煤电转化材料过程工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源与环境问题是密切相关的可持续发展的两大基本问题。本文用材料过程工程学的研究方法,以调查研究和科学试验为手段,以煤电转化过程为研究对象,以煤电转化过程各环节(子过程)“资源减量化、产品再利用、废弃物资源化”为原则,以资源节约和循环利用为核心,以低消耗、低排放、高效率为基本特征,对这一过程进行优化与集成,并对过程排放的污染物进行环境影响的分析评价,使优化的过程符合资源综合利用的要求,节约能源的要求,清洁生产的要求,可持续发展的要求,符合建立在生态学规律之上的循环经济的要求。目的是在工业区或区域层面发展生态工业,把上游生产过程的副产品或废物用作下游生产过程的原料,形成企业间的工业代谢和共生关系。
     在过程工程学的基础上,对材料过程工程学的框架体系进行了研究。以煤电工业和水泥工业间的交集—废渣的资源化过程的研究为例,进行煤电转化过程的优化与集成。
     要实现联产首先要优化煤电转化过程。对煤电转化过程各子过程包括动力煤洗选及配煤过程、燃煤发电过程、煤系固体废物综合利用过程、脱硫脱硝过程等的发展现状进行分析研究,分析各子过程存在的问题,提出了技术上及政策上解决的策略。
     由联产技术得到的联产灰,采用水泥性质实验、化学分析、XRD分析及SEM分析,对煤粉炉和循环流化床锅炉排出的两种粉煤灰(PF灰和AFBC灰)的性质进行对比分析研究,结果表明,化学成分差异不大的两种灰,PF灰细度大、晶相含量小、活性大、强度贡献大、需水性小;PF灰颗粒细小,球形颗粒相对较多,颗粒表面相对较光滑;AFBC灰颗粒相对较粗大,不规则颗粒较多,表面较粗糙,且孔洞较多。
     通过优化燃煤过程和联产技术,提出了一种新的粉煤灰的科学分类方法,将粉煤灰按发电方式及含钙量分为高钙PF灰、低钙PF灰、高钙AFBC灰和低钙AFBC灰,更有利于粉煤灰在建筑工程和建材工业方面的分类利用。
     本联产技术是基于煤粉炉燃煤与硅酸盐水泥熟料生产具有相近的温度条件,粉煤灰与水泥熟料具有相似的化学组成。把煤粉炉视为煤粉成分的反应器,进行了煤粉掺杂在与煤粉炉燃煤相似的燃烧条件下的试验研究,通过XRD图分析可以看出,随着含钙量的增加,煤粉灰中的莫来石逐渐消失,形成了钙铝黄长石,随着含钙量的进一步增加,钙铝黄长石的含量又逐渐减少,形成了新的水硬性的硅酸二钙。结果表明,煤粉掺杂量在一定的范围内,经高温快速燃烧可以生成具有水硬性的贝利特矿物,燃煤发电联产水泥是可行的。初步进行了联产灰的性质及利用研究。
     分析了燃煤发电联产水泥研究现状,找出其存在的问题,认为燃煤发电联产水泥技术的研发是一项系统工程,必须结合我国火电技术的发展,组织相关学科专家、学者联合攻关才能完成。提出燃煤发电联产水泥技术的研究思路,即顺应煤种、炉型和炉膛温度等条件,研究锅炉燃烧状况下,煤-渣变化的规律,在此基础上,研究煤粉的配方,经安全发电后获得不同水硬性成分的熟料。
     利用(?)分析原理,分析计算煤电转化过程的(?)效率;利用煤电转化过程排放物的(?)值,分析计算煤电转化过程排放物对环境的影响。用环境负效应数学式结合气载流出物的非致癌污染物健康危害数学式,参照我国《环境空气质量标准》及《火电厂大气污染排放物标准》评价煤电转化过程对环境及人体健康的影响。
     对我国燃煤发电技术发展进行了分析研究,认为我国未来几十年主流发电方式是最有技术继承性、最具条件在短时间内实现规模化生产、最具优化火电结构等优势的超(超)临界发电,以及环保效果较好的循环流化床锅炉发电。以这两种发电方式为核心,对整个煤电转化过程进行优化与集成,提出符合我国实际的煤电转化过程路线,并提出优化集成的煤电转化过程及煤系主要产物循环利用途径。
Both available resources and environment are the two essential issues that are closely related to the sustainable development. In this paper, the process of converting coal into electricity is optimized and integrated by employing the methodology of material process engineering, together with scientific survey and experiments. In the study, all the sub-processes involved in the process of converting coal into electricity are taken into account, under the principles of resource minimization, reuses of product wastes and resources, while the resource conservation and recycling are taken as the core value, leading to low consumption, low discharges, and high efficiency. The impact on environment by pollutants is analyzed and evaluated, in order to conform to the requirements of a comprehensive utilization of resources, energy conservation, clean production, and sustainable development, meeting the need of establishing an ecological, environmental friendly and sustainable economy. It is aimed at developing an ecological industry in the industrial region or level, by taking products and in particular the wastes from the upstream production process as the raw materials for the downstream production process, establishing an industrial metabolism and co-existence relationship.
     The material process engineering's frame system has be studed on the basis of the process engineering. Intersection between power industry and cement industry- residue of resources is exemplified,and the process of converting coal into electricity is optimized and integrated .
     Each sub-process involved in the process of converting coal into electricity is analyzed and investigated, including coal selection and blending, coal-fired power generation, comprehensive utilization of the solid wastes by coal formation, desulphurization and denitration. While the problems in each of these sub- processes are revealed, the strategies for solving them by applying new technologies and policies are suggested.
     The behavior and properties of fly ash produced in the pulverized coal stove (PFA) and circulation fluid bed boiler (AFBCA) have been analyzed and compared, by using the cement experimental method, chemical, XRD and SEM analyses. There is no obvious difference in chemical composition between PFA and AFBCA. PFA exhibits finer particles, a relatively smaller proportion of mineral contents, larger activeness, larger strength contribution and a smaller water requirement as compared to AFBCA. It also consists of smaller spherical particles and smoother surface. In contrast, AFBCA is associated with larger and coarser particles with porous surface.
     A new classification system for fly ash is proposed in this study, namely the high calcium PFA, the low calcium PFA, the high calcium AFBCA and the low calcium AFBCA, according to the ways of electricity generation and the calcium proportion. The new classification system will benefit their uses and applications in building engineering and building materials industry.
     Coal burning in pulverized coal fired boilers and calcination of Portland cement clinker are similar in temperature conditions, while the fly ash and cement clinker have similar chemical compositions. Taking pulverized coal fired boiler as a reactor, compound coal is burnt under combustion condition similar to that of the pulverized coal stove. On the basis of XRD phase analysis, one can conclude that with the increase in calcium content, the amount of 3Al_2O_3·2SiO_2 in coal ash gradually disappears, replaced by 2CaO·Al_2O_3·2SiO_2. With further increase in the calcium content, the 2CaO·Al_2O_3·2SiO_2 content also gradually decreases, giving rise to the belite minerals. The experimental results show that in the certain doping range of the powdered coal, the rapid combustion at high temperature generates belite minerals, suggesting that the feasibility of joint production of coal-burning electricity generation and manufacture of cement. Preliminary experimental study has been done on the property and utilization of cogeneration ash.
     On the basis of the current status of study on the technology of joint production of the coal-burning electricity generation and cement manufacture, some of the key existing problems have been identified. Indeed, the feasible joint production of coal-burning electricity generation and cement manufacture is a system engineering. It is necessary to integrate with the development of thermal power technology, and to organize experts and scholars from related disciplines and joint efforts in order to complete this project. The idea of the integrated production of coal-burning electricity and cement manufacture has to comply with the types of coal and furnace, the temperatures involved and other conditions, where the behavior of coal-slag changes under the boiler combustion condition has to be studied, in order to select the appropriate coal composition and to obtain the clinker of different hydraulicity ingredients safely.
     The exergy efficiency of two different processes of converting coal into electricity is analyzed and determined according the exergy balance principle. From the exergy of pollutants emitted, the environmental impact of converting coal into electricity is analyzed and determined. The impacts on environment and human health are also evaluated by considering the environmental negative effects, on the basis of the mathematical model combining non-carcinogenic pollutant health hazards and airborne effluents, with reference to the "ambient air quality standards" and "power plant air pollution emission standards".
     Having studied the technological development of generating electricity by coal-burning in our country, it is concluded that the main electricity generation techniques will be the super (super) critical technology for power generation which is better in technology inheritance, scale-up in short time, optimization in thermal power structure, and the CFB boiler power generation technology which has better environmental results. By taking the two electricity generation techniques as the centre of development, the entire process of converting coal into electricity will be optimized and integrated, leading to the realistic joint process of converting coal into electricity and the comprehensive utilization of the solid wastes.
引文
[1]李恒德.材料科学与工程国际前沿.山东科学技术出版社.济南:2003
    [2]陈清如.中国洁净煤战略思考.2005年中国煤炭加工与综合利用技术、市场、产业化发展战略研讨会.西安:2005
    [3]中国电力“十一五”发展计划及2020发展规划.北京:中国工程院,2003
    [4]中国绿色国民经济核算研究报告2004(公众版).国家环境保护总局,国家统计局.北京:2005
    [5]张轶.中国水泥工业现状与结构调整.上海建材,2004(4):11-13
    [6]姚强,陈超.洁净煤技术.北京:化学工业出版社,2005
    [7]应当加快煤炭洗选业发展.中宏数据库/产业研析库/能源矿产库,2005.9
    [8]余珠峰主编.洁净煤技术发展及应用.北京,化学工业出版社,2004
    [9]孙玉芹.煤炭洗选技术在美国和澳大利亚的发展趋势.山西焦煤科技,2004,(11):44-46
    [10]刘峰.近年学煤技术综合评述.选煤技术,2003,(6):1-14
    [11]刘峰.第14届国际选煤会议概况.中国煤炭,2002,(8):60-61
    [12]张荣曾,付晓恒,韦鲁滨等.跳汰机床层松散与分层的流体动力学研究.煤炭学报,2003,(2):193-198
    [13]张荣曾,韦鲁滨,付晓恒.跳汰机中脉动水流流体动力学研究.煤炭学报,2002,(6):644-648
    [14]樊民强.跳汰周期的比较和优化.太原理工大学学报,2000,31(2):129-132
    [15]王振翀,任守政.跳汰分层过程计算机模拟研究.中国矿业大学学报,2000,29(4):388-341
    [16]朱金波.用人工神经网络确定跳汰分选指标及最佳操作.中国矿业大学学报,1999,28(2):145-147
    [17]符东旭,熊诗波.跳汰床层密度分布规律的研究.选煤技术,2001,(1):13-16.
    [18]姚昆亮.跳汰分层准重液机理探讨.选煤技术,1999,(3):17-20.
    [19]G Ateaok,F Boylu,MS Celik,D Eratak.Carier flotation for production of low-ash and low-sulphur coal.Proceedings of ⅩⅣ International Coal Preparation Congress.Sandton Convention Centre,Johannesburg,South Africa:SACPS&SAIMM,2002:63-67.
    [20]J B Rubinstein,E K Samoylova.Flotation of fine disperses coal slimes:Problems and solutions.Proceedings of ⅩⅣ International Coal Preparation Congress.Sandton Convention Centre,Johannesburg,South Africa:SACPS & SAIMM,2002:209-215.
    [21]林玉清,林麟,徐长江等.对改善氧化煤泥表面疏水性药剂的研究.选煤技术,2001,(1):24-25
    [22]杨亚军.细粒级难选煤用高效浮选剂的研究.选煤技术,1998,(2):20-33
    [23]李建中,张广平.淮北选煤厂采用煤泥分级浮选的探讨.选煤技术,1999,(1):17-19
    [24]R H Yoon,G H Luttrell,R Asmantulu.Extending the upper particle size ml limit for coal flotation.Proceedings of ⅩⅣ International Coal Preparation Congress.Sandton Convention Centre,Johannesburg,South Africa:SACPS &SAIMM,2002:445-449.
    [25]赵宏馨.发展动力煤洗选 提高煤炭利用效率.中国煤炭,2005,(8)
    [26]陈贵锋,俞珠峰,成玉琪.中国煤炭加工技术发展的思考.洁净煤技术,2001,(1)
    [27]陈文敏,张自劭等主编.动力配煤.北京,煤炭工业出版社,1999
    [28]陈文敏,李文华,徐振刚.洁净煤技术基础.北京,煤炭工业出版社,1997
    [29]许建豪,金晶,邱莉莉.Excel在火力发电厂配煤方案最优化处理中的应用.浙江电力,2004(4):50-52
    [30]李新,李贤国.MATLAB计算方法在选煤和动力配煤中的应用.煤炭加工与综合利用,2000,(4):8-10
    [31]路迈西,何京东,刘文礼.动力煤与炼焦煤配煤软件的研究.选煤技术,2003,(5):39-41
    [32]高洪阁,李白英.动力配煤的新模型及其求解.中国矿业大学学报,2001,30(6):627-629
    [33]王永保.动力配煤优化方案的设计及其应用.中国煤炭,2003,29(1):45-49
    [34]程军,曹欣玉,周俊虎等.多元优化动力配煤方案的研究.煤炭学报,2000,25(1):81-85
    [35]桂祥友,马云东.非线性优化理论在动力配煤中的应用.中国矿业,2005,14(6):49-51
    [36]钱惠国,苑安民,侯玲娟等.动力配煤高温复合固硫剂研究.冶金能源,2004,23(1):51-54
    [36]李文华.动力配煤技术的发展及产业化前景.中国煤炭学会煤炭转化、综合利用环境保护学术研讨会论文集.北京:1999:1-5
    [37]范维唐.洁净煤技术-可持续发展的现实选择.中美清洁能源技术论坛,2001
    [38]陆延昌.火力发电技术领域面临的形势和挑战.电力设备,2004,5(1):1-3
    [39]Li Jun,Wu Shaohua.Ultra-Supercritical-A Preferential Choice for China to Develop Clean Coal Technology.ELETRICITY,2004,(4):30-35
    [40]全国电力市场协会.世界超超临界技术的发展现状与趋势.电器工业,2005,(6):10-12
    [41]苗道金,危师让.超临界火电技术及发展.热力发电,2002,(5):2-7
    [42]王文选,赵石铁,吕俊复等.循环流化床锅炉在电力工业中的应用前景.锅炉技术,2004,35(5):21-24
    [43]王志锋,梁鹏,董众兵等.循环流化床多联产洁净煤技术的研究及应用.煤化工,2005,(5):22-26
    [44]蔡宁生,张名耀.PFBC-CC发电技术的进展及创新发展.东南大学学报,2002,32(3):438-442
    [45]中国能源发展战略与政策研究.北京:经济科学出版社,2004
    [46]谢德瑜,张凤辰.煤矸石及其综合利用.中国资源综合利用,2004,(10):20-23
    [47]王国平,孙传敏.煤矸石资源化的主要途径.中国矿业,2004,13(3):40-43
    [48]江洪青.煤矸石对环境的危害及其综合治理与利用.煤炭加工与综合利用,2003,(3):43-46
    [49]国家经济贸易委员会、科学技术部.煤矸石综合利用技术要求.煤炭加工与综合利用,2000,(2):3-5
    [50]任强等.绿色硅酸盐材料与清洁生产.北京:化学工业出版社,2004
    [51]张平萍,孙传敏.我国煤矸石的综合利用现状及存在问题.国土资源科技管理.2004,21(6):95-98
    [52]池涌,李晓东,严建华等.洗煤泥与污泥处理焚烧技术及工程实例.北京,化学工业出版社,2006
    [53]李文忠.洗煤泥、煤矸石混烧发电技术的研制与开发.洁净煤技术,1999,5(4):30-34
    [54]曹征彦.中国洁净煤技术.北京:中国物资出版社,1998
    [55]钱觉时著.粉煤灰特性与粉煤灰混凝土.北京,科学出版社,2002
    [56]周宏春.中国循环经济的发展现状与政策建议.中国网,2005-6-21
    [57]边炳鑫,解强,赵由才等.煤系固体废物资源化技术.北京,化学工业出版社,2005
    [58]林介东,莫乾凯,江潮全.电厂粉煤灰综合利用技术的现状及发展方向.中国能源.2002,(4):36-39
    [59]王小明,薛建明、颜俭等.国内外烟气脱硫技术的发展与现状.电力环境保护,2000,16(1):31-34
    [60]Martin Freedman,Bikki Jaggi.Air and water pollution regulation accomplishments and economic consequences.London:Quorum Books,Westport,Connecticut,1993.
    [61]徐家骝.日本环境污染的对策和治理.北京:中国环境科学出版社,1990.
    [62]范小克.破解燃煤二氧化硫污染防治的世界难题,实现循环经济的战略突破.中国工程咨询,2004,48(8):15-18
    [63]朱法华,王圣,郑有飞.火电NO_x排放现状与预测及控制对策.能源环境保护,2004,18(1):1-5
    [64]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术.北京,化学工业出版社,2006
    [65]陈家镛.过程工业与过程工程学.过程工程学报,2001,1(1):8-9
    [66]郭慕孙.过程工程.过程工程学报,2001,1(1):2-7
    [67]李静海,张忠东,葛蔚等.有两种机制共存的耗散结构的机制条件.科学通报,1999,44(6):613-617
    [68]杨纪珂.过程工程的科学研究.科学新闻,1959,(31):5-8
    [69]李静海.化学工程中复杂系统的多尺度模拟及离散化仿真.中国科学院化工冶金研究所.第139次香山科学会议文集.北京:香山,2000
    [70]牛强,潜伟.过程工程:技术与管理的集成创新.包头钢铁学院学报,2002,21(4):97-301
    [71]Trost B.M.Science.1991,254(5037):1471-1477.
    [72]Paul T Anastas,John C Warner.Green Chemistry Theory and Practice.Oxford:Oxford University Press,1998.
    [73]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998.
    [74]张懿.绿色过程工程.过程工程学报,2001,1(1):10-15
    [75]师昌绪,李恒德,周廉.材料科学与工程手册.北京:化学工业出版社,2004.
    [76]何耀文.有效能分析法讲座(五).化学工程.1979,(5):107-120.
    [77]罗宏,孟伟,冉圣宏.生态工业园区-理论与实证.北京:化学工业出版社,2004.
    [78]沈威.水泥工艺学.建筑工业出版社.北京.1986
    [79]刘殿海,杨永平,杨昆等.基于马尔科夫链的能源结构与污染物排放预测模型及其应用.中国电力,2006,39(3):8-13
    [80]郑宏飞著.(?):一种新的方法论.北京,北京理工大学出版社,2004
    [81]项新耀.工程(?)分析.北京:石油工业出版社,1990
    [82]吴存真,张诗针,孙志坚编著.热力过程(?)分析基础.浙江大学出版社,杭州:2000
    [83]金欣,谢玉声,洪履祥.水泥熟料形成(?)的求算.南京工业大学学报(自然科学版),2002,24(4):34-38
    [84]王风贺,王风云,夏明珠等.硅酸盐工业窑炉的有效能分析.山东陶瓷,2002,25(1):11-13
    [85]张巨松,张添华,郑万荣等.氧化钛对硅酸二钙形成的影响.沈阳建筑大学学报(自然科学版),2006,22(3):423-427
    [86]NAGAOKAS,MIZUKOSHIM,KURODAT.Property of Concrete Using Belite-rich and Cement and Ternary Blended Cement.Journal of the Society of Materials Science,Japan,1994,43(491):936-942
    [87]Douglas J M.Process synthesis for waste minimization.Ind Eng Chem.Res,1992,31(1):238-243
    [88]Flower J R,Bikos S C,Johnson S W.The graphical mass balance in the early design of clean processes.Tran of IChE,Part B,1993,194-201
    [89]EI-Halwagi M M,Manousiouthakis V.Synthesis of mass exchange networks.AIChE JI,1989,35(8):1233-1250
    [90]PStefanis S K,Livingston S G.A methodology for minimum environmental impact analysis.ALCHE Symposium Series.Volume on Pollution Prevention through Process and Product Modifications.1994,90(303):139-151
    [91]Stefanis S K,Livingston A G,Pistikopoulos E N,Minimizing the environmental impact of process plants:A process systems methodology.Computers and Chemical Engineering,1996,20:S1419-1424
    [92]Ayres R U.Eco-thermodynamics:economics and the second law.Ecological Economics,1998,26:189-209
    [93]Rosen M A,Dincer I.On exergy and environmental impact.International Journal of Energy Research,1997,21:643-654
    [94]Stepanov V S,Stepannov S V.Energy efficiencies and environmental impact of complex industrial technologies.Energy,1998,23(12):1083-1088
    [95]Koroneos C,Spachos T,Moussiopoulos N.Exergy analysis of renewable energy sources.Renewable Energy,2003,28:295-310
    [96]Wang Y F,Feng X.Exergy analysis involving resource utilization and environmental influence.Computers and Chemical Engineering,2000,24:1243-1246
    [97]姜安玺等编著.空气污染控制.北京:化学工业出版社,2003.6
    [98]潘自强主编.环境危害评价-公众健康危害评价方法及其应用.北京:原子能出版社,1991.11
    [99]黄文熙,王谢.快速升温对CaCO_3分解及水泥熟料煅烧的影响.四川建材学院学报,1987,7(3):1-12
    [100]黄文熙,钱光人,沈德勋.不同煅烧条件下CaO活性的研究.硅酸盐学报,1991,19(6):506-512
    [101]黄文熙,叶巧明,蒋友新.电厂锅炉生产水泥的开发研究.四川水泥,1999,(3):1-7
    [102]傅子诚.水泥熟料沸腾煅烧工艺新进展.水泥工程,1999,(5):55-56
    [103]朱雪芳.煤净化燃烧及伴生物产品化.中国工程科学,1999,1(1):53-57
    [104]王文龙,施正伦,骆仲泱,岑可法.燃煤电厂锅炉联产水泥的技术现状与前景.浙江大学学报,2003,(2):225-230
    [105]胡志满.电厂锅炉掺烧改性剂生产水泥熟料技术初探.粉煤灰综合利用,1998,(2):21-23
    [106]夏刚军.电厂炉膛生产水泥的配方及工艺.中国硅酸盐学会2003年学术年会水泥基材料论文集(上册).北京:中国硅酸盐学会,2003,212-217
    [107]蒋敏华.中国火电技术的走向及选择.第四届全国火力发电技术学术年会论文.北京:中国电机工程学会,2003,12-16
    [108]Ramsden A R,Shibaoka M.Characterization and analysis of individual fly ash particles from coal-fired power stations by a combination of optical microscopy,electron microscopy and quantitative electron microprobe analysis.Atmos Environ,1982,16(9):2191-2198.
    [109]孙俊民.燃煤固体产物的矿物组成研究.矿物学报,2001,21(1):14-18
    [110]孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性的影响.煤炭学报,2000,
    [111]汪安璞,杨淑兰,沙因等.电厂煤飞灰单颗粒的化学表征.环境化学,1996,15(6):496-501
    [112]Ghosal S,Self S A.Particle size-density relation and cenosphere content of coal fly ash.Fuel,1995,74(4):522-529.
    [113]Benson S A.Ash formation and deposition.In:Smoot L D(Ed.).Fundamentals of coal combustion for clean and efficient use.Amsterdam:Elserier,1993.
    [114]孙俊民,韩德馨.粉煤灰的形成和特性及其应用前景.煤炭转化,1999,22(1):10-14
    [115]陈松生,沈卫国,周明凯.高掺量增钙粉煤灰水泥的研制.中国水泥,2004,(8):36-38
    [116]陈松生,沈卫国,周明凯.高掺量增钙粉煤灰水泥的研制.中国水泥,2004,(8):36-38
    [117]王立久,杨新朝,曹明莉.燃煤发电与水泥生产联产技术可行性研究,世界科技研究与发展,2004,26(5):10-17
    [118]赵风清,刘鹏蛟,武振刚.固硫灰渣水泥的开发.粉煤灰综合利用,2002,(6):39-40
    [119]朱书景,侯浩波,贺杏华.循环流化床脱硫渣胶凝材料安定性改性研究.煤炭科学技术,2005,33(10):69-72
    [120]孙俊民.洁净煤燃烧产物的特性与利用潜力,洁净煤技术,1998,4(2):43-46
    [121]吴立新,陈贵锋,俞珠峰,宁成浩,吕欣.提高中国煤炭洗选比例的障碍分析及政策建议.中国能源,2003,(5)
    [122]叶大武.发展动力煤洗选与加工的政策建议.选煤技术,2001,(5)
    [123]N Lourens,The Rejector.Proceedings of ⅩⅣ Inter-national Coal Preparation Congress.Sandton Convention Centre,Johannesburg,South Africa:SACPS&SALMM,2002:285-289.
    [124]SHARP J H,LAWRENCE C D,YANG R.Calcium Sulfoaluminates Cements-low-energy Cements,Special Cements or What? Advances in Cement Research,1999,11(1):3-13
    [125]SHAU S,MAJLING J,JANOTKAI,et al.Investigations of Blended Low Energy Cements.Cement and Concrete Research,1994,24(6):1065-1072
    [126]EASSELOURI V,TSAKIRIDIS P.A Study on the Hydration Products of a Non-Expansive Sulfoaluminate Cement.Cement and Concrete Research,1995,25(8):1726-1736
    [127]Sui Tongbo,Guo Suihua,Liu Kezhong,et al,Research on high belite cement,Part Ⅰ.4th Beijing International Symposium on Cement and Concrete,Beijing,1998.145-148
    [128]Sui Tongbo,Liu Kezhong,Wang Jing,et al,Research on high belite cement,Part Ⅱ.4th Beijing International Symposium on Cement and Concrete,Beijing,1998.149-151
    [129]姜奉华、徐德龙.Q相-C_2S-C_4AF-Cl_2A_7系列水泥形成的研究.硅酸盐通报,2004,(4):24-26
    [130]焦有宙、王淮东、邱建芝、张全国.Q相与电厂煤粉炉联产水泥熟料技术.粉煤灰综合利用,2006,(4):51-54
    [131]朱法华.阻碍燃煤电厂烟气脱硫的症结及出路.环境经济杂志,2004,(6):30-33
    [132]朱法华.火电建设面临的环保形势与任务分析.环境科学研究,2005,18(4):21-29
    [133]王方群,杜云贵,刘艺等.国内燃煤电厂烟气脱硝发展现状及建议.中国环保产业,2007,(1):18-22
    [134]Zheng,D.M.,and Qian,H.P.,Civil Engineering Materials,China Machine Press,Beijing,China,2005
    [135]陈雅福主编.土木工程材料.广州:华南理工大学出版社,2001.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700