pavement test track, degree of doctor of auburn[R], Alabama,2006
    [21]Andrew Dawson. Improvements in pavement research with accelerated load testing.European Union Action COST 347,2003
    [22]李传林.基于内部传感测量的沥青路面结构试验方法研究[D],西安:长安大学,2008
    [23]Metcalf J B. Application of full-scale accelerated pavement testing. synthesis of highway practice 235, NCHRP Synthesis 235, TRB. Washington:D C:NATIONAL ACADEMY PRESS,1996
    [24]许新权.基于APT的重载交通沥青路面结构研究[D],西安:长安大学,2008
    [25]张鹏,国兴玉,王旭光,等.足尺路面加速加载试验设备技术研究[J],山东交通学院学报,2011,19(4).41-45
    [26]Edward H. Guo. Understanding pavement behavior by using mechanistic modeling and full scale data[C].NCHRP Report,2007,523-527
    [27]李鹏飞.路面材料加速加载自动实验车的研究[D],黑龙江:哈尔滨工业大学,2011
    [28]郝培文.足尺加速加载设备简介[J].公路,1993,1,47-48
    [29]梅芳,李琳,孟书涛,等.足尺路面加速加载试验系统在我国的应用[J],公路交通科技,2010,12.169-172
    [30]陈少幸,张肖宁,孟书涛,等.基于ALF加速加载试验的沥青层疲劳损伤[J],公路交通科技,29(1),18-22
    [31]董忠红,徐全亮,吕彭民.基于加速加载试验的半刚性基层沥青路面动力响应[J],中国公路学报,2011,24(2),1-5
    [32]陈飞,孟书涛.沥青路面抗车辙加速加载试验研究[J],中外公路.2011.31(3),77-81
    [33]苏凯,王春晖,周刚,孙立军.基于加速加载试验的沥青路面车辙预估研究[J],同济大学学报(自然科学版),2008,36(4),493-497
    [34]Long Fenella, Harvey John, Scheffy Clark,et al. Prediction of pavement fatigue for California department of transportation accelerated pavement testing program drained and undrained test sections[J], Transportation Research Record,1996,1540,105-114
    [35]Jones D., Harvey J.T., Bressette T. An overview of an accelerated pavement testing experiment to assess the use of modified binders to limit reflective cracking in thin asphalt concrete overlays[C],6th RILEM International Conference on Cracking in Pavements, Chicago, IL. United states,2008,45-54
    [36]Perez S.A., Balay J.M., Tamagny P.,et al Accelerated pavement testing and modeling of reflective cracking in pavements[J], Engineering Failure Analysis,2007,14 (8).1526-1537
    [37]Malysz Rodrigo.Investigation of thin pavements rutting based on accelerated pavement testing and repeated loading triaxial tests[J], Journal of Transportation Engineering,2011,138(2),141-148
    [38]Hugo Fred,De Vos, Eben R.,et al. Aspects of cement stabilized Mozambique sand base material performance under MMLS3 and MLS10 APT trafficking[C], SATC 2007-26th Annual Southern African Transport Conference:The Challenges of Implementing Policy,2007,821-844
    [39]张书立.足尺路面加速加载设备MLS66在辽宁省的应用[J],北方交通.,2012,3,1-7
    [40]Amy Epps Martin, M.ASCE; Lubinda F. Walubita,et al. Pavement response and rutting for full-scale and scaled APT[J], Journal of Transportation Engineering,2003,129(4),451-461
    [4]]申爱琴,郭寅川,车飞,殷伟,李耀龙.基于MMLS3试验的混合料离析对沥青路面长期高温性能的影响[J],中国公路学报,2012,25(3),80-86
    [42]孙旭峰.路面加速加载试验设备装配与使用技术[D].西安:长安大学.2011
    [43]贾倩,赵强,王勇.小型公路路面加速加载试验设备MMLS1/3[J],筑路机械与施工机械化,2009,8,78-80
    [44]潘友强,杨军.国内外足尺加速路面试验研究概况[J],中外公路,2005,25(6),137-140
    [45]杨艳.升降平台动力学分析[D],重庆:西南大学,2009
    [46]阎开印.基于多体系统意义下的机车车辆虚拟样机研究[D],四川:西南交通大学,2006
    [47]丁国富,邹益胜,张卫华,等.基于虚拟原型的机械多体系统建模可视化[J],793-799计算机辅助设计与图形学学报,2006,18(6)
    [48]Haug E J. Computer-Aided kinematics and dynamics of mechanical systems[J],Allyn and Bacon,Boston,1989
    [49]Kane T R, Likins P W, Levinson D A. Spacecraft dynamics. New York:McGraw-Hill Book Company,1983
    [50]Wittenburg J. Dynamics of systems of rigid bodies. Stuttgart:B. G. Teubner,1977
    [51]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M],北京:高等教育出版社,1989
    [52]袁士杰,吕哲勤.多刚体系统动力学[M],北京:北京理工大学出版社,1992
    [53]兰国冠,许文杰,郭磊,等.车辆荷载对公路路基的动力作用研究[J].成都大学学报(自然科学版),2010,29(4),346-348
    [54]郭毅之,金先龙,丁峻宏,等.不平整路面上的非稳定车流荷载研究及应用[J],岩土力学,2007,28(2),395-398
    [55]Haas R, HudsonW R. Pavement management system. Robert Kpieger Publishing Company,1994, 89-94
    [56]孙璐,邓学钧.车辆-路面相互作用产生的动力荷载[J],东南大学学报,1996,26(5),142-145
    [57]王鑫.车架柔性对重型载货汽车操纵稳定性、平顺性影响的仿真分析[D],吉林:吉林大学,2012
    [58]李未.轿车行驶平顺性的混合传递路径分析方法研究[D],吉林:吉林大学,2012
    [59]余雷,高玉龙.两种机车车轮踏面的应用分析[J],安徽机电学院学报,1999,14(3),41-43
    [60]王开云,翟婉明,蔡成标.两种类型踏面的车辆与轨道耦合动力学性能比较[J],西南交通大学学报,2002,37(3).260-264
    [61]卜庆萌,姚林泉.轮轨接触几何关系探讨[J],苏州大学学报,2011,27(3),79-84
    [62]任尊松.车辆系统动力学[M].北京:中国铁道出版社,2007
    [63]孟昭明.独立车轮踏面设计[D],大连:大连交通大学,2006
    [64]徐昭鑫.直轨道对对称轮对的几何约束,兼及等效斜度和重力刚度[J],中国铁道科学,1980,2,56-82
    [65]Law E.H.,Cooperrider N.K.Survey of railway vehicle dynamics research[J], Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1974,96 (2),132-146
    [66]钟晓波,沈钢.高速列车车轮踏面外形优化设计[J],同济大学学报(自然科学版),2011,39(5),710-715
    [67]沈钢,钟晓波.铁路车轮踏面外形的逆向设计方法[J],机械工程学报,2010,46(16),41-47
    [68]翟婉明.车辆一轨道耦合动力学[M]第二版,北京:中国铁道出版社,2002
    [69]陈果.车辆一轨道耦合系统随机振动分析[D],西南交通大学,2000
    [70]陈果.翟婉明,左洪福.车辆一轨道耦合系统垂横模型及其验证[J],振动与冲击,2001,20(4),16-21
    [71]倪平涛,王开文,张卫华,等.轮轨接触关系计算方法[J],交通运输工程学报,2006,6(4),10-13
    [72]I.Y. Shevtsov, V.L. Markine, C. Esveld. Design of railway wheel profile taking into account rolling contact fatigue and wear[J], Wear,2008,265,1273-1282
    [73]汪恩军,陈先桥,初秀民,等.车辙检测中超声测距数据采集方法[J],武汉理工大学学报,2008,30(1),138-141
    [74]ASTM E 1703-95:Standard testing method for measuring rut-depth of pavement surfaces using straightedge[S],American Society for Testing and Materials,Pennsylvania,USA,1995.
    [75]曹冰莹.激光路面检测车技术集成与开发研究[D],西安:长安大学,2006
    [76]毛志坚.金松涛,朱栋.浅析国内外路面车辙检测新技术[J],公路交通科技,2009,26(5),408-411
    [77]Gillespie T D. Sayers Mw:Hagan M RMethodology for Road Roughness Profiling and Rut Depth Measurement[R].The University of Miehigan,Transportation Research Institute,1987
    [78]马荣贵.沙爱民.宋宏勋.路面车辙多路传感器检测误差分析[J],长安大学学报(自然科学版),2007,27(3)34-41
    [79]温智源,贾圣东.基于点激光与线结构光的车辙仪对比[J],山西建筑,2010,36(3),350-351
    [80]Mallela R, Wang H.Harmonising automated rut depth measurements:stage 2, research report 277[R],Land Transport New Zealand,New Zealand,2006
    [81]陈念年,张佳成,范勇,等.一种高精度单点激光三角测距方法[J],计算机测量与控制,2010,18(5),984-986
    [82]林小倩,林斌,潘泰才.基于CMOS单点激光三角法测距系统[J],光学仪器,2006,28(2),27-30
    [83]马荣贵.马建,宋宏勋.路面车辙激光检测技术研究[J],筑路机械与施工机械化,2007,4,30-32
    [84]Laurent John, Talbot Mario,Doucet Michel. Road surface inspection using laser scanners adapted for the high precision 3D measurements of large flat surfaces[C].Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling.1997,303-310
    [85]Song Hongxun, Fang Cui.Study on the symmetric line-laser rut measurement[C], Proceedings of SPIE-The International Society for Optical Engineering,2010
    [86]傅珍.超载运输对路面结构的损伤研究[D].西安:长安大学,2004.
    [87]崔鹏,邵敏华,孙立军.长寿命沥青路面设计指标研究[J].交通运输工程学报,2008.8(3),37-42
    [88]刘大维,陈静,霍炜,等.车辆行驶速度对路面损伤的研究[J].农业机械学报,2003,34(1),11-13
    [89]董忠红,吕彭民.交通荷载下沥青路面结构动力响应理论研究[J].郑州大学学报(工学版),2007, 28(4),88-91,95.
    [90]张宏超,孙立军.沥青路面早期损坏的现象与试验分析[J].同济大学学报(自然科学版),2006,34(3),331-334
    [91]Siddharthan R V, Sebaaly P E, EL-Desouky M,et al. Heavy off-road vehicle tire-pavement interactions and response[J], Journal of transportation engineering,2005,131(3),239-247
    [92]郑南翔,牛思胜,许新权.重载沥青路面车辙预估的温度一轴重一轴次模型[J].中国公路学报,2009,22(3),7-13
    [93]GUAN Zhiguang, LIN Mingxing, WANG Xuguang,et al. Design on highway accelerated loading testing facility[C],Proceedings of the 2009 IEEE International Conference on Automation and Logistics,2009,253-257
    [94]ZHANG Jiwei,GUAN Zhiguang,WANG Xuguang. Design of loading pressure measuring circuit of highway accelerated loading[C],Proceedings of 9th International Conference on Electronic Measurement and Instruments,2009,386-390
    [95]管志光,王旭光,张吉卫.路面加速加载数据采集系统的设计[J].筑路机械与施工机械化,2011,,28(3),78-80,84
    [96]管志光,王旭光,张吉卫.路面加速加载试验设备控制系统的研究[J].山东交通学院学报,2010,18(2),59-61,84
    [97]颜利,周晓青,李宇峙,等.基于直道足尺车辙试验的沥青路面重载轴载换算方法研究[J].公路交通科技,2006,23(3),35-39.
    [98]杨永顺,王林,韦金城,等.重载作用下典型路面结构动态响应数据采集与分析[J].公路交通科技,2010,27(5),11-16
    [99]聂忆华.全柔式长寿命沥青路面(FF-LLAP)结构及其设计方法研究[D].湖南:中南大学,2008
    [100]Monismith C L, Long F. Overlay design for cracked and seated portland cement concrete (PCC) pavement—interstate route 710.Technical Memorandum TM UCB PRC 99-3[R], Berkeley: Pavement Research Center Institute for Transportation Studies, University of California,1999
    [101]Chang Jia-Ruey,Chen Shun-Hsing,Chen Dar-Hao,et al.Rutting prediction model developed by genetic programming method through full scale accelerated pavement testing[C], Proceedings-4th International Conference on Natural Computation,2008,326-330
    [102]刘亚敏,韩森,徐鸥明,等.疲劳试验中沥青混合料的弯拉劲度模量[J].广西大学学报(自然科学版),20]0,35(1):]27-130
    [103]Pineau. Dynamic crack propagation and crack arrest investigated with a new specimen geometry: part 1:Experimental and numerical calculations[J].Fatigue and Fracture of Engineering Materials and Structures,1996,19(11):1357-1367
    [104]顾强康,冷培义.水泥混凝土道面上沥青加铺层反射裂缝试验研究[J].中国公路学报,1999,12(1):21-27
    [105]武贤慧,张登良,李德超.沥青路面反射裂缝足尺试验[J].长安大学学报(自然科学版).2003,23(6):4-6
    [106]叶志森,沈钢.独立轮踏面外形的设计[J],铁道车辆,2003,41(1),19-21
    [107]Jameson G.W..Sharp K.G.,Vertessy N.J.,et al.Fatigue performance of asphalt and cement-treated crushed rock under accelerated loading[C], Proceedings-Conference of the Australian Road Research Board.1992.335-361
    [108]Behzadi G.,Yandell W.O.. Determination of elastic and plastic subgrade soil parameters for asphalt cracking and rutting prediction[J], Transportation Research Record,1996,97-104
    [109]刘小平,郑建荣,朱治国,等Solidworks与ADAMS/View之间的图形数据交换研究[J],机械工程师,2003,12,26-28
    [110]崔清洋,张大长.结构力学[M],武汉:武汉理工大学出版社,2006
    [111]方翠.对称式线激光路面车辙检测技术研究[D],西安:长安大学,2010
    [112]Hall J.W.,Turner D.S.Development and adoption of early AASHO design criteria[J],Transportation Research Record,1998,1612,26-33
    [113]Dave E.V.,Braham A.F., Buttlar W.G.,et al.Integration of laboratory testing, field performance data and numerical simulations for the study of low-temperature cracking[J], Pavement Cracking: Mechanisms, Modeling, Detection, Testing and Case Histories,2008,16,369-378
    [114]Tsai Bor-Wen,Harvey John T.,Monismith,Carl L.WesTrack fatigue performance prediction using Miner's law[J],Transportation Research Record,2002,1809,137-147
    [115]张志祥.长寿命沥青路面设计与试验研究[D],南京:东南大学.2009
    [116]国兴玉.冯晋祥.张鹏,等.一种具有单双轮轴转换功能的路面加速加载试验装置[P].201120086544.6.2010
    [117]冯晋祥,国兴玉,张鹏,等.一种用于路面加速加载实验的双轴八轮浮动机构加载车[P],200920031278.X,2010
    [118]国兴玉.冯晋祥,王旭光.等.一种用于路面加速加载实验装置的曲线轨道[P],200820173345.7,2009
    [119]冯晋祥,国兴玉,王旭光.等.一种用于路面加速加载实验装置的电缆线架[P],200820173344.2,2009
    [120]冯晋祥,王旭光,管志光.等.一种路面加速加载试验设备的非接触式横移控制装置[P].201020135039.1,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700