跳汰选煤过程的智能控制方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跳汰机作为一种通用、高效、可靠的选煤设备,广泛应用于选煤厂,在我国,大约60%的入洗原煤采用跳汰分选工艺,跳汰选煤在我国洁净煤战略中占有相当重要的地位。
     但与此不相适应的是,目前我国跳汰选煤的自动化水平仍处于十分落后的状态:自动排料系统靠人工设定重物料层厚度期望值,控制算法基本停留在简单的逻辑控制或常规PID控制上,达不到床层稳定的控制要求;床层的分层过程控制系统虽然采用了数字风阀,但风水制度的调节完全由跳汰司机根据经验进行,不仅工作量大,而且人为因素影响大,无法做到稳定、准确的调节。这导致了物料不能按密度良好分层,不同密度物料间的错配现象严重和大量精煤流失或精煤污染,严重影响了选煤生产的效率和效益。
     跳汰过程是一个典型的机理复杂、影响因素多、变量间相互耦合、时变、严重非线性的动态过程,产品质量及分选效率与床层厚度和风阀参数之间无法建立确切的数学模型,传统控制理论和方法难以对此类系统进行有效的控制。近年来,以专家系统、模糊控制、神经网络为代表的人工智能技术被引入复杂工业过程控制领域,同时也为跳汰过程的自动控制提供了一条有效途径。
     本文研究用智能控制方式实现跳汰过程自动化的策略和实现方法。
     首先对影响跳汰分选效果的主要因素做了深入分析,得出床层的密度分布与产品质量密切相关,其正态分布的标准离差可反映出床层中的错配物含量的结论,提出跳汰过程的自动控制应以优化分层状态为目标的控制策略。作者分析了脉动水流特性、松散度和排料过程对分层状态的影响,为明确过程控制中的状态变量与控制要素奠定了基础。
     某些重要位置上沿床层深度方向的密度分布信息对跳汰过程控制至
    
     摘要
    关重要,为此本文研究了获取床层状态信息的Y射线密度检测原理与技
    术,研制了以cs’37为射源的Y射线探测器及其后续处理电路,解决了计
    数可靠性、抗噪声干扰等关键问题,并应用于现场跳汰机。试验表明,
    用Y射线密度探测器能够真实地反映床层在不同深度的密度值,该信息
    与其它状态信息相结合,可以较准确地反映出跳汰机床层按密度分层的
    状态。
     跳汰过程中,可定量信息与不确定(模糊)信息共存,且多种因素
    间互相关联,一些关键参数无法用数学公式表征。对此作者研究了基于
    模糊推理的状态识别方法,提出了用密实期和松散期的密度差值表征床
    层松散度的方法;提出了基于密度均值、标准离差、原煤灰分及床层厚
    度等信息的跳汰机分层状态模糊评判方法。为了研究各状态参数之间的
    关系,设计了现场数据采集与记录系统,对床层在不同深度、不同时间
    段(密实期与松散期)的密度值、床层厚度、原煤灰分、给料速度、风
    阀操作参数等作了长时间记录,并辅以定时人工筛分浮沉实验。通过对
    大量现场数据记录的分析表明,跳汰机分层状态模糊评判方法具有较高
    的识别精度。
     在上述研究的基础上,进行了模拟跳汰机的实验室实验,从中得到
    了风阀操作制度对脉动水流特性的调节关系、脉动水流特性对床层松散
    状态的调节作用、床层松散度与分层状态的关系,从而建立了风阀操作
    制度与分层状态之间的关系链,为控制规则的制定提供了可靠依据。
     本文根据跳汰过程的特点,提出了专家控制系统的构成框架,研究
    了分层过程控制专家系统的知识获取、知识的表示与检索方法及推理机
    制,并根据分层状态、床层松散状态、给料速度信息和现场运行记录及
    定时人工筛分浮沉结果进行推理,建立了专家系统规则库,给出了具体
    的风阀操作参数的调节方法。同时从跳汰机综合控制的角度,对排料过
    程模糊控制方法做了改进性研究,提出了床层厚度期望值的自动修正方
    法;在此基础上,设计并实现了跳汰机总体协调控制系统。
     现场运行情况表明:基于专家系统和模糊控制的跳汰机自动控制策
    略是可行的。尽管该系统还需不断完善,但对稳定精煤灰分、减少精煤
    
    太原理工大学博士研究生学位论文
    流失、提高产品质量与分选效率起到了重要作用,取得了很好的经济效
     、,
    盆。
Jig is utilized widely in coal preparation plant as a universal, efficient and reliable coal preparation equipment. About 60 percent of raw coal is cleaned by jigging process in coal preparation plant. Jigging plays an important role in coal cleaning in our country.
    But the automation of jigs falls behind in china. In the automatic discharge system of jigging, the expectation value of bed depth depends on the manual work, and the simple logical control or conventional PID algorithm used in discharging can not satisfies the bed stabilizing. Although the digital air valve is adopted in jigs, the adjustment of air-water rule depends on the experiences of jig operators but automatic system. The parameters can not be adjusted stably and accurately due to the excessive human factors. The satisfying stratification according to density distribution can not be obtained, and the serious misplacing of different density material causes large number of cleaning coal lost or contaminated, which affects the efficiency and benefits of coal cleaning seriously.
    Multi-variable coupling each other, time-variant, heavy nonlinear characteristic are contained in jigging process. The precise mathematical model between product quality or separation efficiency and operational parameters can not be built because the process mechanism description is too complex and a large of uncertain factors exist. The effective control can not be achieved by conventional control theory and methods. Recently, artificial intelligent technology, such as expert system, fuzzy control and neural network, is introduced to complex process control, which provides an effective method of the jigging automation.
    This article studies the strategy and realized method of jigging process automation with intelligent control theory.
    The main influencing factors of jigging separation are analyzed deeply. The analysis shows that the distribution characteristic is closely relative to
    
    
    
    product quality. The misplaced material content in bed can be reflected by the standard deviation of normal distribution. The author puts forward that the target of jigging process control should be the optimum stratification state and the bed stratification state is affected by pulsing water characteristic, mobility of the jig bed and discharging process.
    The bed stratification state is a key factor in jigging process control. Y radial density detecting principle and technology is studied in the article, y radial sensor and subsequent circuit is developed. The key problems, such as the reliability of counting and antinoise are resolved, and this detector is applied in practice. Y radial source is Cs . Experiment shows that the Y radial density detector can measure the coal density in different bed depth precisely. Bed status can be reflected by combining density information with other state information.
    In jigging process, quantitative information and uncertain information (fuzzy information) appears at the same time and multi-factors associate each other. Some key factors cannot be described by mathematic model. The article studies the status identification based on fuzzy reasoning, and puts forward that bed mobility is expressed by density difference between compact period and mobility period, also the fuzzy judgment method based on density mean value, standard deviation, raw coal ash content and bed depth information. In order to study the relationship of all kinds of parameters, data acquisition and recording system is designed. Operational parameters, such as density, bed depth, raw coal ash content, feed velocity, air valve etc, are recorded for a long time. Simultaneously, the timing artificial float and sink test is carried out. The high identification precision of bed stratification status is acquired through the analysis of recording data on site using fuzzy judgment method.
    By large numbers of experiments, the adjustment relationship between air valve operational rule and pulsing water characteristic, the pulsing water characteristic and mobility of bed, also the mobility of be
引文
[1] 戴和武.煤炭加工利用论文集.煤炭工业出版社,1990:119-125.
    [2] 97中国能源白皮书,1998.
    [3] 范维唐,潘惠正.发展我国的洁净煤技术.中国煤炭,95(1).
    [4] 彭世济.中国洁净煤技术发展研讨会论文选集.1994:11-16.
    [5] 煤炭发展战略论文集,煤炭部科技情报资料,1995
    [6] 刘峰.近年选煤技术综合评述.选煤技术,2003(6):1-13
    [7] 杨康,娄德安.跳汰选煤技术与设备的发展.选煤技术,2003(6):14-19
    [8] 陈迹.跳汰选煤的理论与实践.煤炭工业出版室,1988.
    [9] 311跳汰机的优化控制策略研究.美国CII公司在邢台矿务局东庞矿选煤厂的研究报告,1995.1
    [10] Z.Be Dkowski.用于空气脉动跳汰机的Boss—2000型自动排料装置.第14届国际选煤会议论文集,2002.3:178-181.
    [11] G.Loveday Apic.跳汰机与JigScan控制器.第14届国际选煤会议论文集,2002.3:189-195.
    [12] K.Kumagawa,Ikeshima.煤矿改进型变波跳汰机的最优化.第14届国际选煤会议论文集,2002.3:195-200.
    [13] G J Sanders, J Kattman. Cost efficient beneficiation of coal by ROMJIG sand BATAC jigs. Proceedings of Ⅻ International Coal Prepartion Congress,2002.3: 395-400.
    [14] 朱金波.用人工神经网络确定跳汰分选指标及最佳操作.中国矿业大学学报,1999(2)
    [15] 李洪庆,屈盛安,钟会平.跳汰机风阀自动控制.选煤技术,1999(5):20-23.
    [16] 倪建军,孙伟,李明.跳汰精煤灰分在线回控系统的应用研究.选煤技术创刊30周年征文论文集,2003.12:115-116.
    [17] 于海波,於春慧,高建国.跳汰机实时分选密度测控及灰分闭环控制的探讨.选煤技术,2002(2):17-18
    [18] R.X. Rong, C. J. Wood, D. M. Hughes, Jig Performance Analysis, Ⅶ Australia Coal Preparation Conference
    
    
    [19] 杨大海,杨康,刘旌.跳汰机床层状态智能有源探杆.煤质技术,1998(3):33-34.
    [20] Liu JK, Deng SO,Xu XH. Design and Implementation of Expert System for Judging Blast Furnace conditions. Journal of Iron and Steel Research International, 1996, 3 (2): 11-16.
    [21] 李桃.烧结过程智能实时操作指导系统的研究.中南大学博士学位论文,2000:12-13.
    [22] 王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究.中南大学博士学位论文,2002:73-86.
    [23] 刘金琨,王树青,张建明.高炉实时控制专家系统存在的问题及其解决方法.浙江大学学报,2000(6):613-618.
    [24] 王耀南,张昌凡,刘治.专家模糊神经网络控制系统在复杂工业过程中的应用.电机与控制学报,2000(3):175-178.
    [25] 林莉,李滋刚,万德钧.船舶操纵实时专家控制器设计.仪器仪表学报,2002(1):400-403.
    [26] 王耀南,王辉,彭建春,刘国才.复杂工业过程的综合集成智能控制.信息与控制,1999(4).
    [27] 贺云波,蒋志明.一种专家智能融合控制策略及其应用.自动化仪表,2000(7):5-7.
    [28] Isaka S, Sebald A V. An optimization approach for fuzzy controller design [J]. IEEE, Transaction SMC, 1992, 22(6): 1469~1473.
    [29] 杨士忠,费耕.跳汰机床层自控系统中的浮标传感与手工操作的探杆探测.选煤技术,1999(5):30-31.
    [30] 陈迹.重力场中颗粒材料的分层规律.煤炭学报,1980(6).
    [31] G.J. Lyman. Review of Jigging Principles and Control, Coal Preparation, Vol. 11 (3/4), 1992, 145-165.
    [32] 樊民强.颗粒在跳汰床层中分布形态的研究.煤炭学报,2000(4):312-315.
    [33] 张荣曾,韦鲁滨,付晓恒.跳汰机中脉动水流流体动力学研究.煤炭学报,2002 (6):644-648.
    [34] D E Jenkinsen.X射线透射法选煤,London:1973.20—50.
    [35] 郭红.γ射线在一些领域的应用.抚顺石油学院学报,1995(6):73—76.
    [36] 马永和,杨英范.同位素方法测量煤炭灰分的进展.东北煤炭技术,1995(6):52—
    
    59.
    [37] 李力源,管顺朝,陈玉翠.多信道γ射线料位计的设计.核电子学与探测技术,2000(1):59—61.
    [38] P.J.奥塞夫,姬成周(译).核辐射探测器入门.科学出版社,1980,4.
    [39] 王宗仁.核仪器电子技术.原子能出版社,1977,8.
    [40] 戴逸松.微弱信号检测方法及仪器.国防工业出版社,1994.
    [41] Wang X, Mendal J M. Generating fuzzy rules by learning from examples[J]. IEEE, Transaction SMC, 1992,22(6): 1414~1427.
    [42] R W Michael. Reconstructive explanation: a case study in integral calculus,Expert System Application, 1995.11:463-473.
    [43] P Harmon, R Maus, W Morrissey. Expert Systems Tools and Applications. New York: Wiley, 1988: 14-20.
    [44] T Satish, S Bukkapatnam, et al. Chaotic neurons for online quality control in manufacturing[J]. Adv Manuf Technol, 1997(13):95~100.
    [45] 符东旭.跳汰机自动控制的途径.煤矿自动化,1998(1):21-23.
    [46] R.X. Rong etc. Jig performance analysis, ⅶ, Australia Coal Preparation Conference.
    [47] A.Jonkers etc. Numerical Modelling of Particle stratification batch jig. ⅶ, Australia Coal Preparation Conference.
    [48] 曾伟民,邓勇刚.Visual Basic 6.0高级实用教程.电子工业出版社,2000,4.
    [49] 范逸之,陈立元.Visual Basic与RS—232串行通信控制(最新版).中国青年出版社,2002.1.
    [50] 陈健云.用模糊控制技术实现跳汰机控制的探索.选煤技术,1996.4.
    [51] 杨大海.利用模糊控制技术实现排矸过程的控制.选煤技术,1998(4).
    [52] 费耕.跳汰机自动控制若干技术的研究与实践.煤炭科学技术,94,22(4):30-35.
    [53] Li Xianguo. Simulation of Jigging Process. Coal Preparation, Vol. 13(3/4), 1993: 197-207.
    [54] H.J.STEINER. A Contribution to the Theory of Jigging. PART1: Similarity Criteria of the Motion of Jig Layers. Mineral Engineering, Vol.9, No.6: 675-686.
    [55] Jieming Yang, Jinhong Wei. Application of fuzzy control method with self-tuning factor in jigger's discharging. Journal of China Coal Society, 2000(6).
    [56] Yang Jieming, Xiong Shibo. Research on the Jigger's Air Valve Autocontrol Based on BP Neural Network. Proceedings of the International Symposium
    
    on Test and Measurement 2003: 1468-1470.
    [57] 张家骏,霍旭红.物理选矿.煤炭工业出版社,1992,10.
    [58] 冯绍灌.选煤数学模型.煤炭工业出版社,1991.
    [59] H.A.萨梅林.跳汰的理论及其应用.煤炭工业出版社,1980.
    [60] 李士勇.模糊控制、神经控制和专家控制论.哈尔滨工业大学出版社,1996.
    [61] 王耀南.智能控制系统——模糊逻辑、专家系统、神经网络控制.湖南大学出版社,1996.
    [62] G Q Huang. An agent based framework for cooperating expert systems in concurrent engineering. Engineering Application of Artificial Intelligence, 1994,7(6): 685-6936.
    [63] Cohen P R. Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems Using Joint Intentions. Artifical Intelligent, 1995,75(2):195-240,93-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700